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RELATIVE OFF-SET ORTHOGONALITY



RELATIVE OFF-SET ORTHOGONALITY
Context: Iterative optimization algorithms. 
Problem: What is a good stopping criterion? 

Previous Criterion: 
Objective function stops decreasing
(absolute/relative)
Gradient is small
Too many function evaluations
Parameters stop changing (absolute/relative)
Residual  gradient vectors

Key Concept: Stopping criterion vs. Convergence criterion

⊥

Bates, Douglas M., and Donald G. Watts. "A Relative Off set Orthogonality Convergence Criterion for Nonlinear least Squares."
Technometrics 23.2 (1981): 179-183.

RESIDUAL ANGLE



RESIDUAL ANGLE
Confidence Regions
correspond (approximately)
to disks on the model
manifold.
The angle between the
residual vector and the best
fit residual vector is a scale
free indication of how near
the best fit the algorithm is.
Stop the algorithm when the 

 of the angle is small
(~0.001)
cos

ADVANTAGES:



The relative-offset orthogonality criterion has a number of
advantages over other methods. 

An absolute measure of convergence
Independent of scaling in the data
Independent of parameterizations (parameter-effects
nonlinaerities)
Relates directly to statistical quality of the best fit

PROBLEMS



There are two important cases in which this method will fail. 
1. When the best fit residual is

zero
2. When the best fit is on a

boundary  

The first can happen frequenty for optimization problems that
are not fitting random data.

The second can happen frequently when fitting sloppy models.

BEST FIT AT THE BOUNDARY?
If a manifold has many narrow
widths, then the noise in the
data can push the best fit to the



boundary. 
The probability of this
happening depends on several
factors: 

Distribution of Manifold
Widths
Curvature along cross-
sections
Scale of noise

MODIFIED CONVERGENCE CRITERION



At a regular point of the manifold, the tangent plane is defined
by the columns of the Jacobian matrix: .
The relevant quantity is the projection operator onto the
tangent plane:

where  are the le  singular vectors of 
At a manifold boundary, the tangent plane is not well-defined,
but it is for the submanifold defined by the boundary.

where  are singular vectors with singular values above some
tolerance.
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Transtrum, Mark K., and James P. Sethna. "Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares
minimization." arXiv preprint arXiv:1201.5885 (2012).

NATURAL GRADIENT



Context: Iterative optimization algorithms. 
Problem: Slow convergence; Plateau problem. 

Many cost surfaces have a common structure: 
Near the best fit, narrow canyons long aspect ratio (given by
square root of ratio of eigenvalues)
Farther from the best fit, the cost function plateaus.
(Imagine finding the hole in a golf course using only local
information.)

Amari, Shun-Ichi. "Natural gradient works efficiently in learning." Neural computation 10.2 (1998): 251-276.

STEPPING TOWARD THE MINIMUM



(negative) Gradient: Direction of steepest descent (in
parameter space):

The parameter  is tuned by the algorithm control step size.
The gradient direction is famously bad:

Oscillations in the bottom of the canyon (conjugate
gradient)

(negative) Natural Gradient: Direction of steepest descent in
data space (in parameter space)

For least squares equivalent to Gauss-Newton
Fisher Efficient (technical)  could remove the plateau
problem.

dx = −τ∇C

τ

dx = −τ ∇Cg−1

⟹
EXTENDED GEODESIC COORDINATES

REMOVES PLATEAUS



Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Geometry of nonlinear least squares with applications to sloppy
models and optimization." Physical Review E 83.3 (2011): 036701.

NATURAL GRADIENT AND BOUNDARIES



The natural gradient direction is very likely to encounter a
boundary before finding the best fit.

RIEMANNIAN MCMC

Context: Markov Chain Monte Carlo Sampling of Bayesian
Posterior Distributions. 
Problem: Slow convergence 



Random walk through parameter space weighted by the cost
Extreme aspect ratios
Preferentially step in the sloppy directions
Gaussian steps with correlations given by FIM.
Modified acceptance criterion (Detailed Balance, see
Numerical Recipes)

Girolami, Mark, and Ben Calderhead. "Riemann manifold langevin and hamiltonian monte carlo methods." Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 73.2 (2011): 123-214. 
Gutenkunst, Ryan Nicholas. Sloppiness, modeling, and evolution in biochemical networks. Diss. Cornell University, 2008.

