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PARAMETER IDENTIFIABILITY



PARAMETER IDENTIFIABILITYIdentifiability Analysis considers the question of whether or not
it is possible to infer (i.e., identify) the parameters of a model
from data.

When parameters cannot be learned from data, we say they are
unidentifiable.

There are two broad types of unidentifiabilities:
1. Structural

Unidentifability
2. Practical

Unidentifiability

STRUCTURAL IDENTIFIABILITY



STRUCTURAL IDENTIFIABILITY
If parameters cannot be inferred from an infinite amount of
perfect data, the model is structurally unidentifiable.

Structurally unidentifiablilities occur when the model makes the
same predictions for more than one value of the parameters.

Example: Consider the linear model 
. 

There are an infinite number of ways to
choose  and  without altering the
predictions of the model.

y = ( ) xm1m2

m1 m2

STRUCTURAL IDENTIFIABILITY
Example: . y = ( ) xm1m2



STRUCTURAL IDENTIFIABILITY
Example: . 

Although the parameter space is two-dimensional, the
prediction space is one-dimensional. 

In this case, the identifiability is removed by finding an
identifiable combination:  

This type of reparameterization is common in physics:
Charge-mass ratio
Equivalent resistance, capacitance,
etc.
Bohr radius

y = ( ) xm1m2

m = .m1m2

STRUCTURAL IDENTIFIABILITY
Example:  y = +e− tθ1 e− tθ2



This model is also structurally unidentifiable: the model predictions are
invariant to permutation of the parameters. 

This structural unidentifiability is fundamentally different: both the
parameter space and the prediction space are two dimensional. There is
no identifiable combination. 

The structural identifiability is removed by restricting the domain of the
parameter space: . 

This model is locally structurally identifiable, but not globally.

> > 0θ1 θ2

STRUCTURAL IDENTIFIABILITY

Example: y = Ae− tθ1



Poll: Is this model structurally identifiable?

For generic parameter values, this model is structurally
identifiable. 
However, there is a pathology when . 
There is a breakdown of the manifold structure of the
predictions.

A = 0

STRUCTURAL IDENTIFIABILITYAlthough structural unidentifiabilities are caused by model
pathologies, they are not always trivial to recognize. 

Example: Hodgkin-Huxley Model 



The Hodgkin-Huxley model uses the following motif for each ion
channel:  
where  is the voltage and ,  and  are parameters.

A little algebra reveals that there is an unidentifiable
combinations:

bpe
−(V− )/Vbp Kbp

V bp Vbp Kbp

bpe
−(V− )/Vbp Kbp = ( )bpe

/Vbp Kbp e−V/Kbp

= b̃ 
pe

−V/Kbp

PRACTICAL IDENTIFIABILITY

A model may be structurally identifiable, i.e., it is possible in
principle to learn all of the parameters from data. But it may not
be practical to do so. 



For example, it may require an unreasonable amount of data. 

To see how this comes about, we need to review statistics....

PARAMETER ESTIMATION



PARAMETER ESTIMATION
DEFINITIONS:

Random Variable (data)

Parameter(s)

Probability

"True" Parameters

Parameter Estimate

D

θ

P(D|θ)

θ∗

θ ̂ 

PROBLEM:

Given observations of the
data, 
infer from which values of
the parameters, , they
were generated, i.e., the
"true" parameter values.

( , , ,…)d1 d2 d3

θ∗

Estimator: Rule for calcaulating an estimate  of  from data.θ ̂  θ∗

EXAMPLE: LEAST SQUARES REGRESSION



EXAMPLE: LEAST SQUARES REGRESSION
Suppose you measure an
observable at distinct times  with
measurement uncertainty . 

You also have a model of the time
series that depends on several
parameters: 

ti
σi

y(t, θ) = +e− tθ1 e− tθ2

Define a "cost":  

The least squares estimator (i.e., the best fit) is the parameter
value(s) that minimize the cost.

C(θ) = =1
2
∑i ( )−y( ,θ)di ti

σi

2 1
2
∑i r

2
i

MAXIMUM LIKELIHOOD ESTIMATION



MAXIMUM LIKELIHOOD ESTIMATION

The least squares estimator is an example of a Maximum Likelihood
Estimate (MLE):
Given observations of the data , the likelihood of
it having been generated from  is

The MLE,  maximizes .
In practice, we usually minimize the negative log-likelihood: 

If  where , then the least squares
estimator is the MLE.

d = ( , , ,…)d1 d2 d3
P(D|θ)

(θ; d) = P(d|θ)

θ∗ 

l = log.

= y( , θ) +di ti σiξi ∈  (0, 1)ξi

CONFIDENCE/CREDIBLE REGIONS



CONFIDENCE/CREDIBLE REGIONS

The data  carry information about the parameters  that
were used to generate them.
This information is incomplete and corrupted by noise.
Goal: quantify this information.
How sensitive is our estimator to the data?
But the data came from the "true" parameter values.
How sensitive is the model to the parameter values?

di θ



Transtrum, Mark K., et al. "Perspective: Sloppiness and emergent theories in physics, biology, and beyond." The Journal of
chemical physics 143.1 (2015): 010901.

