Geometric Calderón problem and its connection to several inverse problems

Venky P. Krishnan
vkrishnan@math.tifrbng.res.in

(e tifr

TIFR Centre for Applicable Mathematics, Bangalore, India http://math.tifrbng.res.in

Calderón problem - nonisotropic case

Consider a matrix $\sigma=\left(\sigma^{i j}(x)\right)$ and consider the following BVP:

$$
\begin{aligned}
& \partial_{j} \sigma^{j k}(x) \partial_{k} u(x)=0 \text { in } \Omega \\
& \left.u\right|_{\partial \Omega}=f
\end{aligned}
$$

Calderón problem - nonisotropic case

Consider a matrix $\sigma=\left(\sigma^{i j}(x)\right)$ and consider the following BVP:

$$
\begin{aligned}
& \partial_{j} \sigma^{j k}(x) \partial_{k} u(x)=0 \text { in } \Omega \\
& \left.u\right|_{\partial \Omega}=f
\end{aligned}
$$

Define $\Lambda_{\sigma}:\left.f \rightarrow \sigma^{j k} \partial_{k} u \nu_{j}\right|_{\partial \Omega}$.

Calderón problem - nonisotropic case

Consider a matrix $\sigma=\left(\sigma^{i j}(x)\right)$ and consider the following BVP:

$$
\begin{aligned}
& \partial_{j} \sigma^{j k}(x) \partial_{k} u(x)=0 \text { in } \Omega \\
& \left.u\right|_{\partial \Omega}=f
\end{aligned}
$$

Define $\Lambda_{\sigma}:\left.f \rightarrow \sigma^{j k} \partial_{k} u \nu_{j}\right|_{\partial \Omega}$.
Question: Does Λ_{σ} determine σ ?
If $F: \Omega \rightarrow \Omega$ is a diffeomorphism fixing the boundary, then $\Lambda_{F_{*} \sigma}=\Lambda_{\sigma}$.
Here

$$
\left(F_{*} \sigma\right)^{j k}(y)=\left.\frac{1}{\operatorname{det} F_{*}(x)} \frac{\partial F^{j}}{\partial x^{p}}(x) \frac{\partial F^{k}}{\partial x^{q}}(x) \sigma^{p q}(x)\right|_{x=F^{-1}(y)} .
$$

Geometric Calderón problem

Let (M, g) be a smooth compact Riemannian manifold with smooth boundary ∂M.
where

Consider the Dirichlet-to-Neumann map:

Geometric Calderón problem

Let (M, g) be a smooth compact Riemannian manifold with smooth boundary ∂M.
Consider

$$
\begin{equation*}
\Delta_{g} u=0,\left.\quad u\right|_{\partial M}=f \tag{1}
\end{equation*}
$$

where

$$
\Delta_{g} u=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}}\right), \quad \sqrt{g}=\sqrt{\operatorname{det} g} .
$$

Geometric Calderón problem

Let (M, g) be a smooth compact Riemannian manifold with smooth boundary ∂M.
Consider

$$
\begin{equation*}
\Delta_{g} u=0,\left.\quad u\right|_{\partial M}=f \tag{1}
\end{equation*}
$$

where

$$
\Delta_{g} u=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}}\right), \quad \sqrt{g}=\sqrt{\operatorname{det} g} .
$$

Consider the Dirichlet-to-Neumann map:

$$
\Lambda_{g}: f \rightarrow \sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}} \nu_{i}, \text { where } u \text { is the solution to (1). }
$$

Geometric Calderón problem

Let (M, g) be a smooth compact Riemannian manifold with smooth boundary ∂M.
Consider

$$
\begin{equation*}
\Delta_{g} u=0,\left.\quad u\right|_{\partial M}=f \tag{1}
\end{equation*}
$$

where

$$
\Delta_{g} u=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}}\right), \quad \sqrt{g}=\sqrt{\operatorname{det} g} .
$$

Consider the Dirichlet-to-Neumann map:

$$
\Lambda_{g}: f \rightarrow \sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}} \nu_{i}, \text { where } u \text { is the solution to (1). }
$$

Relation between these problems in $n \geq 3$.

$$
g^{j k}=\operatorname{det}(\sigma)^{\frac{2}{n-2}} \sigma^{j k} .
$$

The inverse problem

The inverse problem: Does Λ_{g} determine g ?

