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Calderón problem - nonisotropic case

Consider a matrix σ = (σij(x)) and consider the following BVP:

∂jσ
jk(x)∂ku(x) = 0 in Ω

u|∂Ω = f

Define Λσ : f → σjk∂kuνj |∂Ω.
Question: Does Λσ determine σ?
If F : Ω→ Ω is a diffeomorphism fixing the boundary, then
ΛF∗σ = Λσ.
Here

(F∗σ)jk(y) =
1

detF∗(x)

∂F j

∂xp
(x)

∂F k

∂xq
(x)σpq(x)|x=F−1(y).
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Geometric Calderón problem

Let (M, g) be a smooth compact Riemannian manifold with smooth
boundary ∂M .
Consider

∆gu = 0, u|∂M = f (1)

where
∆gu =

1
√
g

∂

∂xi

(
√
ggij

∂u

∂xj

)
,
√
g =

√
det g.

Consider the Dirichlet-to-Neumann map:

Λg : f → √ggij ∂u
∂xj

νi, where u is the solution to (1).

Relation between these problems in n ≥ 3.

gjk = det(σ)
2

n−2σjk.



Geometric Calderón problem

Let (M, g) be a smooth compact Riemannian manifold with smooth
boundary ∂M .
Consider

∆gu = 0, u|∂M = f (1)

where
∆gu =

1
√
g

∂

∂xi

(
√
ggij

∂u

∂xj

)
,
√
g =

√
det g.

Consider the Dirichlet-to-Neumann map:

Λg : f → √ggij ∂u
∂xj

νi, where u is the solution to (1).

Relation between these problems in n ≥ 3.

gjk = det(σ)
2

n−2σjk.



Geometric Calderón problem

Let (M, g) be a smooth compact Riemannian manifold with smooth
boundary ∂M .
Consider

∆gu = 0, u|∂M = f (1)

where
∆gu =

1
√
g

∂

∂xi

(
√
ggij

∂u

∂xj

)
,
√
g =

√
det g.

Consider the Dirichlet-to-Neumann map:

Λg : f → √ggij ∂u
∂xj

νi, where u is the solution to (1).

Relation between these problems in n ≥ 3.

gjk = det(σ)
2

n−2σjk.



Geometric Calderón problem

Let (M, g) be a smooth compact Riemannian manifold with smooth
boundary ∂M .
Consider

∆gu = 0, u|∂M = f (1)

where
∆gu =

1
√
g

∂

∂xi

(
√
ggij

∂u

∂xj

)
,
√
g =

√
det g.

Consider the Dirichlet-to-Neumann map:

Λg : f → √ggij ∂u
∂xj

νi, where u is the solution to (1).

Relation between these problems in n ≥ 3.

gjk = det(σ)
2

n−2σjk.



The inverse problem

The inverse problem: Does Λg determine g?
Answer is no. As mentioned already, ψ : M →M is a diffeomorphism
fixing the boundary, then Λψ∗g = Λg.

Conjecture

I Let M be a smooth compact manifold with boundary with n ≥ 3
and let g and g̃ be smooth Riemannian metrics on M such that
Λg = Λg̃. Then there exists a diffeomorphism ψ : M →M
identity on the boundary such that g = ψ∗g̃.

I Let M be a smooth compact Riemannian manifold with boundary
with n = 2 and let g and g̃ be smooth Riemannian metrics on M
such that Λg = Λg̃. Then there exists a diffeomorphism
ψ : M →M identity on the boundary such that g = ϕψ∗g̃ for
some positive function ϕ on M , ϕ|∂M = Id.

In 2-dimensions, we also have conformal invariance of the Dircihlet
problem. That is, in 2-dimensions, if we consider g̃ = ϕg for some
smooth positive function ϕ on M , ϕ|∂M = Id, then Λϕg = Λg.
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Known results

Theorem (Lee-Uhlmann,1989)
Let M be a compact simply connected real-analytic n-manifold with
connected real-analytic boundary ∂M , n ≥ 3. Let g and g̃ be a
real-analytic metrics on ∂M such that Λg = Λg̃. Assume that one of
the following conditions holds:

I M is strongly convex with respect to both g and g̃
I either g or g̃ extends to a complete real-analytic metric on a

non-compact real-analytic manifold M̃ without boundary
containing M .

