
COMPUTATIONAL
DIFFERENTIAL

GEOMETRY

DIFFERENTIAL GEOMETRY

DIFFERENTIAL GEOMETRY
A differential manifold is a collection of points that are connected
to each other in a smooth fashion such that the neighborhood of
each point looks like the neighborhood of an -dimensional
Cartesian space. is the dimensionality of the manifold.

It is customary to use "manifold" to mean "differentiable
manifold."

But what is a point? Any type of object you want.

In our case, points are probability distributions distinguished by
their predictions.

m

m

TANGENT SPACE

TANGENT SPACE
At each point, , on the
manifold we attach a vector
space called the tangent
space.
Vectors live in a tangent
space.
Comparing vectors in nearby
tangent spaces (to do
calculus, for example)
requires a Connection.

x

Tx

INDEX GYMNASTICS

Vectors and Components: (Implied sum over repeated
indices.)

Basis Vectors:
Contravariant Components:
Dual Basis Vectors:
Covariant Components:

Basis vectors are coordinate derivatives:

Metric is the inner product of basis vectors:

v = =vαeα vαϵ
α

eα

vα

ϵα

vα

() =eα ϵβ δ
β
α

= ∂y/∂eα θα

= ⋅ = (Jgαβ eα eβ J T)αβ

INDEX GYMANSTICS
Raising/Lowering Indices:

Transformations (Reparameterization):
Let and be two coordinate maps on the manifold:

Denote coordinates in -basis with tick mark:
'

≡ (gαβ g−1)αβ

=gαγg
γβ δ

β
α

=vα gαβv
β

=vα gαβvα

θ ϕ θ = θ(ϕ)

θ = θ(ϕ)

ϕ

=vα ∂θα

∂ϕα′
vα

′CONNECTION
Goal: Tensor Calculus.

∂

 are the connection coefficients that describe how nearby
tangent spaces are connected.

 is not a tensor. (Transforms differently)

v
∂

∂θα
≡ v∂α

= ()∂α vβeβ

= () + ()∂αv
β

eβ vγ ∂αeγ

= () +∂αv
β

eβ vγΓ
β
αγeβ

Γ

Γ

= +Γ
α
βγ Γ

α′

β ′γ ′

∂θα

∂ϕα′

∂ϕβ ′

∂θβ
∂ϕγ ′

∂θγ
∂θα

∂ϕμ′

∂
2ϕμ′

∂ ∂θβ θγCONNECTION

In general, there may be many possible connections.
An important result of Information Geometry is defining a
family of connections known at the -connections
Fundamental Theorem of Riemannian Geometry

There is a unique, torsion-free connection that preserves
the metric under parallel transport.

α

= (+ −)Γ
α
βγ

1
2
gαδ ∂βgγδ ∂γgβδ ∂δgβγ

TENSOR CALCULUS

Covariant Derivative:

Parallel Transport:
A vector field is parallel transported along the direction if it

= +∇βv
α

∂βv
α

Γ
α
βγv

γ

α

A vector field is parallel transported along the direction if it
satisfies

vα u

= 0uβ∇βv
α

GEODESICS

Geodesics are curves that parallel transport their own tangent
vector.

Let be a parameterization of the geodesic.
Denote the geodesic by
Tangent vector:

= 0uβ∇βu
α

τ

θ(τ)

=α d α

Tangent vector:
Geodesic Equation:

Second order, nonlinear

=uα d
dτ
θα

= −
d2

dτ2
θα Γ

α
βγ

dθβ

dτ

dθγ

dτ

EMBEDDING SPACE

EMBEDDING SPACE
In general, calculating is tedious, but is not difficult.
Calculating is necessary to find the geodesic equation on a
given manifold.
If we have expression for the manifold in an embedding space

, then the connection takes a nice form amenable to
numerical methods:

The geodesic equation becomes:

Notice the directional second derivative

Γ

Γ

y(θ)

= y ⋅ yΓ
α
βγ gαδ∂δ ∂β∂γ

= − y ⋅ y
d2

dτ2
θα gαδ∂δ ∂β∂γ

dθβ

dτ

dθγ

dτ

y∂β∂γ
dθβ

dτ

dθγ

dτ

COMPUTATIONAL METHODS

COMPUTATIONAL METHODS
Given sloppy model , we would like to explore it numerically
using computational differential geometry.
We will need:

Derivatives:
Inverse Metric

Ill-conditioned
Derivatives must be calculated as accurately as possible (no
finite-differences)

Directional Second Derivatives:
Also, we would like do this for models as large as possible, so
computation time is a concern.

y(θ)

y∂α

yvαvβ∂α∂β

SENSITIVITY EQUATIONS
Many of our models are ODEs: x = f (x, θ).d

SENSITIVITY EQUATIONS
Many of our models are ODEs:

The sensitivity of to a change in parameters satisfies
the equation:

which is linear, but is solved simultaneously with that for .

These sensitivities can be derivatives along arbitrary directions
of parameter space.

A similar equation exists for the second order sensitivities.

x = f (x, θ).d
dt

x w = ∂x

∂θ

w = w +
d

dt

∂f

∂x

∂f

∂θ
x

OUR (FIRST) APPROACHWe developed a modeling environment in Python/C.

Key features included:
1. A python script to define the ODE with several lists of strings

List of Parameters,
Dynamical Variables,
List of ODE equations,

2. Sympy was used to calculate the directional derivative along
an arbitrary direction .

3. Automatically created and compiled code to evaluate the
model and first and second order directional derivatives.

4. All scripting was done in Python.

θ

x

f (x, θ)

v

c

OUR (FIRST) APPROACH
Our first approach worked reasonably well.
The bottleneck ended up being compile time.

For models with ~50 Dynamical Variables and 100s of

For models with ~50 Dynamical Variables and 100s of
parameters, model generation/compile time could be
about an hour.
This was fine until we started doing model reduction (more
on that to come).

When doing model reduction, we create many models and do
few calculations with each, so the large overhead in model
generation/compiling became a problem.

OUR CURRENT APPROACH
To overcome these problems, our new approach
is based in Julia.

Julia is a high-level scripting language designed
for scientific computing. () www.julialang.org

http://www.julialang.org/

It was specifically motivated to remove the need
for multiple-language approach that we had
used.

Downside of using Julia: Young and actively
developed (current version 0.5) so language
core and library APIs are subject to change.

OUR CURRENT APPROACH
In our current environment we write one julia function that
defines our model.

Automatic differentiation (Dual numbers) is used to calculate
directional derivatives (to arbitrary order).

In our experience, this approach is fast, stable, and ideal for
working with large, sloppy models.

Downside: we are in the process of refactoring our code to take
advantage of new librarie.s