SOME RESULTS



COMPUTATIONAL TRADEOFFS

Riemannian MCMC is much more efficient in terms of steps.
Each Riemannian MCMC step is much more computationally
intensive.
In practice, it appears to be effective.
Other MCMC methods are also effective (e.g.,
https://arxiv.org/abs/1202.3665)



LEVENBERG-MARQUARDT

Context: Data Fitting 
Problem: Slow convergence, getting lost on the plateau 

The Natural gradient is preferred near the best fit
Far from the best fit, the natural gradient becomes stuck at
the boundary
Not originally motivated by information geometry.
Information geometry helps explain why it is effective



Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Geometry of nonlinear least squares with applications to sloppy
models and optimization." Physical Review E 83.3 (2011): 036701.

ORIGINAL DERIVATION: TRUST REGION

Approximate the cost near the current guess:

Minimize the approximate  subject to the constraint:

Leads to the step:

where  is a Lagrange Multiplier (damping parameter). 
 is usually taken to be the identity.
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UNDERSTANDING LM
Large :

Steps become arbitrarily small
Directed in the parameter space gradient
For sufficiently large , there will always be a step that moves
downhill

Small :

Steps become the Natural
Gradient

λ
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UNDERSTANDING LM



UNDERSTANDING LM

A typical optimization procedure: 
1. Far from best fit, large 
2. Algorithm moves downhill into a canyon and near the best

fit.
3.  is slowly decreased, rotating the step in the natural

gradient
4. Rapid convergence near the best fit

λ

λ

MODEL GRAPH



MODEL GRAPH

The term  looks like a
modified metric.
It is the metric on the model graph

Plot model output against
parameters

 dimensional manifold
embedded in an 
dimensional space

The model graph stretches the
model manifold so that there are no
more boundaries.
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N
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Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Geometry of nonlinear least squares with applications to sloppy
models and optimization." Physical Review E 83.3 (2011): 036701.

NATURAL GRADIENT OF MODEL GRAPH



Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Geometry of nonlinear least squares with applications to sloppy
models and optimization." Physical Review E 83.3 (2011): 036701.

GEODESIC COORDINATES ON MODEL
GRAPH



Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Geometry of nonlinear least squares with applications to sloppy
models and optimization." Physical Review E 83.3 (2011): 036701.

GEODESIC LEVENBERG-MARQUARDT

Context: Data Fitting 
Problem: Slow convergence, getting lost on the plateau 



Levenberg-Marquardt is generally effective, but can become
slow when the canyon is narrow and curves.
Geodesic coordinates suggest a way of straightening out the
canyon.
Sometimes  is decreased too quickly, LM becomes lost.λ

Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Why are nonlinear fits to data so challenging?." Physical review
letters 104.6 (2010): 060201.

OPTIMZIATION AND GEOMETRY



A recurring theme: Algorithms should exploit the natural
geometric structure of the problem.
Rather than stepping in straight lines in parameter space, take
straight lines in data space: Geodesics

The first order term is the traditional LM step.
The second order term is the geodesic acceleration on the
model graph:

δθ = vτ + a + …
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GEODESIC ACCELERATION



Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Geometry of nonlinear least squares with applications to sloppy
models and optimization." Physical Review E 83.3 (2011): 036701.

COMPARING ALGORITHMSDerivatives are generally expensive to calculate.
Each Jacobian is equal to roughly  function evaluations.

For large models, calculating Jacobian is the botleneck.
Calculating all second derivatives would be  function
evaluations.

The geodesic acceleration requires a direction second
derivative, estimable with 1 extra function evaluation.

Comparison Strategy:
Test on small problems
Count number of Jacobian Evaluations
Extrapolate performance to large problems where Jacobian

N

N 2



Extrapolate performance to large problems where Jacobian
evaluations dominate.

RESULTS



Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Geometry of nonlinear least squares with applications to sloppy
models and optimization." Physical Review E 83.3 (2011): 036701.

IMPROVING THE TRUST REGION
Levenberg-Marquardt adjusts  by gauging the cost at the
proposed step. 

If , decrease  and accept
step
If , increase  and reject step

λ

< CCnew λ

> CCnew λ



If , increase  and reject step
Generally effective, but not always.  

Geodesic Acceleration suggests an additional check:
Only accept steps if 

 

In practice, geodesic acceleration is much more adept at
avoiding manifold boundaries with this criterion.

> CCnew λ

|a| < |v|