The inverse problem

The inverse problem: Does Λ_{g} determine g ?
Answer is no. As mentioned already, $\psi: M \rightarrow M$ is a diffeomorphism fixing the boundary, then $\Lambda_{\psi^{*} g}=\Lambda_{g}$.

The inverse problem

The inverse problem: Does Λ_{g} determine g ? Answer is no. As mentioned already, $\psi: M \rightarrow M$ is a diffeomorphism fixing the boundary, then $\Lambda_{\psi^{*} g}=\Lambda_{g}$.

Conjecture

- Let M be a smooth compact manifold with boundary with $n \geq 3$ and let g and \widetilde{g} be smooth Riemannian metrics on M such that $\Lambda_{g}=\Lambda_{\tilde{g}}$. Then there exists a diffeomorphism $\psi: M \rightarrow M$ identity on the boundary such that $g=\psi^{*} \widetilde{g}$.

The inverse problem

The inverse problem: Does Λ_{g} determine g ?
Answer is no. As mentioned already, $\psi: M \rightarrow M$ is a diffeomorphism fixing the boundary, then $\Lambda_{\psi^{*} g}=\Lambda_{g}$.

Conjecture

- Let M be a smooth compact manifold with boundary with $n \geq 3$ and let g and \widetilde{g} be smooth Riemannian metrics on M such that $\Lambda_{g}=\Lambda_{\tilde{g}}$. Then there exists a diffeomorphism $\psi: M \rightarrow M$ identity on the boundary such that $g=\psi^{*} \widetilde{g}$.
- Let M be a smooth compact Riemannian manifold with boundary with $n=2$ and let g and \tilde{g} be smooth Riemannian metrics on M such that $\Lambda_{g}=\Lambda_{\tilde{g}}$. Then there exists a diffeomorphism $\psi: M \rightarrow M$ identity on the boundary such that $g=\varphi \psi^{*} \widetilde{g}$ for some positive function φ on $M,\left.\varphi\right|_{\partial M}=I d$.

The inverse problem

The inverse problem: Does Λ_{g} determine g ?
Answer is no. As mentioned already, $\psi: M \rightarrow M$ is a diffeomorphism fixing the boundary, then $\Lambda_{\psi^{*} g}=\Lambda_{g}$.

Conjecture

- Let M be a smooth compact manifold with boundary with $n \geq 3$ and let g and \widetilde{g} be smooth Riemannian metrics on M such that $\Lambda_{g}=\Lambda_{\tilde{g}}$. Then there exists a diffeomorphism $\psi: M \rightarrow M$ identity on the boundary such that $g=\psi^{*} \widetilde{g}$.
- Let M be a smooth compact Riemannian manifold with boundary with $n=2$ and let g and \widetilde{g} be smooth Riemannian metrics on M such that $\Lambda_{g}=\Lambda_{\tilde{g}}$. Then there exists a diffeomorphism $\psi: M \rightarrow M$ identity on the boundary such that $g=\varphi \psi^{*} \widetilde{g}$ for some positive function φ on $M,\left.\varphi\right|_{\partial M}=I d$.

In 2-dimensions, we also have conformal invariance of the Dircihlet problem. That is, in 2-dimensions, if we consider $\widetilde{g}=\varphi g$ for some smooth positive function φ on $M,\left.\varphi\right|_{\partial M}=I d$, then $\Lambda_{\varphi g}=\Lambda_{g}$.

Known results

Theorem (Lee-Uhlmann,1989)

Let M be a compact simply connected real-analytic n-manifold with connected real-analytic boundary $\partial M, n \geq 3$. Let g and \widetilde{g} be a real-analytic metrics on ∂M such that $\Lambda_{g}=\Lambda_{\tilde{g}}$. Assume that one of the following conditions holds:

- M is strongly convex with respect to both g and \widetilde{g}
- either g or \widetilde{g} extends to a complete real-analytic metric on a non-compact real-analytic manifold \widetilde{M} without boundary containing M.
Then there exists a real-analytic diffeomorphism $\psi: M \rightarrow M$ with $\psi_{\partial M}=I d$ and $g=\psi^{*} \widetilde{g}$.
(M, g) is said to be strongly convex if between any two points p and q in M, there is a unique length minimizing geodesic.

Known results

Theorem (Lassas-Uhlmann, 2001)

Assume that M is either a connected Riemann surface or if $n \geq 3$, (M, g) is a connected real-analytic Riemannian manifold with real-analytic boundary ∂M. Then

If $n=2$, then Λ_{g} determines the conformal class of the metric g.
If $n \geq 3$, then Λ_{g} determines the metric g up to the natural obstruction.