Then there exists a real-analytic diffeomorphism ψ : M →M with
ψ∂M = Id and g = ψ∗g̃.
(M, g) is said to be strongly convex if between any two points p and q
in M , there is a unique length minimizing geodesic.



Known results

Theorem (Lassas-Uhlmann, 2001)
Assume that M is either a connected Riemann surface or if n ≥ 3,
(M, g) is a connected real-analytic Riemannian manifold with
real-analytic boundary ∂M . Then

If n = 2, then Λg determines the conformal class of the metric g.
If n ≥ 3, then Λg determines the metric g up to the natural
obstruction.



Idea behind cloaking

Theorem (Greenleaf-Lassas-Uhlmann, 2003)
Let Ω ⊂ Rn, n ≥ 3 and g = gij be a metric on Ω. Let D ⊂ Ω be such
that there is a diffeomoprhism F : Ω \ {y} → Ω \D satisfying
F |∂Ω = Id and such that

dF (x) ≥ c0I, det(dF (x)) ≥ c1distRn(x, y)−1.

Let g̃ = F∗g and ĝ be an extension of g̃ into D such that it is positive
definite in the interior of D. Let γ and σ̂ be the corresponding
conductivities of g and ĝ. Then Λσ̂ = Λγ .

Remark
Note that σ̂ can be changed arbitrarily inside D without changing
boundary measurements.
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Construction of the diffeomorphism

Let Ω = B(0, 2) ⊂ R3 be the ball with center 0 and radius 2.
Consider y = 0 and consider the map

F (x) =

(
|x|
2

+ 1

)
x

|x|
.

from Ω \ {0} → Ω \D. Let D +B(0, 1) and consider the
homogeneous conductivity γ = 1 and σ = F∗γ. Now σ can be
extended continuously to a function σ̂ that is C∞ smooth in D.
Two movies to illustrate cloaking.
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Boundary rigidity problem
Boundary rigidity problem in Riemannian geometry is the
question whether the boundary distance function of a compact
Riemannian manifold with boundary determines the metric g.
As before there is a natural obstruction here as well. That is, if
g̃ = ψ∗g with ψ|∂M = Id, then the boundary distance functions
of both the metrics are the same.
Some additional hypothesis on the metric required.
One assumption is to assume that (M, g) is simple. (a) ∂M is
strictly convex (b) for any point x ∈M , exp−1

x : M → exp−1
x (M)

is a diffeomorphism.

Conjecture
Let (M, gi) be a compact simple Riemannian manifold with boundary
and assume that dg1(x, y) = dg2(x, y) for (x, y) ∈ ∂M × ∂M . Then
there exists a diffeomorphism ψ : M →M with ψ|∂M = Id such that
g1 = ψ∗g2.

Positive answer in n = 2 by Pestov-Uhlmann, Annals of Math.,
2005.
There is a connection to the geometric Calderón inverse problem.
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Boundary rigidity problem in 2 dimensions

Theorem (Pestov-Uhlmann, 2005)
The same set up as in the conjecture with n = 2. Then if dg1 = dg2 ,
then Λg1 = Λg2 .
Assume this theorem is true, then Lassas-Uhlmann results shows that
one can determine g up to the conformal factor and then using a
result of Mukhemetov, one can show that the conformal factor is 1.

Conjecture
The same set up as in the conjecture above with n ≥ 2.

I Let n ≥ 3. If dg1 = dg2 , then Λg1 = Λg2 .
I Let n ≥ 2. If Λg1 = Λg2 , then dg1 = dg2 .
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Dynamic Dirichlet-to-Neumann map and boundary
distance function

Consider the following boundary value problem:

(∂2
t −∆g)u = 0 in (0, T )×M

u|t=0 = ∂tu|t=0 = 0 in M

u|(0,T )×∂M = f with f ∈ H2
loc, f = 0 for t < 0.

Λhg : f → √ggij ∂u
∂xj

νi|(0,T )×∂M

is the hyperbolic Dirichlet-to-Neumann map.
The boundary control method shows that if T is sufficiently large,
then Λhg uniquely determines g up to the natural obstruction.

Theorem (Sylvester-Uhlmann)
Let (M, gi) be compact simple Riemannian manifolds. If Λhg1 = Λhg2 ,
then dg1 = dg2 .
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Linearized boundary rigidity problem

Linearizing the boundary rigidity problem near a known a simple
metric g.
This leads to the following inverse problem: Determine the symmetric
matrix f (symmetric 2-tensor field f) from tke knowledge of its
integrals along all geodesics connecting boundary points.

