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DEFINITIONS

Two important and related concepts have emerged
1. Practical Identifiability
2. Sloppiness
The eigenvalues of the Fisher Information Matrix seem
relevant to each.
Can we now give a more rigorous definition?

How small does an eigenvalue need to be to be practically
unidentifiable?
How much do the eigenvalues need to spread to be sloppy?

Eigenvalues of FIM are problematic.

FITTING POLYNOMIALS



FITTING POLYNOMIALS

Example: Fitting polynomials by least squares on [0,1]. 

Approach 1:  
 is the Hilbert Matrix

Approach 2:  where  is the appropriately
shi ed Legendre polynomial.

 is the identity matrix

Poll: Are these the same model?

y = ∑n θn t
n

= 2/(1 + μ + ν)Iμν

y = (t)∑n ϕnLn (t)Ln

=Iμν δμν

PARAMETERIZATION DEPENDENCE



PARAMETERIZATION DEPENDENCE

Given two parameterizations of a model,  and , the FIM for the
two parameterizations are related by:

 transforms like a covariant rank-2 tensor under
reparameterization. 

With an appropriate reparameterization, , can be transformed
into any positive (semi-)definite matrix.
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PARAMETERIZATION DEPENDENCE



PARAMETERIZATION DEPENDENCE

Possibilities:
1. Practical Unidentifiability/Sloppines are consequences of

poorly chosen parameters. 
They are not properties intrinsic to the model.

Why does sloppiness appear to be so ubiquitous?
Are we really that bad at modeling?

2. There is some other parameterization-invariant
characterization.

Invariance to reparameterization sounds like a geometry
problem.

INFORMATION GEOMETRY
The Fisher Information has all the properties of a Riemannian
metric: 



metric: 
Positive semi-definite
Transforms like a covariant rank-2
tensor  

Let's take this interpretation literally. Perhaps there is a
geometric insight (i.e., parameterization invariant) into why
some models are unidentifiable and sloppy. 

Our approach: Computational differential geometry using the
FIM as the metric.

TWO EXPONENTIAL EXAMPLE:



TWO EXPONENTIAL EXAMPLE:
y(t, θ) = +e− tθ1 e− tθ2

DATA SPACE:



DATA SPACE:
One axis for each data point.
Observed data becomes a vector

Model Predictions become a
vector

Varying the parameters, sweeps
out a surface: the Model Manifold 

→di d⃗ 

(θ) → (θ)yi y⃗ 



Quiz: 
The dimensionality of the embedding space? (3 in this case?) 
The number of data points 

The dimensionality of the model manifold? (2 in this case?) 
The number of locally structurally identifiable parameters



REVIEW OF IMPORTANT GEOMETRIC
CONCEPTS



1. Embedding Space
2. Intrinsic vs. Extrinsic

Properties
3. Geodesics
4. Curvature

EMBEDDING SPACE



EMBEDDING SPACE
We can imagine the manifold living in (i.e., embedded in) a
higher dimensional Euclidean space.
The Euclidean inner product of the embedding space induces
a metric on the manifold.

 is the metric on the tangent space.
We refer to the embedding space as "data space" and denote
it by .

y(θ)

y(θ + dθ)

dy2
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ℝ
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= y(θ) + dy = y + dθ = y(θ) + Jdθ
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∂θ
= dy ⋅ dy = d ( J) dθθT J T

J =  ≡ gJ T



LEAST SQUARES EMBEDDING



LEAST SQUARES EMBEDDING
We have already seen in the toy example:

One Euclidean embedding dimension for each
residual.
Distance is in units of standard deviations of the data.
(Each data-space axis is )(θ)/yi σi

GENERAL EMEDDING
For a general probability distribution, let  be the
probability of the i  outcome.
(  is a continuous index for probability densities)
Let , so that  is a subset of the hyper-sphere.
Exercise: Show that a Euclidean distance in-  space induces
the FIM as the metric on the tangent space.

(θ)Pi
th

i

(θ) =zi Pi‾‾√ 
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RELATION BETWEEN EMBEDDINGS*



RELATION BETWEEN EMBEDDINGS*

Exercise: Show that the distance function:

gives gives the Fisher Information Metric for infinitesimal
distances. 

Show that for the case of least-squares data fitting, this distance
implies the least squares embedding.

D( , ) = −2 log(⟨z( ), z( )⟩)θi θj θi θj

*Katherine Quinn, unpublished.

INTRINSIC VS. EXTRINSICIn general, there many ways of isometrically embedding a
particular manifold.



particular manifold.
Properties that depend on the embedding are called extrinsic.
Properties independent of the embedding are called intrinsic.
The metric, , is by definition intrinsic.
Much of the foundational work in Information Geometry by
Amari and others focuses on intrinsic properties.*
Extrinsic properties are useful for statistics and pioneered by
Bates and Watts.**

Observed data is off the manifold.
Cost = distance through embedding space to the data.
Extrinsic curvature  local minima in cost surface.