Idea behind cloaking

Theorem (Greenleaf-Lassas-Uhlmann, 2003)

Let $\Omega \subset \mathbb{R}^{n}, n \geq 3$ and $g=g_{i j}$ be a metric on Ω. Let $D \subset \Omega$ be such that there is a diffeomoprhism $F: \Omega \backslash\{y\} \rightarrow \Omega \backslash \bar{D}$ satisfying $\left.F\right|_{\partial \Omega}=I d$ and such that

$$
\mathrm{d} F(x) \geq c_{0} I, \quad \operatorname{det}(\mathrm{~d} F(x)) \geq c_{1} \operatorname{dist}_{\mathbb{R}^{n}}(x, y)^{-1} .
$$

Let $\widetilde{g}=F_{*} g$ and \widehat{g} be an extension of \widetilde{g} into D such that it is positive definite in the interior of D. Let γ and $\widehat{\sigma}$ be the corresponding conductivities of g and \widehat{g}. Then $\Lambda_{\widehat{\sigma}}=\Lambda_{\gamma}$.

Idea behind cloaking

Theorem (Greenleaf-Lassas-Uhlmann, 2003)

Let $\Omega \subset \mathbb{R}^{n}, n \geq 3$ and $g=g_{i j}$ be a metric on Ω. Let $D \subset \Omega$ be such that there is a diffeomoprhism $F: \Omega \backslash\{y\} \rightarrow \Omega \backslash \bar{D}$ satisfying $\left.F\right|_{\partial \Omega}=I d$ and such that

$$
\mathrm{d} F(x) \geq c_{0} I, \quad \operatorname{det}(\mathrm{~d} F(x)) \geq c_{1} \operatorname{dist}_{\mathbb{R}^{n}}(x, y)^{-1} .
$$

Let $\widetilde{g}=F_{*} g$ and \widehat{g} be an extension of \widetilde{g} into D such that it is positive definite in the interior of D. Let γ and $\widehat{\sigma}$ be the corresponding conductivities of g and \widehat{g}. Then $\Lambda_{\widehat{\sigma}}=\Lambda_{\gamma}$.

Remark
Note that $\widehat{\sigma}$ can be changed arbitrarily inside D without changing boundary measurements.

Let $\Omega=B(0,2) \subset \mathbb{R}^{3}$ be the ball with center 0 and radius 2 . Consider $y=0$ and consider the map

$$
F(x)=\left(\frac{|x|}{2}+1\right) \frac{x}{|x|} .
$$

from $\Omega \backslash\{0\} \rightarrow \Omega \backslash \bar{D}$. Let $D+B(0,1)$ and consider the homogeneous conductivity $\gamma=1$ and $\sigma=F_{*} \gamma$. Now σ can be extended continuously to a function $\widehat{\sigma}$ that is C^{∞} smooth in D.

Construction of the diffeomorphism

Let $\Omega=B(0,2) \subset \mathbb{R}^{3}$ be the ball with center 0 and radius 2 .
Consider $y=0$ and consider the map

$$
F(x)=\left(\frac{|x|}{2}+1\right) \frac{x}{|x|} .
$$

from $\Omega \backslash\{0\} \rightarrow \Omega \backslash \bar{D}$. Let $D+B(0,1)$ and consider the homogeneous conductivity $\gamma=1$ and $\sigma=F_{*} \gamma$. Now σ can be extended continuously to a function $\widehat{\sigma}$ that is C^{∞} smooth in D.
Two movies to illustrate cloaking.

Boundary rigidity problem

Boundary rigidity problem in Riemannian geometry is the question whether the boundary distance function of a compact Riemannian manifold with boundary determines the metric g.

Boundary rigidity problem

Boundary rigidity problem in Riemannian geometry is the question whether the boundary distance function of a compact Riemannian manifold with boundary determines the metric g. As before there is a natural obstruction here as well. That is, if $\widetilde{g}=\psi^{*} g$ with $\left.\psi\right|_{\partial M}=I d$, then the boundary distance functions of both the metrics are the same.

Boundary rigidity problem

Boundary rigidity problem in Riemannian geometry is the question whether the boundary distance function of a compact Riemannian manifold with boundary determines the metric g. As before there is a natural obstruction here as well. That is, if $\widetilde{g}=\psi^{*} g$ with $\left.\psi\right|_{\partial M}=I d$, then the boundary distance functions of both the metrics are the same. Some additional hypothesis on the metric required.

