Exact phase diagram of a multispecies exclusion process

Arvind Ayyer

Department of Mathematics Indian Institute of Science, Bangalore

February 17, 2017

(joint with Dipankar Roy)

The Model

- Two-species semipermeable ASEP with *L* sites.
- ullet Particles of type +,- as well as vacancies.
- Number n_0 of vacancies conserved.
- Bulk rules (action of an electric field)

$$+0 \quad \stackrel{1}{\rightleftharpoons} 0 + \\ 0 - \quad \stackrel{1}{\rightleftharpoons} -0 \\ + - \quad \stackrel{1}{\rightleftharpoons} -+$$

Left boundary

$$-\stackrel{\alpha}{\rightleftharpoons} +$$

Right boundary

$$+ \stackrel{\beta}{\rightleftharpoons} -$$

Matrix Ansatz

- Let $\tau = (\tau_1, \ldots, \tau_L)$ be a configuration.
- The steady state can be computed using

$$P(\tau) = \frac{1}{Z(L,n)} \langle W | X_{\tau_1} \dots X_{\tau_L} | V \rangle.$$

The algebra of the matrices and boundary vectors is given by

$$X_{+}X_{-} - qX_{-}X_{+} = X_{+} + X_{-}$$

$$X_{+}X_{0} - qX_{0}X_{+} = X_{0}$$

$$X_{0}X_{-} - qX_{-}X_{0} = X_{0}$$

$$(\beta X_{+} - \delta X_{-})|V\rangle = |V\rangle$$

$$\langle W|(\alpha X_{-} - \gamma X_{+}) = \langle W|.$$

Solved by M. Uchiyama (Chaos, Solitons and Fractals, 2007)

The Phase Diagram

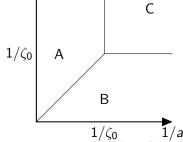
Take $L \to \infty$ such that $n_0/L \to \rho_0$.

$$a = \frac{1 - q - \alpha + \gamma + \sqrt{(1 - q - \alpha + \gamma)^2 + 4\alpha\gamma}}{2\alpha},$$

$$b = \frac{1 - q - \beta + \delta + \sqrt{(1 - q - \beta + \delta)^2 + 4\beta\delta}}{2\beta},$$

$$\zeta_0 = \frac{1 + \rho_0}{1 - \rho_0}.$$

$$1/b = \frac{1}{1/\zeta_0}$$



Densities and Currents

Region	Density of $+$	Current of +
Α	$\frac{1}{1+a}$	$(1-q)\frac{a}{(1+a)^2}$
В	Piecewise constant	$(1-q)\frac{b}{(1+b)^2}$
С	$\frac{1- ho_0}{2}$	$(1-q)^{1- ho_0^2}$

Simulations

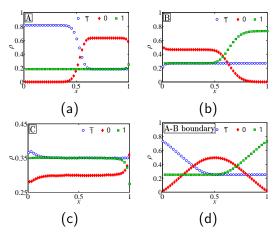
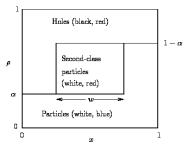


Figure: Plots of the densities of + (green squares), 0 (red diamonds), and - (blue circles), versus the scaled position for the semipermeable ASEP with n = 200, $\theta_0 = 0.3$ and $\theta_1 = 0.7$.

The Fat Shock

0's form a clump, a region which we call the **fat shock**. All qualitative features are explained by this construction. Proved rigorously for the semipermeable TASEP [A., Lebowitz, Speer, *J. Stat. Phys* 2009]



The Model

- Introduced recently by Cantini, Garbali, de Gier and Wheeler (J Phys. A, 2016).
- One-dimensional lattice of size L
- r species of charges, denoted j and $\bar{j} \equiv -j$, and 0's.
- Total number of charges of species j is n_j .
- Number n_0 of vacancies conserved.
- Bulk rules (action of an electric field)

$$jk \stackrel{1}{\rightleftharpoons} kj \quad \text{if } j > k$$

Left boundary

$$\bar{j} \stackrel{\alpha}{\rightleftharpoons} j$$

Right boundary

$$j \stackrel{\beta}{\rightleftharpoons} \bar{j}$$

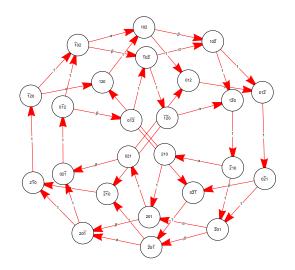
Basic properties

- Ergodic.
- Even the mTASEP $(q = \gamma = \delta = 0)$ is ergodic.
- Charge-conjugation symmetry

$$\begin{array}{cccc} j & \longleftrightarrow & \bar{j}, \\ 1 & \longleftrightarrow & q, \\ \alpha & \longleftrightarrow & \beta, \\ \gamma & \longleftrightarrow & \delta \end{array}$$

change direction of motion

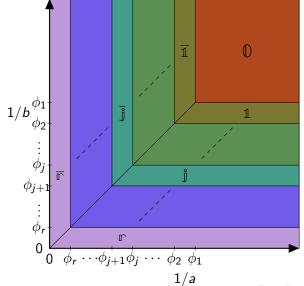
Example: r = 2 mTASEP, $n_0 = n_1 = n_2 = 1$



