8. Creating information: symmetry breaking

• One particle gas:

Brownian particle:

Informational states

Probability of state $m: p_m$

Partition function of state m (m=00,01,10,11):

$$Z_m = \int_{\Gamma_m} e^{-\beta H(x)} dx$$

Free energy of state m:

$$F_m = -kT\ln Z_m$$

Global equilibrium state:

$$p_m^{\rm eq} = \frac{Z_m}{Z} = \frac{e^{-\beta F_m}}{Z}$$

Energetics of symmetry breaking

At the critical point the free energy changes as:

$$\Delta F_{b,1} = -kT \ln Z_1 + kT \ln Z = -kT \ln \frac{Z_1}{Z}$$

$$p_1$$

$$T_1 = \int_{\Gamma_1} dx \, e^{-\beta H(x)}$$

$$T_1 = \int_{\Gamma_1} dx \, e^{-\beta H(x)}$$

$$T_1 = \int_{\Gamma_1} dx \, e^{-\beta H(x)}$$

$$T_1 = \frac{Z_1}{Z}$$

$$p_2 = \int_{\Gamma_1} dx \, e^{-\beta H(x)}$$

$$T_1 = \frac{Z_1}{Z}$$

$$D_1 = \frac{Z_1}{Z}$$

$$\Delta F_{b,1} = -kT \ln p_1$$
No work needed!

·----

Energetics of symmetry breaking

 p_1

 p_2

 p_3

 Γ_1

 Γ_2

 $\langle W \rangle_a = \Delta F_a$ $\langle W \rangle_b = 0$ $\Delta F_{b,1} = -kT \ln p_1$ $\langle W \rangle_{c,1} = \Delta F_{c,1}$

 Γ_1

 Γ_2

At the critical point the free energy changes as:

$$\Delta F_{b,1} = -kT\ln p_1$$

No work needed!

Along the whole process:

 $\Delta S_i \ge k \ln p_i$

(<0!!) Not a proper entropy production.

Breaking and restoring symmetries

Breaking the symmetry: $\langle W^{\mathrm{br}} \rangle_i - \Delta F_i^{\mathrm{br}} \ge -kT \ln p_i$ Restoring the symmetry: $\langle W^{\rm res} \rangle_i - \Delta F_i^{\rm res} \ge kT \ln \tilde{p}_i$ Probability of choosing i in the backward process –

In a cycle: $\langle W \rangle_i \ge kT \ln \frac{p_i}{\tilde{p}_i}$

An example:

 $\langle W \rangle_L \ge kT \ln \frac{\alpha}{\alpha'}$

 $\langle W \rangle_R \ge kT \ln \frac{1-\alpha}{1-\alpha'}$

Does this matter?

 Any meso- or macroscopic degree of freedom is the result of a symmetry/ergodicity breaking.

•Biological evolution: each DNA sequence is the result of a symmetry/ergodicity breaking.

Marathe, JMRP, PRL 2010.

A single isolated particle obeying Newtonian dynamics

9.2. Maxwell demons in phase space

Two properties of Hamiltonian dynamics closely related with the second law:

Volume in phase space is invariant.
 The volume enclosed by an energy shell is an adiabatic invariant:

Then, in a quasi-static cycle the final energy and the initial energy are the same, ie., **work is zero**.

The phase space volume is an adiabatic invariant:

Adiabatic invariance breaks down if orbits collapse or split

Vaikuntanathan, Jarzynski, PRE (2011).

9.2. Maxwell demons in phase space

JMRP, Granger. Eur. Phys. J. (2015)

$$\mathcal{U}_i'(\phi_{\lambda_0}(E)) = \frac{p_i(E)}{\tilde{p}_i(E)}$$

$$\phi(E) = \int_{H(q,p) < E} dq dp$$

Fig. 3. Three examples of the transformation of the volume enclosed by energy shells. The initial volume $\phi_{\text{init}} \equiv \phi_{\lambda_0}(E)$ is mapped into $\phi_{\text{fin}} \equiv \phi_{\lambda_{\tau}}(E + W_i(E))$: a) corresponds to the microcanonical Szilard engine introduced by Vaikuntanathan and Jarzynski [13] with $p_i = \tilde{p}_i = 1$ (see Fig. 4); b) corresponds to the microcanonical Szilard engine introduced by Marathe and Parrondo [12] with $p_i = 1/2$ (i = L, R) and $\tilde{p}_i = 1$ (see Fig. 5); c) corresponds to a Szilard engine in contact with a thermal bath at temperature T with $p_L = p_R = 1/2$ and $\tilde{p}_L = 2/3$, $\tilde{p}_R = 1/3$ (see Fig. 6). It is easy to check that in all cases the slopes verify Eq. (9). The diagonal is depicted in the three cases to guide the eye.

10. Information flows

Horowitz, Esposito, PRX 2014.

Bipartite systems:

 $\dot{S}_{\text{tot}}^{X} = \dot{S}(\rho(x)) + \dot{S}_{\text{res}}^{X} - k\dot{I}^{X} \ge 0$ $\dot{S}_{\text{tot}}^{Y} = \dot{S}(\rho(y)) + \dot{S}_{\text{res}}^{Y} - k\dot{I}^{Y} \ge 0$

Changes due to X transitions

Changes due to y transitions

What is information?

 Metastable states, ergodicity breaking, large separation of time scales.

 Creation and annihilation of correlations