Boundary rigidity problem

Boundary rigidity problem in Riemannian geometry is the question whether the boundary distance function of a compact Riemannian manifold with boundary determines the metric g. As before there is a natural obstruction here as well. That is, if $\widetilde{g}=\psi^{*} g$ with $\left.\psi\right|_{\partial M}=I d$, then the boundary distance functions of both the metrics are the same.
Some additional hypothesis on the metric required.
One assumption is to assume that (M, g) is simple. (a) ∂M is strictly convex (b) for any point $x \in M, \exp _{x}^{-1}: M \rightarrow \exp _{x}^{-1}(M)$ is a diffeomorphism.

Boundary rigidity problem

Boundary rigidity problem in Riemannian geometry is the question whether the boundary distance function of a compact Riemannian manifold with boundary determines the metric g. As before there is a natural obstruction here as well. That is, if $\widetilde{g}=\psi^{*} g$ with $\left.\psi\right|_{\partial M}=I d$, then the boundary distance functions of both the metrics are the same.
Some additional hypothesis on the metric required.
One assumption is to assume that (M, g) is simple. (a) ∂M is strictly convex (b) for any point $x \in M, \exp _{x}^{-1}: M \rightarrow \exp _{x}^{-1}(M)$ is a diffeomorphism.

Conjecture

Let $\left(M, g_{i}\right)$ be a compact simple Riemannian manifold with boundary and assume that $d_{g_{1}}(x, y)=d_{g_{2}}(x, y)$ for $(x, y) \in \partial M \times \partial M$. Then there exists a diffeomorphism $\psi: M \rightarrow M$ with $\left.\psi\right|_{\partial M}=I d$ such that $g_{1}=\psi^{*} g_{2}$.

Boundary rigidity problem

Boundary rigidity problem in Riemannian geometry is the question whether the boundary distance function of a compact Riemannian manifold with boundary determines the metric g. As before there is a natural obstruction here as well. That is, if $\widetilde{g}=\psi^{*} g$ with $\left.\psi\right|_{\partial M}=I d$, then the boundary distance functions of both the metrics are the same.
Some additional hypothesis on the metric required.
One assumption is to assume that (M, g) is simple. (a) ∂M is strictly convex (b) for any point $x \in M, \exp _{x}^{-1}: M \rightarrow \exp _{x}^{-1}(M)$ is a diffeomorphism.

Conjecture

Let $\left(M, g_{i}\right)$ be a compact simple Riemannian manifold with boundary and assume that $d_{g_{1}}(x, y)=d_{g_{2}}(x, y)$ for $(x, y) \in \partial M \times \partial M$. Then there exists a diffeomorphism $\psi: M \rightarrow M$ with $\left.\psi\right|_{\partial M}=I d$ such that $g_{1}=\psi^{*} g_{2}$.

Positive answer in $n=2$ by Pestov-Uhlmann, Annals of Math., 2005.

Boundary rigidity problem

Boundary rigidity problem in Riemannian geometry is the question whether the boundary distance function of a compact Riemannian manifold with boundary determines the metric g. As before there is a natural obstruction here as well. That is, if $\widetilde{g}=\psi^{*} g$ with $\left.\psi\right|_{\partial M}=I d$, then the boundary distance functions of both the metrics are the same.
Some additional hypothesis on the metric required.
One assumption is to assume that (M, g) is simple. (a) ∂M is strictly convex (b) for any point $x \in M, \exp _{x}^{-1}: M \rightarrow \exp _{x}^{-1}(M)$ is a diffeomorphism.

Conjecture

Let $\left(M, g_{i}\right)$ be a compact simple Riemannian manifold with boundary and assume that $d_{g_{1}}(x, y)=d_{g_{2}}(x, y)$ for $(x, y) \in \partial M \times \partial M$. Then there exists a diffeomorphism $\psi: M \rightarrow M$ with $\left.\psi\right|_{\partial M}=I d$ such that $g_{1}=\psi^{*} g_{2}$.

Positive answer in $n=2$ by Pestov-Uhlmann, Annals of Math., 2005.

There is a connection to the geometric Calderón inverse problem.

Boundary rigidity problem in 2 dimensions

Theorem (Pestov-Uhlmann, 2005)
The same set up as in the conjecture with $n=2$. Then if $d_{g_{1}}=d_{g_{2}}$, then $\Lambda_{g_{1}}=\Lambda_{g_{2}}$.

