INFORMATION TOPOLOGY

WHAT IS A MANIFOLD?

- A manifold is a kind of topological space.
- No sense of distance or angles
- Manifold vs. Manifold with boundary vs. Manifold with corner and different topological spaces
- Adding a metric to the manifold induces a topology, but adds additional structure (distance).
- MBAM does not operate on the geometric object.
- MBAM uses the geometry, to find a topological feature: the boundary.

Consider the question:

What is the FIM for the enzyme-substrate model?

$$
\begin{aligned}
& \frac{d}{d t}[E]=-k_{f}[E][S]+k_{r}[C]+k_{c}[C] \\
& \frac{d}{d t}[S]=-k_{f}[E][S]+k_{r}[C] \\
& \frac{d}{d t}[C]=k_{f}[E][S]-k_{r}[C]-k_{c}[C] \\
& \frac{d}{d t}[P]=k_{c}[C]
\end{aligned}
$$

This question makes no sense.

 $$
\frac{d}{r}[E]=-k_{f}\lceil E\rceil\lceil S\rceil+k_{r}[C]+k_{c}\lceil C\rceil
$$

$$
\begin{aligned}
& \frac{d}{d t}[S]=-k_{f}[E][S]+k_{r}[C] \\
& \frac{d}{d t}[C]=k_{f}[E][S]-k_{r}[C]-k_{c}[C] \\
& \frac{d}{d t}[P]=k_{c}[C]
\end{aligned}
$$

This question is well-posed.
The equilibrium approximation (Michaelis-Menten reaction) is one of the boundaries of this model.

MODELING

- Θ : Parameter Space
- Y: Model mapping
- B: Behavior Space
- All possible behaviors/measurements (large)
- Induced by the mapping from parameter space Y.
- X : A real experiment
- D : Data space induced by X.

- y : The model mapping from parameter
space to data space.
Transttum, MarkK., Gus Hart, and Peng Qiu. "Information topology identifies emergent model classes." arXiv preprint

- Parameter space and potential behaviors exist independently of real experiments.
- No natural metric.
- Manifold in the topological sense.
 meprégtorthederaniffeddictions
- Nhaturabletletriceometry
 potential Fisher Informations could be defined.
- Information Topology

EXAMPLE:

$$
\begin{aligned}
& y_{1}=e^{-\theta_{1} t}+e^{-\theta_{2} t} \\
& y_{2}=e^{-\theta_{1} t}-e^{-\theta_{2} t}
\end{aligned}
$$

- Different measurements of y_{1} and y_{2} can lead to different geometries (e.g., curvatures).
- In either case, the boundary complex is the same (i.e., square like)
- The "square-likeness" is a property of the abstract
斤raindion croiqgy: Study of the boundary complex of the abstract
 indltoqudly ginceatisqeralrfbrmation Matrix.
- Non-standard (Not counting "holes" in the manifold, although that could be done.)
- This analysis is topological in several ways:
- Global (not local)
- Invariance to classes of transformations (diffeomorphisms rather than homeomorphisms)
- Studies properties of a topological space (in most cases, abstract

- Related to the origin of topology (Euler's polyhedra formula)
- Is independent of the Fisher Information Matrix.
- The Fisher Information Metric induces a topology on the parameter space.
- This topology need not be the same as that of the abstract model.
- When the FIM topology is different from the abstract topology, we say there was Manifold Collapse.

EXAMPLE:

$$
\begin{aligned}
& y_{1}=e^{-\theta_{1} t}+e^{-\theta_{2} t} \\
& y_{2}=e^{-\theta_{1} t}-e^{-\theta_{2} t}
\end{aligned}
$$

- But suppose I only observe y_{1}.
- The manifold is "folded" in half.

- The collapse reflects a qualitative change in the information content of the data and results in a structural nonidentifiability.

- Sometimes the boundary

HASSECDHAGRDAWMS

 structural nonidentifiability.: The hibstarchy enzbomesdaristrate
 five (pacest)

- Presestatirstiraphicallye-substrate

 swtrtitwofaces.
- the Ruw ind difaterdamens sieals to a

- The relationships sutcess Michaelis-

- Hisentertamarxitinitconts ans single
 to dimension -1 .