SCORE
The score is a statistic that quantifies the sensitivity of the (log) likelihood to
changes in the parameters:



changes in the parameters:

The score is a random variable (it is a function of the data).
Consider moments of the score.
First moment:

V =
∂l

∂θ

⟨V⟩ = ⟨∂l/∂θ⟩

= P(d|θ)∑
d

∂ logP(d|θ)

∂θ

= P(d|θ)( )∑
d

1

P(d|θ)

∂P(d|θ)

∂θ

= P(d|θ) = 1
∂

∂θ ∑
d

∂

∂θ

= 0

FISHER INFORMATION



FISHER INFORMATION

The second moment of the score is generally not zero. 
It is known as the Fisher Information Matrix (FIM), :

Exerise: Prove the last equality.



μν = ⟨ ⟩V 2

= ⟨ ⟩
∂l

∂θμ

∂l

∂θν

= −⟨ ⟩
l∂2

∂ ∂θμ θν

FIM AND LEAST SQUARES



FIM AND LEAST SQUARES
Recall the residuals , 

By construction, 

(θ) =ri
− (θ)di yi
σi

C(θ) = (θ1
2
∑i ri )2

(θ) ∈  (0, 1)ri
l(θ) = −C(θ) + constant

= ⟨ ⟩ = =μν
∂l

∂θμ

∂l

∂θν ∑
i

JiμJiν ( J)JT
μν

= ( + ) ≈
C∂2

∂ ∂θμ θν ∑
i

JiμJiν ri
∂2ri

∂ ∂θμ θν
μν

Eigenvalues/Eigenvectors of 
(Hessian) characterize the
ellipses of the cost surface
around the best fit:



FIM AND CRAMER-RAO BOUND



The Cramer-Rao bound places a lower bound on the covariance
of the estimated parameter values.

Cov ( )θ ̂  =
1

n

−1

FIM AND RELATIVE ENTROPY
Given two probability distributions that are infinitesimally
separated , then the Kullback-Leibler
divergence is (to lowest order) the Fisher Information:

Q(D|θ) = P(D|θ + dθ)

(P;Q) = d  dθDKL θT

IS THE FIM FUNDAMENTAL?
FIM AND STRUCTURAL IDENTIFIABILITY

Theorem:* A model is locally structurally identifiable at  if and



Theorem:* A model is locally structurally identifiable at  if and
only if  is non-singular. 

In other words, if  is non-singular, then the manifold of
predictions locally has the same dimensionality as the
parameter space. 

More generally, the dimensionality of the null-space of  is the
number of identifiable combinations that need to be
constructed to give an identifiable model.

θ0
( )θ0





*Rothenberg, Thomas J. "Identification in parametric models." Econometrica: Journal of the Econometric Society (1971): 577-591.

FIM AND PRACTICAL IDENTIFIABILITY
If  has a zero eigenvalue, the the model is structurally
unidentifiable. 




A natural (possible) extension: If  has small eigenvalues, then
the model is practically unidentifiable. 

Cramer-Rao bound: it would take a lot of data to constrain the
parameter combinations with projections along the smallest
eigendirection. 

This way of thinking about practical identifiability is useful, but
ultimately incorrect.



SLOPPINESS
What happens if you have lots of parameters? 

Case study: Epidermal Growth Factor Receptor



Case study: Epidermal Growth Factor Receptor
(EGFR) Signaling*48 Parameters, 68 Data points

No parameters estimated
accurately
Falsifiable predictions
(Predictions without
parameters!)

*Brown, Kevin S., et al. "The statistical mechanics of complex signaling networks: nerve growth factor signaling." Physical biology
1.3 (2004): 184.

SLOPPINESS AND THE FIM
The Eigenvalues of the FIM for the EGFR
model showed an unusual structure:  



Eigenvalues are uniformly distributed
on a log-scale over many decades.

Usually many small eigenvalues
No clear distinction between
important/unimportant parameter
combinations

Eigenvectors skewed relative to bare
parameters.

Most parameters have projections
along sloppy directions.
No bare parameters can be
inferred accurately.

This structure recurred universally in
models from many fields.

Machta, Benjamin B., et al. "Parameter space compression underlies emergent theories and predictive models." Science 342.6158
(2013): 604-607.

DEFINING SLOPPINESS?
Some common approaches: 

Range of eigenvalues?
Distribution of
eigenvalues?
Identifiability
rediscovered?

The FIM eigenvalues are an indication of



The FIM eigenvalues are an indication of
something deeper:

Predictions without
parameters
Effective theories
Universality

White, Andrew, et al. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems." PLoS
Computational Biology, l 12(12): e1005227 (2016).