Boundary rigidity problem in 2 dimensions

Theorem (Pestov-Uhlmann, 2005)
The same set up as in the conjecture with $n=2$. Then if $d_{g_{1}}=d_{g_{2}}$, then $\Lambda_{g_{1}}=\Lambda_{g_{2}}$.
Assume this theorem is true, then Lassas-Uhlmann results shows that one can determine g up to the conformal factor and then using a result of Mukhemetov, one can show that the conformal factor is 1 .

Boundary rigidity problem in 2 dimensions

Theorem (Pestov-Uhlmann, 2005)
The same set up as in the conjecture with $n=2$. Then if $d_{g_{1}}=d_{g_{2}}$, then $\Lambda_{g_{1}}=\Lambda_{g_{2}}$.
Assume this theorem is true, then Lassas-Uhlmann results shows that one can determine g up to the conformal factor and then using a result of Mukhemetov, one can show that the conformal factor is 1 .

Conjecture

The same set up as in the conjecture above with $n \geq 2$.

- Let $n \geq 3$. If $d_{g_{1}}=d_{g_{2}}$, then $\Lambda_{g_{1}}=\Lambda_{g_{2}}$.

Boundary rigidity problem in 2 dimensions

Theorem (Pestov-Uhlmann, 2005)
The same set up as in the conjecture with $n=2$. Then if $d_{g_{1}}=d_{g_{2}}$, then $\Lambda_{g_{1}}=\Lambda_{g_{2}}$.
Assume this theorem is true, then Lassas-Uhlmann results shows that one can determine g up to the conformal factor and then using a result of Mukhemetov, one can show that the conformal factor is 1 .

Conjecture

The same set up as in the conjecture above with $n \geq 2$.

- Let $n \geq 3$. If $d_{g_{1}}=d_{g_{2}}$, then $\Lambda_{g_{1}}=\Lambda_{g_{2}}$.
- Let $n \geq 2$. If $\Lambda_{g_{1}}=\Lambda_{g_{2}}$, then $d_{g_{1}}=d_{g_{2}}$.

Dynamic Dirichlet-to-Neumann map and boundary distance function

Consider the following boundary value problem:

$$
\begin{aligned}
& \left(\partial_{t}^{2}-\Delta_{g}\right) u=0 \text { in }(0, T) \times M \\
& \left.u\right|_{t=0}=\left.\partial_{t} u\right|_{t=0}=0 \text { in } M \\
& \left.u\right|_{(0, T) \times \partial M}=f \text { with } f \in H_{\mathrm{loc}}^{2}, f=0 \text { for } t<0 . \\
& \quad \Lambda_{g}^{h}:\left.f \rightarrow \sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}} \nu_{i}\right|_{(0, T) \times \partial M}
\end{aligned}
$$

is the hyperbolic Dirichlet-to-Neumann map.

Dynamic Dirichlet-to-Neumann map and boundary distance function

Consider the following boundary value problem:

$$
\begin{aligned}
& \left(\partial_{t}^{2}-\Delta_{g}\right) u=0 \text { in }(0, T) \times M \\
& \left.u\right|_{t=0}=\left.\partial_{t} u\right|_{t=0}=0 \text { in } M \\
& \left.u\right|_{(0, T) \times \partial M}=f \text { with } f \in H_{\mathrm{loc}}^{2}, f=0 \text { for } t<0 . \\
& \quad \Lambda_{g}^{h}:\left.f \rightarrow \sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}} \nu_{i}\right|_{(0, T) \times \partial M}
\end{aligned}
$$

is the hyperbolic Dirichlet-to-Neumann map.
The boundary control method shows that if T is sufficiently large, then Λ_{g}^{h} uniquely determines g up to the natural obstruction.

Dynamic Dirichlet-to-Neumann map and boundary distance function

Consider the following boundary value problem:

$$
\begin{aligned}
& \left(\partial_{t}^{2}-\Delta_{g}\right) u=0 \text { in }(0, T) \times M \\
& \left.u\right|_{t=0}=\left.\partial_{t} u\right|_{t=0}=0 \text { in } M \\
& \left.u\right|_{(0, T) \times \partial M}=f \text { with } f \in H_{\mathrm{loc}}^{2}, f=0 \text { for } t<0 . \\
& \quad \Lambda_{g}^{h}:\left.f \rightarrow \sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}} \nu_{i}\right|_{(0, T) \times \partial M}
\end{aligned}
$$

is the hyperbolic Dirichlet-to-Neumann map.
The boundary control method shows that if T is sufficiently large, then Λ_{g}^{h} uniquely determines g up to the natural obstruction.