EXAMPLES

Hasse Diagrams for:

- Line Segment
- Triangle
- Square
- Abstract enzymesubstrate model
- Statistical enzymesubstrate model

MEANING OF NODES

Nodes in the Hasse diagram:

- Simplified Models
- Approximate a portion of the abstract model.
- Distinct Behavioral regimes

The Hasse diagram is a road map from the intricate and fully parameterized description of a complex system through various types of approximations to the set of distinct behavior regimes the model enables.

MANIFOLD COLLAPSE REVISITED

- A statistical manifold has a topology (boundary complex) induced by the metric.
- This boundary complex may or may not be the same as that of the abstract model.
- Families of statistical models with the same boundary complex are related by diffeomorphisms.
- Result of differential topology: Diffeomorphisms form a group.
- Groups of statistical models with the same Hasse diagram.

OBSERVATION SEMI-GROUP

- When the manifold "collapses" information is lost--the operation has no inverse.
- The group structure relating statistical manifolds is broken.
- The collection of all possible statistical manifolds forms a semi-group. (Like a group, but with no inverse.)
- Within the semi-group are proper subgroups of statistical manifolds characterized by their common Hasse diagram.
- There is a partial ordering of these subgroups. Let G_{1} and G_{2} are two sub-groups. If there exist statistical manifolds $\mathcal{M}_{1} \in G_{1}$ and $\mathcal{M}_{2} \in G_{2}$ such that the observations for $\mathcal{M}_{1} \subset \mathcal{M}_{2}$ then $G_{1} \prec G_{2}$

THE OBSERVATION SEMI-GROUP

Very little is known about the observation semi-group and the relationship among its subgroups.

- There exists a maximal subgroup $G_{\max }$
- It's Hasse diagram is that of the abstract model.
- We speculate that parameter nonidentifiability (both structural and practical) can be defined in terms of the observation subgroups.

ABSTRACT MODEL MANIFOLD

Many statistical manifolds have a common structure:

- A few long directions
- Many narrow directions
- Hyper-ribbon, low effective dimensionality
- Universality, effective theories, sloppiness

What is the structure of a typical abstract model manifold?

ABSTRACT MODEL MANIFOLD

For a complex system, the Hasse diagram of the abstract manifold is combinatorially complex:

EXAMPLE: MULTIPLE EXPONENTIALS

EXAMPLE: CLUSTER EXPANSION

 $P_{i}=\frac{1}{Z} e^{-\sum_{\mu} \Pi_{i \mu} \theta^{\mu}}$

Completely characterized by the Π matrix.

- M outcomes
- N
Π is an $M \times N$ matrix parameters

Examples:

- Ising Model
- Markov Random Field
- Cluster Expansion (alloys crystal structure)

TOPOLOGY OF EXPONENTIAL FAMILIES

- Each row of Π corresponds to a particular outcome (e.g., crystal structure)
- Each row of Π is a vector in parameter space.
- Plot the rows of Π as points in parameter space.

- The convex hull of these points has the same boundarv structure as the
abstract model.

Transtrum, Mark K. "Manifold boundaries give" gray-box" approximations of complex models." arXiv preprint arXiv:1605.08705 (2016).

REDUCED MODELS OF EXPONENTIAL FAMILIES

The boundary models of the exponential families:

- Several outcomes have zero probability.
- Fewer parameters to describe the relative probabilities among these reduced set of outcomes.

For the case of cluster expansion and crystal structures:

- Zero parameter boundaries have one outcome: the ground state, i.e., stable crystal structure.
- One parameter boundaries describe the control parameter for the phase transition between the two ground states.

EXAMPLE: BINARY ALLOY ON 2D 4X4

UNIT CELL

- Complete information about the phase diagram of this model.
- Which simple models are appropriate for which regimes.

FINAL THOUGHTS ABOUT MODELING COMPLEX SYSTEMS

- There is no theory of complex systems.
- What would a theory look like?

A theory of using models to confidently make predictions about any scientific question.

- What model to use?
- Where is the model valid?
- Akin to universality classes, RG.

TOPOLOGGY Abstract Model Hasse

 exponentially complex- Physical systems can exhibit a combinatorially large number of behaviors.
- Most real observations only probe a small set of these behaviors.
- Manifold collapse leads to good approximate models for these limited behaviors.
- Reduced models are only valid for a limited range of behaviors.

Diagram relates the intricate description of a complex system through various types of approximations to the set of distinct behavior regimes the model enables.

- The Observation Semi-Group relates how different types of coarse-graining lead to systematic compression of the underlying parameter space.

A COMPLEX MODEL MANIFOLD

