THE MANIFOLD BOUNDARY

APPROXIMATION METHOD (MBAM)

SUMMARY

To this point, we have discussed several ideas

- Practical Identifiability/Sloppiness (How to define?)
- Low-effective dimensionality (Manifold widths)
- Manifold boundaries
- Geodesics systematically explore model behavior space

We are going to bring these ideas together to develop a method for constructing simpler models (fewer parameters) from complex ones.

WHAT ARE THE BOUNDARIES?

Example: $y=e^{-\theta_{1} t}+e^{-\theta_{2} t}$
Three boundaries:

- $\theta_{\mu} \rightarrow 0$
- $\theta_{\mu} \rightarrow \infty$
- $\theta_{1} \rightarrow \theta_{2}$

The boundaries are physically interesting limiting approximations.

By choosing the boundary oriented with the long axis, can we find a low-dimensional approximation to the complicated model?

MODEL REDUCTION

Model reduction is a very old problem with many approaches:

- Mean field theory
- Renormalization Group
- Singular Perturbation
- Lots of methods for Dynamical Systems from Controls Community

Existing methods fall short for several reasons:

- Limited to specific functional forms
- Black box approximations
- Need to know which parameters are small a priori.

There are several challenges to doing parameter reduction in sloppy systems

- Need to find (nonlinear) combinations of parameters.
- How to remove a parameter combination from the model?
- Fixing parameters to predetermined values does not simplify the model (e.g., does not reduce the dynamical order)

1. Choose an initial direction: eigenvector of \mathcal{I} with smallest eigenvalue

- Choose the orientation so that the parameter space norm will grow when following the geodesic.
- This direction is usually involves a complicated combination of most parameters.

2. Solve the geodesic equation numerically
3. Monitor the behavior of the parameters in the geodesic to identify a limiting approximation.

- Requires some human intervention/insight.
- Evaluate the limit to remove one parameter combination.

4. Fit the behavior of the new model to original behavior.

GEODESICS NEAR THE BOUNDARIES

- The initial direction can be a complicated combination of parameters.
- Near the boundary, the geodesic rotates to reveal a limiting approximation.

- The smallest eigenvalues approach zero at the boundary.

WORKED EXAMPLE: ENZYME REACTION

$$
E+S \rightleftarrows C \rightarrow E+P
$$

$$
\begin{aligned}
\frac{d}{d t}[E] & =-k_{f}[E][S]+k_{r}[C]+k_{c}[C] \\
\frac{d}{d t}[S] & =-k_{f}[E][S]+k_{r}[C] \\
\frac{d}{d t}[C] & =k_{f}[E][S]-k_{r}[C]-k_{c}[C] \\
\frac{d}{d t}[P] & =k_{c}[C]
\end{aligned}
$$

Three parameters: k_{f}, k_{r}, k_{c}. MODEL MANIFOLD

- 3 Dimensional Model Manifold
- Two boundaries (red and green)

GEODESIC

- Geodesic finds boundary at $\tau=0.37$
- Two parameters become infinita.

$k_{f}, k_{r} \rightarrow \infty$

PANEDINGTRHIINEEDUCED MODEL

$$
\begin{aligned}
& \frac{a}{d t}[S]=-k_{f}[E][S]+k_{r}[C] \\
& \frac{1}{k_{r}} \frac{d}{d t}[S]=-\frac{k_{f}}{k_{r}}[E][S]+[C] \\
& \rightarrow k_{f}, k_{r} \rightarrow \infty \\
& \Longrightarrow=-\frac{1}{K_{d}}[E][S]+[C] \\
& \Longrightarrow[C]=\frac{1}{K_{d}}[E][S]
\end{aligned}
$$

FINDING THE REDUCED MODEL $K_{d}[C]=[E][S]$

$$
\begin{aligned}
& E_{0}=[E]+[C] \\
&=\frac{K_{d}[C]}{[S]}+[C] \\
& \Longrightarrow[C]=\frac{E_{0}[S]}{K_{d}+[S]} \\
& d_{c} E_{0}[S]
\end{aligned}
$$

$$
\overline{d t}[\Gamma]=\kappa_{c}[C]=\overline{K_{d}+[S]}
$$

which is the famous Michalies-Menten equation.

COMMENTS

- Michaelis and Menten originally assumed an equilibrium approximation:.
- $d[S] / d t=0 \Longrightarrow K_{d}[C]=[E][S]$
- Formally valid if $k_{f}, k_{r} \gg k_{c}$
- Equivalent to the boundary.
- If $d[S] / d t=0$, then k_{f} and k_{r} are structurally
unidentifiable. K_{d} is the identifiable combination.
- Michaelis and Menten applied their deep physical insight into
- MBAM extracts the physical insight from the identifiablility analysis.