Theorem (Sylvester-Uhlmann)

Let $\left(M, g_{i}\right)$ be compact simple Riemannian manifolds. If $\Lambda_{g_{1}}^{h}=\Lambda_{g_{2}}^{h}$, then $d_{g_{1}}=d_{g_{2}}$.

Linearized boundary rigidity problem

Linearizing the boundary rigidity problem near a known a simple metric g.
This leads to the following inverse problem: Determine the symmetric matrix f (symmetric 2-tensor field f) from the knowledge of its integrals along all geodesics connecting boundary points.

Linearized boundary rigidity problem

Linearizing the boundary rigidity problem near a known a simple metric g.
This leads to the following inverse problem: Determine the symmetric matrix f (symmetric 2-tensor field f) from the knowledge of its integrals along all geodesics connecting boundary points.

$$
\int_{-\infty}^{\infty} f_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t
$$

Linearized boundary rigidity problem

Linearizing the boundary rigidity problem near a known a simple metric g.
This leads to the following inverse problem: Determine the symmetric matrix f (symmetric 2-tensor field f) from the knowledge of its integrals along all geodesics connecting boundary points.

$$
\int_{-\infty}^{\infty} f_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t
$$

Uniqueness question: If

$$
I_{g} f(\gamma)=\int_{-\infty}^{\infty} f_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t=0
$$

along all geodesics γ connecting boundary points, does it imply $f=0$?

Linearized boundary rigidity problem

Linearizing the boundary rigidity problem near a known a simple metric g.
This leads to the following inverse problem: Determine the symmetric matrix f (symmetric 2-tensor field f) from the knowledge of its integrals along all geodesics connecting boundary points.

$$
\int_{-\infty}^{\infty} f_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t
$$

Uniqueness question: If

$$
I_{g} f(\gamma)=\int_{-\infty}^{\infty} f_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t=0
$$

along all geodesics γ connecting boundary points, does it imply $f=0$? If $f=\mathrm{d} v$ with $\left.v\right|_{\partial M}=0$, then $I_{g} f(\mathrm{~d} v)(\gamma)=0$ for all γ connecting boundary points.

Linearized boundary rigidity problem

Linearizing the boundary rigidity problem near a known a simple metric g.
This leads to the following inverse problem: Determine the symmetric matrix f (symmetric 2-tensor field f) from the knowledge of its integrals along all geodesics connecting boundary points.

$$
\int_{-\infty}^{\infty} f_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t
$$

Uniqueness question: If

$$
I_{g} f(\gamma)=\int_{-\infty}^{\infty} f_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t=0
$$

along all geodesics γ connecting boundary points, does it imply $f=0$? If $f=\mathrm{d} v$ with $\left.v\right|_{\partial M}=0$, then $I_{g} f(\mathrm{~d} v)(\gamma)=0$ for all γ connecting boundary points.
Open question: Is this the only obstruction?

We can study the following problem: Consider a simple metric g and consider $I_{g} f(\gamma)$ along geodesics connecting boundary points of a compact simple Riemannian manifold with boundary.

Geodesic ray transforms

We can study the following problem: Consider a simple metric g and consider $I_{g} f(\gamma)$ along geodesics connecting boundary points of a compact simple Riemannian manifold with boundary.

Conjecture

Let (M, g) be a compact simple Riemannian manifold with boundary. Let f be a function, 1-form or a higher rank symmetric tensor field. If $I_{g} f(\gamma)=0$ along all geodesics connecting boundary points, then does it imply $f=0$ (for functions) or $f=\mathrm{d} v$ with $\left.v\right|_{\partial M}=0$? Here d is the symmetrized covariant derivative.

Geodesic ray transforms

We can study the following problem: Consider a simple metric g and consider $I_{g} f(\gamma)$ along geodesics connecting boundary points of a compact simple Riemannian manifold with boundary.

Conjecture

Let (M, g) be a compact simple Riemannian manifold with boundary. Let f be a function, 1-form or a higher rank symmetric tensor field. If $I_{g} f(\gamma)=0$ along all geodesics connecting boundary points, then does it imply $f=0$ (for functions) or $f=\mathrm{d} v$ with $\left.v\right|_{\partial M}=0$? Here d is the symmetrized covariant derivative.
For functions, the answer is yes by Mukhemetov

Geodesic ray transforms

We can study the following problem: Consider a simple metric g and consider $I_{g} f(\gamma)$ along geodesics connecting boundary points of a compact simple Riemannian manifold with boundary.