⟹

*Amari, Shun-ichi, and Hiroshi Nagaoka. Methods of information geometry. Vol. 191. American Mathematical Soc., 2007. 
**Bates, Douglas M. Watts, Donald G. Douglas M. Bates, and Donald G. Watts. Nonlinear regression analysis and lts applications.
No. 519.536 B3. 1988.

VISUALIZATIONS
The high dimensionality of  and  make visualizations difficult. 

One approach:

 



One approach:
Generate a sampling of points in parameter space.

Grid in parameter space
Sample geometrically motivated distributions (Ben Machta)

Find the model predictions (vector) for each point and arrange them
(mean shi ed) in a matrix

Perform a PCA of these points:

Plot the first several PCA directions:

= −ỹ i yi
1

P ∑
j

yj

Y = [ … ]ỹ 1 ỹ 2 ỹ P

Y = UΣV T

UΣ = YV

VISUALIZATION

Given the matrix of mean-shi ed matrix of points:



Given the matrix of mean-shi ed matrix of points:

we can also construct a projection matrix:

An eigenvalue decomposition of  is sufficient to produce an
isometric embedding/visualization: .

Y = [ … ]ỹ 1 ỹ 2 ỹ P

M

Mij

= Y = UY T
Σ
2UT
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M
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GALLERY OF MODEL MANIFOLDS



 
 Parameters 
 Data points

y = +e− tθ1 e− tθ2

N = 2

M = 3



 
 Parameters 
 Data points

y = + +e− tθ1 e− tθ2 e− tθ3

N = 3

M = 5



Enzyme Catalyzed Reaction (Minpack-2) 
 (2 Dimensional Cross Section) Parameters 

 Data points
N = 4

M = 11



Chebychev Quadrature (Minpack-2) 
 Parameters 
 Data points

N = 3

M = 5



Isomerization of α-pinene (Minpack-2) 
 Parameters 

 Data points
N = 5

M = 40



2D Ising Model (2x2 Unit cell) 
 Parameters (couplings only) 

 "Data points" (16 distinct states)
N = 2

M = 16



GEODESICS

Special paths on the model
manifold.
Satisfies a differential equation.
Parallel transport of tangent vector.

Initial Value Problem
Distance minimizing curves

(When using the metric
connection)



connection)
Boundary Balue Problem

CURVATURE



CURVATURE

Three types of curvature: 
Intrinsic (Riemann)
Curvature
Extrinsic Curvature
Parameter-Effects Curvature

INTRINSIC VS. EXTRINSIC



INTRINSIC VS. EXTRINSIC

Intrinsic Curvature  Extrinsic Curvature
Converse not true

Ruled surfaces
Zero intrinsic curvature but nonzero extrinsic curvature
Example: Cylinder

Large Extrinsic curvature associated with local minima of the
cost

⟹

MEASURE OF EXTRINSIC CURVATURE



GEODESIC CURVATUREJ

v

K

= ∂y = UΣ , = 𝟙 − UV T PN UT

= J , a = yθ̇ PN∂μ∂ν θ̇
μ
θ̇
ν

= =R−1 |a|

|v|2

SHAPE OPERATOR= ⋅ ySμν n̂  ∂μ∂ν

Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Geometry of nonlinear least squares with applications to sloppy
models and optimization." Physical Review E 83.3 (2011): 036701.

PARAMETER-EFFECTS CURVATURE



Non-standard
Introduced by Bates and
Watts.*
Bending/Stretching of the
coordinate grid on the model
manifold
Same information as the
connection coefficients
In most cases it is much
larger than either extrinsic or
intrinsic curvatures

*Bates, Douglas M., and Donald G. Watts. "Relative curvature measures of nonlinearity." Journal of the Royal Statistical Society.
Series B (Methodological) (1980): 1-25. 
Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Geometry of nonlinear least squares with applications to sloppy
models and optimization." Physical Review E 83.3 (2011): 036701.

GEOMETRIC SLOPPINESS: WIDTHS AND
CURVATURES

Is there a parameterization-independent (geometric)
characterization of sloppiness?



Transtrum, Mark K., Benjamin B. Machta, and James P. Sethna. "Why are nonlinear fits to data so challenging?." Physical review
letters 104.6 (2010): 060201.

INTERPOLATION (PREVIEW)
Why is the model manifold so thin?



Transtrum, Mark K., et al. "Perspective: Sloppiness and emergent theories in physics, biology, and beyond." The Journal of
chemical physics 143.1 (2015): 010901.

EXTENDED GEODESIC COORDINATES



Use geodesics to construct
new coordintes
By construction: minimal
parameter effects curvature


