THE MANIFOLD
BOUNDARY
APPROXIMATION
METHOD (MBAM)



SUMMARY

To this point, we have discussed several ideas

e Practical Identifiability/Sloppiness (How to define?)

e Low-effective dimensionality (Manifold widths)

e Manifold boundaries

e Geodesics systematically explore model behavior
space

We are going to bring these ideas together to develop a method
for constructing simpler models (fewer parameters) from
complex ones.



WHAT ARE THE BOUNDARIES?
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The boundaries are physically interesting limiting
approximations.

By choosing the boundary oriented with the long axis, can we
find a low-dimensional approximation to the complicated
model?



MODEL REDUCTION

Model reduction is a very old problem with many approaches:
e Mean field theory

e Renormalization Group

e Singular Perturbation

e Lots of methods for Dynamical Systems from Controls

Community

Existing methods fall short for several reasons:

e Limited to specific functional forms

e Black box approximations

e Need to know which parameters are small a
priori.

MODEL REDUCTION



There are several challenges to doing parameter reduction in
sloppy systems

e Need to find (nonlinear) combinations of parameters.
e How to remove a parameter combination from the model?
= Fixing parameters to predetermined values does not
simplify the model (e.g., does not reduce the dynamical
order)

MBAM



1. Choose an initial direction: eigenvector of 7 with smallest
eigenvalue
e Choose the orientation so that the parameter space norm
will grow when following the geodesic.
e This direction is usually involves a complicated
combination of most parameters.
2. Solve the geodesic equation numerically
3. Monitor the behavior of the parameters in the geodesic to
identify a limiting approximation.
e Requires some human intervention/insight.
e Evaluate the limit to remove one parameter combination.
4. Fit the behavior of the new model to original behavior.

GEODESICS NEAR THE BOUNDARIES
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e Theinitial direction can be a
complicated combination of
parameters.

e Near the boundary, the geodesic

rotates to reveal a limiting
approximation.
e The smallest eigenvalues

Initial Componen

0F——-
I

Comp t
T
|
|
|
|
|
I
I
I
!
|
|
|
|
|
|
|
|
|
|
E
I
I
I
|

10 5 20
Parameter index

Initial Final

approach zero at the boundary.

WORKED EXAMPLE: ENZYME REACTION

E+S2

C—->E+P
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—E] = —k[EIIS] + kI C] + k[ C]
d

—IS1 = ~Kf[E][S] + k{C]

d

1€ = KLENIS] = k€] - kIC
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TPl = kelC]

Three parameters: ky, k., k..
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. time (t)
Vs e 3 Dimensional Model
- Manifold |
e Two boundaries (red and
green)
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E[S] = —kf[E][S] + k. [C]
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FINDING THE REDUCED MODEL

K4[C] = [E][S]
Eo = [E] + [C]
_ K‘[Zé]c] - [C)
= (€= 2475

kcEO [S]
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which is the famous Michalies-Menten equation.

COMMENTS

e Michaelis and Menten originally assumed an equilibrium
approximation:.
s d[S)/dt =0 = Ky[C] = [E][S]
= Formally valid if k¢, k, > k.
= Equivalent to the boundary.
= |[fd[S]/dt = 0, then kr and k, are structurally
unidentifiable. K; is the identifiable combination.
e Michaelis and Menten applied their deep physical insight into



e system penaviolr.
e MBAM extracts the physical insight from the identifiablility
analysis.

PRACTICE: NEGATIVE FEEDBACK
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The first three MBAM limits are
l-kFAaKFA — 0
2. kCBaKCB — 0

3.(kcs/KcB), krp, Krp, 1/kpc — 0

Exercise: Find the model after evaluating these three limits.



SOLUTION:

dA 1 —A Kra

— = Lkl — | —— ) F4A
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dB kcgksce ) B
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dC 1 -C - C

dt 1 —C+ Kxc C + Kpc
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INTERPRETING THE REDUCED MODEL



e Effective "renormalized" parameters
y |[BRafI|(kRap1ToBRaf)(KmdBRaf )(kpBRaf ))(KmdM
g =

~ [PP2AA][Raf 1PPtas)(kdBRaf)(KmRap1ToBRaf)(kd)
= Interpretation: effective rate of information flow through the

channel
= Emergent control knob
= No black box
» Effect of changes to microscopic parameters can be predicted
e Dynamical Variables: Functional, biological module
e The character of the model has changed
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H = _ZJijSiSj —hZS,’
nn

e One parameter for each nearest-neighbor bond.
e Boundaries: J;; — o0

n P(Si ;é Sj) =0

= Two spins cluster into a single, larger spin

= For each parameter reduction, there is an analogous

coarse-graining (general result)

e |terating clusters more spins into effective "blocks" of spin
e Result: model relating effective relationships among large-

scale domains

ISING MODEL
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e Boundaries: JJ; — oo (Fourier transform of J's)
e Spin configuration of the i"" frequency has probability zero.
e |terating removes spin configuration of highest frequencies
e Result: model relating the effective relationships among
configuration with long-length scale correlations.

LIMITATIONS OF THE MBAM

e Not fully automatic
e Combnutational challencesg



D T O

m |[[- condltloned metric (not a problem in practice?)

= Geodesics can be expensive

= Successfully applied on models with 100s of parameters
and dynamical variables.

= This is likely the limit with current techniques.

e Does not remove structural unidentifiabilities (more on that to
come)

e Requires a hierarchy of boundaries (more on that to come)
= Models without boundaries include linear least squares
= Many models are unbounded in some direcions but

included bounded cross sections.
= MBAM works in these cases.



WRERS AR AN QN JQWORK e

emical/Biochemical kinetics (Conserva
Compartment models (Conservation of mass)
Power system Transients (Singular Perturbation)
Stable Linear Time Invariant Systems (Balanced Truncation)
Composition of elementary functions (exponential, rational
polynomial, etc.)
Bayesian networks/Markov Chains/Markov Random Fields
(Conservation of Probability)
Molecular dynamic with harmonic potentials (Conservation of
energy)
Neural Networks
Exponential Families (e.g., Ising Model)
Models with discrete symmetries (Orbifolds)
Hogdkin-Huxley Neurons