∞∫
−∞

fij(γ(t))γ̇i(t)γ̇j(t)dt.

Uniqueness question: If

Igf(γ) =

∞∫
−∞

fij(γ(t))γ̇i(t)γ̇j(t)dt = 0

along all geodesics γ connecting boundary points, does it imply f = 0?
If f = dv with v|∂M = 0, then Igf(dv)(γ) = 0 for all γ connecting
boundary points.
Open question: Is this the only obstruction?
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Geodesic ray transforms

We can study the following problem: Consider a simple metric g and
consider Igf(γ) along geodesics connecting boundary points of a
compact simple Riemannian manifold with boundary.
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Let (M, g) be a compact simple Riemannian manifold with boundary.
Let f be a function, 1-form or a higher rank symmetric tensor field. If
Igf(γ) = 0 along all geodesics connecting boundary points, then does
it imply f = 0 (for functions) or f = dv with v|∂M = 0? Here d is the
symmetrized covariant derivative.
For functions, the answer is yes by Mukhemetov
For 1-forms, the answer is yes by Anikonov-Romanov
For higher rank case, the conjecture is open. For analytic metrics, the
answer is yes by Stefanov-Uhlmann.
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Helgason-type support theorems
The classical support theorem of Helgason is the following:

Theorem (Helgason)
Let f be a compactly supported distribution and suppose Rf(H) = 0
along all hyperplanes not intersecting a closed convex set K. Then
supp(f) ⊂ K.

Theorem (Boman-Quinto, 1987)
Let W be an open, unbounded connected subset of Sn−1 × R and let
µ(x, ω) be a strictly positive real-analytic function on Rn × Sn−1 that
is even in ω. Let f be a compactly supported distribution such that

Rµf(ω, p) =

∫
H(ω,p)

f(x)µ(x, ω)dxH = 0

for (ω, p) ∈W . Then f = 0 on ∪ (H(ω, p)|(ω, p) ∈W ).
Proof of this theorem is based on analytic microlocal analysis.
This can be generalized to geodesic ray transforms.
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Theorem of Kawai-Kashiwara-Hörmander

Theorem
Let u ∈ D′(Ω) and let f be a real-valued real analytic function and let
x0 ∈ Ω is a point in supp(u) such that

df(x0) 6= 0, f(x) ≤ f(x0) if x ∈ supp(u).

Then (x0,±df(x0)) ∈WFA(u).



Helgason-type support theorem for geodesic ray
transforms

Theorem

I (K., 2009) Let (M, g) be a compact simple Riemannian manifold
with g real-analytic and with real-analytic boundary ∂M . Let A
be an open subset of geodesics in M such that each geodesic
γ ∈ A can be deformed to a point on ∂M by geodesics in A. Let
MA be the set of points on these geodesics. If If(γ) = 0 for all
γ ∈ A, then f = 0 on MA.

I (K.-Stefanov, 2009) Let (M, g) be a compact simple Riemannian
manifold with g real-analytic and with real-analytic boundary
∂M . Let K be a closed geodesically convex subset of M and let f
be a symmetric 2-tensor field in M . Suppose Igf(γ) = 0 for all γ
not intersecting K, then f = dv on M \K and v|∂M = 0.
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Support theorems

Problem
Prove a Helgason-type support theorem for the geodesic ray transforms
of functions. Here (M, g) is a simple C∞ Riemannian manifold.
Note: Uniqueness question has been settled by Mukhemetov.
This is a very subtle question. There is a famous counterexample by
Boman involving weighted Radon transforms (with C∞ weights).
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Connection between the support theorem and the
Calderón problem

In the classical Calderón problem case, Helgason-type support
theorem is used to prove uniqueness for Neumann measurements
made on possibly small subsets of the boundary.
Reason: For the full data case: One ends up with the Fourier
transform. For the partial data case, one ends up with the Radon
transform. This was used by kenig-Sjöstrand-Uhlmann in their
famous paper.
For a class of geometric Calderón problems, one ends up with the
geodesic ray transform and hence the support theorem for the
geodesic ray transform is useful. A recent preprint of Kenig and
Salo deals with this case.
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