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Calderéon problem - nonisotropic case

Consider a matrix o = (¢%/(x)) and consider the following BVP:

9;07% (2)Opu(r) = 0 in Q

uloa = f

Define A, : f — o7kOpuv;|sq.

Question: Does A, determine o?

If F: Q — Qis a diffeomorphism fixing the boundary, then
Ap,o = As.

Here

: 1 9F/  OF*
(F*O-)Jk(y) = det F*(ZL') oxp (x) o (‘T)qu(x)‘T:Ffl(y)'
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Let (M, g) be a smooth compact Riemannian manifold with smooth
boundary OM.
Consider

Agu=0, ulomy=f (1)

where

1 0 . Ou
= — U = 4/

Consider the Dirichlet-to-Neumann map:
i Ou . .
Ag: f— /g9 J@V@, where u is the solution to (1).
Relation between these problems in n > 3.

gjk = det(cr)%ajk.
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The inverse problem

The inverse problem: Does A, determine g?
Answer is no. As mentioned already, ¥ : M — M is a diffeomorphism
fixing the boundary, then Ay-4 = A,.

Conjecture

> Let M be a smooth compact manifold with boundary with n > 3
and let g and g be smooth Riemannian metrics on M such that
Ay = Ay. Then there exists a diffeomorphism 1 : M — M
identity on the boundary such that g = ¢*g.

> Let M be a smooth compact Riemannian manifold with boundary
with n = 2 and let g and g be smooth Riemannian metrics on M
such that Ay = Agz. Then there exists a diffeomorphism
Y M — M identity on the boundary such that g = py*qg for
some positive function p on M, ploy = Id.

In 2-dimensions, we also have conformal invariance of the Dircihlet
problem. That is, in 2-dimensions, if we consider g = ¢g for some
smooth positive function ¢ on M, ¢|sar = Id, then A, = A,.



Known results

Theorem (Lee-Uhlmann,1989)

Let M be a compact simply connected real-analytic n-manifold with
connected real-analytic boundary OM, n > 3. Let g and g be a
real-analytic metrics on OM such that Ay = Ag. Assume that one of
the following conditions holds:

> M is strongly convexr with respect to both g and g
> cither g or g extends to a complete real-analytic metric on a

non-compact real-analytic manifold M without boundary
containing M .

Then there exists a real-analytic diffeomorphism ¢ : M — M with
Yonr = Id and g = *g.

(M, g) is said to be strongly convex if between any two points p and ¢
in M, there is a unique length minimizing geodesic.



Known results

Theorem (Lassas-Uhlmann, 2001)

Assume that M is either a connected Riemann surface or if n > 3,
(M, g) is a connected real-analytic Riemannian manifold with
real-analytic boundary OM. Then

If n =2, then A, determines the conformal class of the metric g.

If n > 3, then A, determines the metric g up to the natural
obstruction.



Idea behind cloaking

Theorem (Greenleaf-Lassas-Uhlmann, 2003)

Let Q CR",n >3 and g = g;; be a metric on Q. Let D C Q be such
that there is a diffeomoprhism F : Q\ {y} — Q\ D satisfying
Floq = Id and such that

dF(z) > col, det(dF(x)) > cydistgn(z,y) "

Let g = F.g and g be an extension of g into D such that it is positive
definite in the interior of D. Let v and & be the corresponding
conductivities of g and g. Then Az = A



Idea behind cloaking

Theorem (Greenleaf-Lassas-Uhlmann, 2003)

Let Q CR",n >3 and g = g;; be a metric on Q. Let D C Q be such
that there is a diffeomoprhism F : Q\ {y} — Q\ D satisfying
Floq = Id and such that

dF(z) > col, det(dF(x)) > cydistgn(z,y) "

Let g = F.g and g be an extension of g into D such that it is positive
definite in the interior of D. Let v and & be the corresponding
conductivities of g and g. Then Az = A

Remark

Note that & can be changed arbitrarily inside D without changing
boundary measurements.
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Let Q = B(0,2) C R? be the ball with center 0 and radius 2.
Consider y = 0 and consider the map
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homogeneous conductivity v =1 and o = F,v. Now o can be
extended continuously to a function ¢ that is C*° smooth in D.



Construction of the diffeomorphism

Let Q = B(0,2) C R? be the ball with center 0 and radius 2.
Consider y = 0 and consider the map

from Q\ {0} — Q\ D. Let D + B(0,1) and consider the
homogeneous conductivity v =1 and o = F,v. Now o can be
extended continuously to a function ¢ that is C*° smooth in D.

Two movies to illustrate cloaking.
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Boundary rigidity problem in Riemannian geometry is the
question whether the boundary distance function of a compact
Riemannian manifold with boundary determines the metric g.
As before there is a natural obstruction here as well. That is, if
g = ¥*g with 1|gpr = Id, then the boundary distance functions
of both the metrics are the same.

Some additional hypothesis on the metric required.

One assumption is to assume that (M, g) is simple. (a) OM is
strictly convex (b) for any point z € M, exp; ! : M — exp; (M)
is a diffeomorphism.

Conjecture

Let (M, g;) be a compact simple Riemannian manifold with boundary
and assume that dg, (x,y) = dg,(x,y) for (z,y) € OM x OM. Then
there exists a diffeomorphism ¢ : M — M with |gn = Id such that
g1 =1"ga.

Positive answer in n = 2 by Pestov-Uhlmann, Annals of Math.,

2005.

There is a connection to the geometric Calderén inverse problem.
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Boundary rigidity problem in 2 dimensions

Theorem (Pestov-Uhlmann, 2005)

The same set up as in the conjecture with n = 2. Then if dg, =d
then Ag, = Ay, .