Thermodynamic Limit

- Take $L \to \infty$ and $n_j \to \infty$ for each j such that $n_j/L \to \theta_j > 0$.
- $\bullet \ \Theta_k = (\theta_k + \cdots + \theta_r)/2$
- $\phi_k = \Theta_k/(1-\Theta_k)$ for $1 \le k \le r$
- Let f(x) = 1/(1+x).

Phase diagram



Densities

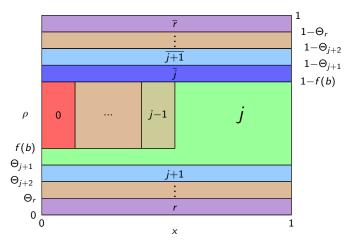
Phase	Densities in the bulk	
\	Species k	Values of $ ho_k, ho_{\overline{k}}$
0	k = 0	$ \rho_0 = \theta_0 $
U	$1 \le k \le r$	$\rho_{k} = \rho_{\overline{k}} = \theta_{k}/2$
	k = 0	$ ho_0$ piecewise constant
	$1 \le k \le j-1$	$ ho_{\overline{k}}=0$
ĵ		$ ho_k$ piecewise constant
J J	k = j	$\rho_{\overline{j}} = f(b) - \Theta_{j+1}$
		$ ho_j$ piecewise constant
	$j+1 \le k \le r$	$\rho_k = \rho_{\overline{k}} = \theta_k/2$
	k = 0	piecewise constant
	$1 \le k \le j-1$	$\rho_k = 0$
- Î		$ ho_{\overline{k}}$ piecewise constant
J	k = j	$\rho_j = f(a) - \Theta_{j+1}$
		$ ho_{ar{j}}$ piecewise constant
	$j+1 \le k \le r$	$\rho_k = \rho_{\overline{k}} = \theta_k/2$

Currents

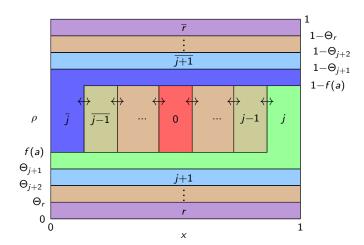
Phase	Currents		
\	Species k	Value of J_k	
0	$1 \le k < r$	$(1-q)(\Theta_k-\Theta_{k+1})(1-\Theta_k-\Theta_{k+1})$	
	k = r	$(1-q)\Theta_r(1-\Theta_r)$	
ĵ	$1 \le k \le j-1$	0	
	k = j	$\left((1-q)\left(f(b)(1-f(b)) - \Theta_{j+1}(1-\Theta_{j+1}) ight) ight)$	
	$j+1 \le k < r$	$(1-q)(\Theta_k-\Theta_{k+1})(1-\Theta_k-\Theta_{k+1})$	
	k = r	$(1-q)\Theta_r(1-\Theta_r)$	
j j	$1 \le k \le j-1$	0	
	k = j	$\left((1-q)\left(f(a)(1-f(a)) - \Theta_{j+1}(1-\Theta_{j+1}) ight) ight)$	
	$j+1 \le k < r$	$(1-q)(\Theta_k-\Theta_{k+1})(1-\Theta_k-\Theta_{k+1})$	
	k = r	$(1-q)\Theta_r(1-\Theta_r)$	

Nested Fat Shock: Phase j

- Dynamical Localisation
- Dynamical Expulsion



Nested Fat Shock: $\mathring{\mathbb{J}} - \overline{\mathring{\mathbb{J}}}$ boundary



Simulations of the mTASEP with r = 2

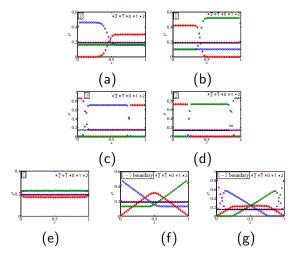


Figure: Plots of the densities of particles 2 (black crosses), 1 (green squares), 0 (red diamonds), $\overline{1}$ (blue circles), and $\overline{2}$ (pink triangles) with n = 1000, $\theta_0 = 0.17$, $\theta_1 = 0.45$ and $\theta_2 = 0.38$

Movie

Motion of the nested fat shock on the $2 - \overline{2}$ shock line.

Thank you for your attention!