Conjecture

Let (M, g) be a compact simple Riemannian manifold with boundary. Let f be a function, 1-form or a higher rank symmetric tensor field. If $I_{g} f(\gamma)=0$ along all geodesics connecting boundary points, then does it imply $f=0$ (for functions) or $f=\mathrm{d} v$ with $\left.v\right|_{\partial M}=0$? Here d is the symmetrized covariant derivative.
For functions, the answer is yes by Mukhemetov For 1-forms, the answer is yes by Anikonov-Romanov

Geodesic ray transforms

We can study the following problem: Consider a simple metric g and consider $I_{g} f(\gamma)$ along geodesics connecting boundary points of a compact simple Riemannian manifold with boundary.

Conjecture

Let (M, g) be a compact simple Riemannian manifold with boundary. Let f be a function, 1-form or a higher rank symmetric tensor field. If $I_{g} f(\gamma)=0$ along all geodesics connecting boundary points, then does it imply $f=0$ (for functions) or $f=\mathrm{d} v$ with $\left.v\right|_{\partial M}=0$? Here d is the symmetrized covariant derivative.
For functions, the answer is yes by Mukhemetov For 1 -forms, the answer is yes by Anikonov-Romanov For higher rank case, the conjecture is open. For analytic metrics, the answer is yes by Stefanov-Uhlmann.

Helgason-type support theorems

The classical support theorem of Helgason is the following:

Theorem (Helgason)

Let f be a compactly supported distribution and suppose $R f(H)=0$ along all hyperplanes not intersecting a closed convex set K. Then $\operatorname{supp}(f) \subset K$.

Theorem (Boman-Quinto, 1987)

Proof of this theorem is based on analytic microlocal analysis.

Helgason-type support theorems

The classical support theorem of Helgason is the following:

Theorem (Helgason)

Let f be a compactly supported distribution and suppose $R f(H)=0$ along all hyperplanes not intersecting a closed convex set K. Then $\operatorname{supp}(f) \subset K$.

Theorem (Boman-Quinto, 1987)

Let W be an open, unbounded connected subset of $\mathbb{S}^{n-1} \times \mathbb{R}$ and let $\mu(x, \omega)$ be a strictly positive real-analytic function on $\mathbb{R}^{n} \times \mathbb{S}^{n-1}$ that is even in ω. Let f be a compactly supported distribution such that

$$
R_{\mu} f(\omega, p)=\int_{H(\omega, p)} f(x) \mu(x, \omega) \mathrm{d} x_{H}=0
$$

for $(\omega, p) \in W$. Then $f=0$ on $\cup(H(\omega, p) \mid(\omega, p) \in W)$.

Helgason-type support theorems

The classical support theorem of Helgason is the following:

Theorem (Helgason)

Let f be a compactly supported distribution and suppose $R f(H)=0$ along all hyperplanes not intersecting a closed convex set K. Then $\operatorname{supp}(f) \subset K$.

Theorem (Boman-Quinto, 1987)

Let W be an open, unbounded connected subset of $\mathbb{S}^{n-1} \times \mathbb{R}$ and let $\mu(x, \omega)$ be a strictly positive real-analytic function on $\mathbb{R}^{n} \times \mathbb{S}^{n-1}$ that is even in ω. Let f be a compactly supported distribution such that

$$
R_{\mu} f(\omega, p)=\int_{H(\omega, p)} f(x) \mu(x, \omega) \mathrm{d} x_{H}=0
$$

for $(\omega, p) \in W$. Then $f=0$ on $\cup(H(\omega, p) \mid(\omega, p) \in W)$.
Proof of this theorem is based on analytic microlocal analysis.

Helgason-type support theorems

The classical support theorem of Helgason is the following:

Theorem (Helgason)

Let f be a compactly supported distribution and suppose $R f(H)=0$ along all hyperplanes not intersecting a closed convex set K. Then $\operatorname{supp}(f) \subset K$.