Assume this theorem is true, then Lassas-Uhlmann results shows that
one can determine g up to the conformal factor and then using a
result of Mukhemetov, one can show that the conformal factor is 1.

g2

Conjecture

The same set up as in the conjecture above with n > 2.
> Letn > 3. Ifdg, = dg,, then Ay, = Ag,.
> Letn > 2. If Ay, = Ag,, then dy, = dg,.
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Dynamic Dirichlet-to-Neumann map and boundary
distance function

Consider the following boundary value problem:
(0} = Ay)u=0in (0,T) x M
u‘t:() = agu‘t:(] =0in M
ulo,ryxom = f with f € Hfoc,f =0 for t <0.

Ah f— fg” Vil(o,r)xom

is the hyperbolic Dlrlchlet—to—Neumann map.
The boundary control method shows that if T is sufficiently large,
then AZ uniquely determines g up to the natural obstruction.

Theorem (Sylvester-Uhlmann)

Let (M, g;) be compact simple Riemannian manifolds. If A AZ}Q,
then dg, = dg,
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Linearized boundary rigidity problem

Linearizing the boundary rigidity problem near a known a simple
metric g.

This leads to the following inverse problem: Determine the symmetric
matrix f (symmetric 2-tensor field f) from tke knowledge of its
integrals along all geodesics connecting boundary points.

/ £ (1) (D3 (D)t
Uniqueness question: If
1,f() = / [ () (03 (1) = 0

along all geodesics 7 connecting boundary points, does it imply f = 07
If f =dv with v|gar = 0, then I, f(dv)(y) = 0 for all 4 connecting
boundary points.

Open question: Is this the only obstruction?
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Geodesic ray transforms

We can study the following problem: Consider a simple metric g and
consider I, f(v) along geodesics connecting boundary points of a
compact simple Riemannian manifold with boundary.

Conjecture

Let (M, g) be a compact simple Riemannian manifold with boundary.
Let f be a function, 1-form or a higher rank symmetric tensor field. If
I, f(v) = 0 along all geodesics connecting boundary points, then does
it imply f =0 (for functions) or f = dv with v|apr = 07 Here d is the
symmetrized covariant derivative.

For functions, the answer is yes by Mukhemetov

For 1-forms, the answer is yes by Anikonov-Romanov

For higher rank case, the conjecture is open. For analytic metrics, the
answer is yes by Stefanov-Uhlmann.
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Helgason-type support theorems

The classical support theorem of Helgason is the following:

Theorem (Helgason)

Let [ be a compactly supported distribution and suppose Rf(H) =0
along all hyperplanes not intersecting a closed convexr set K. Then

supp(f) C K.

Theorem (Boman-Quinto, 1987)

Let W be an open, unbounded connected subset of S*™! x R and let
w(z,w) be a strictly positive real-analytic function on R™ x S"~1 that
is even in w. Let f be a compactly supported distribution such that

R, f(w,p) = / f(z)p(z,w)dey =0
H(w,p)

for (w,p) € W. Then f =0 on U(H(w,p)|(w,p) € W).

Proof of this theorem is based on analytic microlocal analysis.
This can be generalized to geodesic ray transforms.



Theorem of Kawai-Kashiwara-Hormander

Theorem

Let uw € D'(Q) and let f be a real-valued real analytic function and let
xo € Q is a point in supp(u) such that

df(zo) #0, f(z) < f(xo) if = € supp(u).
Then (zo, £df(x0)) € WEF4(u).



Helgason-type support theorem for geodesic ray
transforms

Theorem

> (K., 2009) Let (M,g) be a compact simple Riemannian manifold
with g real-analytic and with real-analytic boundary OM. Let A
be an open subset of geodesics in M such that each geodesic
v € A can be deformed to a point on OM by geodesics in A. Let
M 4 be the set of points on these geodesics. If If(y) =0 for all
~ve A, then f =0 on My.



Helgason-type support theorem for geodesic ray
transforms

Theorem

> (K., 2009) Let (M,g) be a compact simple Riemannian manifold
with g real-analytic and with real-analytic boundary OM. Let A
be an open subset of geodesics in M such that each geodesic
v € A can be deformed to a point on OM by geodesics in A. Let
M 4 be the set of points on these geodesics. If If(y) =0 for all
~ve A, then f =0 on My.

» (K.-Stefanov, 2009) Let (M, g) be a compact simple Riemannian
manifold with g real-analytic and with real-analytic boundary
OM. Let K be a closed geodesically convex subset of M and let f
be a symmetric 2-tensor field in M. Suppose I,f(v) =0 for all v
not intersecting K, then f =dv on M\ K and v|gp = 0.
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Support theorems

Problem

Prove a Helgason-type support theorem for the geodesic ray transforms
of functions. Here (M, g) is a simple C* Riemannian manifold.

Note: Uniqueness question has been settled by Mukhemetov.
This is a very subtle question. There is a famous counterexample by
Boman involving weighted Radon transforms (with C'* weights).
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Connection between the support theorem and the
Calderon problem

In the classical Calder6n problem case, Helgason-type support
theorem is used to prove uniqueness for Neumann measurements
made on possibly small subsets of the boundary.

Reason: For the full data case: One ends up with the Fourier
transform. For the partial data case, one ends up with the Radon
transform. This was used by kenig-Sjostrand-Uhlmann in their
famous paper.

For a class of geometric Calderén problems, one ends up with the
geodesic ray transform and hence the support theorem for the
geodesic ray transform is useful. A recent preprint of Kenig and
Salo deals with this case.