PRACTICE: NEGATIVE FEEDBACK
 $$
\begin{aligned} & \frac{d A}{d t}=k_{I A} A \text { DAPTATAQNA }_{1-A+K_{I A}}^{A+K_{F A}} \\ & \frac{d B}{d t}=k_{C B} C \frac{1-B}{1-B+K_{C B}}-F_{B} k_{F B} \frac{B}{B+K_{F B}} \\ & \frac{d C}{d t}=k_{A C} A \frac{1-C}{1-C+K_{A C}}-k_{B C} B \frac{C}{C+K_{B C}} \end{aligned}
$$

The first three MBAM limits are

$$
\text { 1. } k_{F A}, K_{F A} \rightarrow \infty
$$

$$
\text { 2. } k_{C B}, K_{C B} \rightarrow \infty
$$

$$
\text { 3. }\left(k_{C B} / K_{C B}\right), k_{F B}, K_{F B}, 1 / k_{B C} \rightarrow 0
$$

Exercise: Find the model after evaluating these three limits.

SOLUTION:

$$
\begin{aligned}
\frac{d A}{d t} & =k_{I A} I \frac{1-A}{1-A+K_{I A}}-\left(\frac{k_{F A}}{K_{F A}}\right) F_{A} A \\
\frac{d \tilde{B}}{d t} & =\left(\frac{k_{C B} k_{B C}}{K_{B C}}\right) C-F_{B}\left(k_{F B} k_{B C}\right) \frac{\tilde{B}}{\tilde{B}+\left(K_{F B} k_{B C}\right)} \\
\frac{d C}{d t} & =k_{A C} A \frac{1-C}{1-C+K_{A C}}-\tilde{B} \frac{C}{C+K_{B C}} \\
\tilde{B} & =k_{B C} B
\end{aligned}
$$

EGFR REVISITED

- 48 Parameters
- 29 Differential Equations
- 68 data points

DEDIICEN NIFTINDK

- 12 Parameters
- 6 Differential

Equations

- Effective "renormalized" parameters
$\phi_{9}=\frac{[\text { BRaf I }](\text { kRap } 1 \text { ToBRaf })(\text { KmdBRaf })(k p B R a f)(\text { KmdM }}{[\text { PP2AA }][\text { Raf 1PPtas }](\text { kdBRaf })(\text { KmRap } 1 \text { ToBRaf })(k d N}$
- Interpretation: effective rate of information flow through the channel
- Emergent control knob
- No black box
- Effect of changes to microscopic parameters can be predicted
- Dynamical Variables: Functional, biological module
- The character of the model has changed

$$
\mathcal{H}=-\sum_{n n} J_{i j} s_{i} s_{j}-h \sum s_{i}
$$

- One parameter for each nearest-neighbor bond.
- Boundaries: $J_{i j} \rightarrow \infty$
- $P\left(s_{i} \neq s_{j}\right)=0$
- Two spins cluster into a single, larger spin
- For each parameter reduction, there is an analogous coarse-graining (general result)
- Iterating clusters more spins into effective "blocks" of spin
- Result: model relating effective relationships among largescale domains

ISING MODEL

$$
\mathcal{H}=-J_{1} \sum s_{i} s_{i}-J_{2} \sum s_{i} s_{i}-\ldots
$$

- Boundaries: $\tilde{J}_{i} \rightarrow \infty$ (Fourier transform of J 's)
- Spin configuration of the $i^{\text {th }}$ frequency has probability zero.
- Iterating removes spin configuration of highest frequencies
- Result: model relating the effective relationships among configuration with long-length scale correlations.

LIMITATIONS OF THE MBAM

- Not fully automatic
- Computational challenges
- Ill-conditioned metric (not a problem in practice?)
- Geodesics can be expensive
- Successfully applied on models with 100 s of parameters and dynamical variables.
- This is likely the limit with current techniques.
- Does not remove structural unidentifiabilities (more on that to come)
- Requires a hierarchy of boundaries (more on that to come)
- Models without boundaries include linear least squares
- Many models are unbounded in some direcions but included bounded cross sections.
- MBAM works in these cases.

WHEREIS IT KNOWN TO WORK

- Chemicat/Biochemical kinetics (Conservation of mass)
- Compartment models (Conservation of mass)
- Power system Transients (Singular Perturbation)
- Stable Linear Time Invariant Systems (Balanced Truncation)
- Composition of elementary functions (exponential, rational polynomial, etc.)
- Bayesian networks/Markov Chains/Markov Random Fields (Conservation of Probability)
- Molecular dynamic with harmonic potentials (Conservation of energy)
- Neural Networks
- Exponential Families (e.g., Ising Model)
- Models with discrete symmetries (Orbifolds)
- Hogdkin-Huxley Neurons