Theorem (Boman-Quinto, 1987)

Let W be an open, unbounded connected subset of $\mathbb{S}^{n-1} \times \mathbb{R}$ and let $\mu(x, \omega)$ be a strictly positive real-analytic function on $\mathbb{R}^{n} \times \mathbb{S}^{n-1}$ that is even in ω. Let f be a compactly supported distribution such that

$$
R_{\mu} f(\omega, p)=\int_{H(\omega, p)} f(x) \mu(x, \omega) \mathrm{d} x_{H}=0
$$

for $(\omega, p) \in W$. Then $f=0$ on $\cup(H(\omega, p) \mid(\omega, p) \in W)$.
Proof of this theorem is based on analytic microlocal analysis. This can be generalized to geodesic ray transforms.

Theorem of Kawai-Kashiwara-Hörmander

Theorem
Let $u \in \mathcal{D}^{\prime}(\Omega)$ and let f be a real-valued real analytic function and let $x_{0} \in \Omega$ is a point in $\operatorname{supp}(u)$ such that

$$
\mathrm{d} f\left(x_{0}\right) \neq 0, \quad f(x) \leq f\left(x_{0}\right) \text { if } x \in \operatorname{supp}(u) .
$$

Then $\left(x_{0}, \pm \mathrm{d} f\left(x_{0}\right)\right) \in W F_{A}(u)$.

Helgason-type support theorem for geodesic ray transforms

Theorem

- (K., 2009) Let (M, g) be a compact simple Riemannian manifold with g real-analytic and with real-analytic boundary ∂M. Let \mathcal{A} be an open subset of geodesics in M such that each geodesic $\gamma \in \mathcal{A}$ can be deformed to a point on ∂M by geodesics in \mathcal{A}. Let $M_{\mathcal{A}}$ be the set of points on these geodesics. If $\operatorname{If}(\gamma)=0$ for all $\gamma \in \mathcal{A}$, then $f=0$ on $M_{\mathcal{A}}$.

Helgason-type support theorem for geodesic ray transforms

Theorem

- (K., 2009) Let (M, g) be a compact simple Riemannian manifold with g real-analytic and with real-analytic boundary ∂M. Let \mathcal{A} be an open subset of geodesics in M such that each geodesic $\gamma \in \mathcal{A}$ can be deformed to a point on ∂M by geodesics in \mathcal{A}. Let $M_{\mathcal{A}}$ be the set of points on these geodesics. If If $(\gamma)=0$ for all $\gamma \in \mathcal{A}$, then $f=0$ on $M_{\mathcal{A}}$.
- (K.-Stefanov, 2009) Let (M, g) be a compact simple Riemannian manifold with g real-analytic and with real-analytic boundary ∂M. Let K be a closed geodesically convex subset of M and let f be a symmetric 2 -tensor field in M. Suppose $I_{g} f(\gamma)=0$ for all γ not intersecting K, then $f=\mathrm{d} v$ on $M \backslash K$ and $\left.v\right|_{\partial M}=0$.

Support theorems

Problem
Prove a Helgason-type support theorem for the geodesic ray transforms of functions. Here (M, g) is a simple C^{∞} Riemannian manifold.

Support theorems

Problem
Prove a Helgason-type support theorem for the geodesic ray transforms of functions. Here (M, g) is a simple C^{∞} Riemannian manifold. Note: Uniqueness question has been settled by Mukhemetov.

Support theorems

Problem

Prove a Helgason-type support theorem for the geodesic ray transforms of functions. Here (M, g) is a simple C^{∞} Riemannian manifold. Note: Uniqueness question has been settled by Mukhemetov. This is a very subtle question. There is a famous counterexample by Boman involving weighted Radon transforms (with C^{∞} weights).

Connection between the support theorem and the Calderón problem

In the classical Calderón problem case, Helgason-type support theorem is used to prove uniqueness for Neumann measurements made on possibly small subsets of the boundary.

Connection between the support theorem and the Calderón problem

In the classical Calderón problem case, Helgason-type support theorem is used to prove uniqueness for Neumann measurements made on possibly small subsets of the boundary.
Reason: For the full data case: One ends up with the Fourier transform. For the partial data case, one ends up with the Radon transform. This was used by kenig-Sjöstrand-Uhlmann in their famous paper.

Connection between the support theorem and the Calderón problem

In the classical Calderón problem case, Helgason-type support theorem is used to prove uniqueness for Neumann measurements made on possibly small subsets of the boundary.
Reason: For the full data case: One ends up with the Fourier transform. For the partial data case, one ends up with the Radon transform. This was used by kenig-Sjöstrand-Uhlmann in their famous paper.
For a class of geometric Calderón problems, one ends up with the geodesic ray transform and hence the support theorem for the geodesic ray transform is useful. A recent preprint of Kenig and Salo deals with this case.

