8. Creating information: symmetry breaking

- One particle gas:

- Brownian particle:

Kawai, JMRP, van den
Broeck. PRL 98, 080602 (2007).

- Ising model:

JMRP. Chaos 11, 725 (2001)
Coupling Field

$(0,0) \rightarrow(J, 0) \rightarrow(J, \pm B) \rightarrow(0, \pm B) \rightarrow(0,0)$

Informational states

Single system:

Ensemble:

Informational states

Probability of state $m: p_{m}$
Partition function of state m ($m=00,01,10,11$):

$$
Z_{m}=\int_{\Gamma_{m}} e^{-\beta H(x)} d x
$$

Free energy of state m :

$$
F_{m}=-k T \ln Z_{m}
$$

Global equilibrium state:

$$
p_{m}^{\mathrm{eq}}=\frac{Z_{m}}{Z}=\frac{e^{-\beta F_{m}}}{Z}
$$

Energetics of symmetry breaking

Energetics of symmetry breaking

At the critical point the free energy changes as:

$$
\Delta F_{b, 1}=-k T \ln p_{1}
$$

No work needed!

Along the whole process:

$$
\Delta S_{i} \geq k \ln p_{i}
$$

(<0!!) Not a proper entropy production.

Breaking and restoring symmetries

- Breaking the symmetry:

$$
\left\langle W^{\mathrm{br}}\right\rangle_{i}-\Delta F_{i}^{\mathrm{br}} \geq-k T \ln p_{i}
$$

- Restoring the symmetry:

$$
\left\langle W^{\mathrm{res}}\right\rangle_{i}-\Delta F_{i}^{\mathrm{res}} \geq k T \ln \tilde{p}_{i}
$$

In a cycle:
An example:

$$
\begin{aligned}
& \langle W\rangle_{L} \geq k T \ln \frac{\alpha}{\alpha^{\prime}} \\
& \langle W\rangle_{R} \geq k T \ln \frac{1-\alpha}{1-\alpha^{\prime}}
\end{aligned}
$$

An experiment ${ }_{(0.0}$ Petrov, cFo)

Does this matter?

- Any meso- or macroscopic degree of freedom is the result of a symmetry/ergodicity breaking.
- Biological evolution: each DNA sequence is the result of a symmetry/ergodicity breaking.

9.1. Microcanonical Szilard engines

 Marathe, JMRP, PRL 2010.A single isolated particle obeying Newtonian dynamics

9.1. Microcanonical Szilard engines

9.1. Microcanonical Szilard engines

Final energy

9.1. Microcanonical Szilard engines

$$
V_{B}^{(n)}=\kappa^{n} E_{0}, \text { with } \kappa=[1 / 2+l /(6 L)]^{2}
$$

9.2. Maxwell demons in phase space

Two properties of Hamiltonian dynamics closely related with the second law:

1) Volume in phase space is invariant.
2) The volume enclosed by an energy shell is an adiabatic invariant:

$$
\phi(E)=\int_{H(q, p)<E} d q d p
$$

Then, in a quasi-static cycle the final energy and the initial energy are the same, ie., work is zero.

9.1. Microcanonical Szilard engines

The phase space volume is an adiabatic invariant:

$$
\phi(E)=\int_{H(q, p)<E} d q d p
$$

Adiabatic invariance breaks down if orbits collapse or split

9.1. Microcanonical Szilard engines

(a) $t \stackrel{q}{=} 0$

(b) $t \stackrel{q}{=} \tau / 8$

(e) $t \stackrel{q}{=} 3 \tau / 4$

(c) $t \stackrel{q}{=} \tau / 4$

Vaikuntanathan, Jarzynski, PRE (2011).

9.2. Maxwell demons in phase space
 JMRP, Granger. Eur. Phys. J. (2015)

$$
\mathcal{U}_{i}^{\prime}\left(\phi_{\lambda_{0}}(E)\right)=\frac{p_{i}(E)}{\tilde{p}_{i}(E)}
$$

$$
\phi(E)=\int_{H(q, p)<E} d q d p
$$

Fig. 3. Three examples of the transformation of the volume enclosed by energy shells. The initial volume $\phi_{\text {init }} \equiv \phi_{\lambda_{0}}(E)$ is mapped into $\phi_{\text {fin }} \equiv \phi_{\lambda_{\tau}}\left(E+W_{i}(E)\right)$: a) corresponds to the microcanonical Szilard engine introduced by Vaikuntanathan and Jarzynski [13] with $p_{i}=\tilde{p}_{i}=1$ (see Fig. 4); b) corresponds to the microcanonical Szilard engine introduced by Marathe and Parrondo [12] with $p_{i}=1 / 2(i=L, R)$ and $\tilde{p}_{i}=1$ (see Fig. 5); c) corresponds to a Szilard engine in contact with a thermal bath at temperature T with $p_{L}=p_{R}=1 / 2$ and $\tilde{p}_{L}=2 / 3, \tilde{p}_{R}=1 / 3$ (see Fig. 6). It is easy to check that in all cases the slopes verify Eq. (9). The diagonal is depicted in the three cases to guide the eye.

10. Information flows

Horowitz, Esposito, PRX 2014.

Bipartite systems:

$$
\dot{S}_{\mathrm{tot}}^{X}=\dot{S}(\rho(x))+\dot{S}_{\mathrm{res}}^{X}-k \dot{I}^{X} \geq 0
$$

Changes due to x transitions

$$
\dot{S}_{\text {tot }}^{Y}=\dot{S}(\rho(y))+\dot{S}_{\text {res }}^{Y}-k \dot{I}^{Y} \geq 0
$$

Changes due to y transitions

What is information?

Metastable states, ergodicity breaking, large separation of time scales.

Creation and annihilation of correlations

