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The reverse of this step 
prepares the system in state m

The protocol after measuring m must be such 
that, when it is run backwards in time, prepares 

the system in state m

6. Optimal Maxwell demons



An example: multiparticle Szilard engines
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The Szilard engine (SZE) is the quintessence of Maxwell’s demon, which can extract the work from a

heat bath by utilizing information. We present the first complete quantum analysis of the SZE, and derive

an analytic expression of the quantum-mechanical work performed by a quantum SZE containing an

arbitrary number of molecules, where it is crucial to regard the process of insertion or removal of a wall as

a legitimate thermodynamic process. We find that more (less) work can be extracted from the bosonic

(fermionic) SZE due to the indistinguishability of identical particles.
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Maxwell’s demon is a hypothetical being of intelligence
that was conceived to illuminate possible limitations of the
second law of thermodynamics [1,2]. Szilard conducted a
classical analysis of the demon, considering an idealized
heat engine with a one-molecule gas, and directly associ-
ated the information acquired by measurement with a
physical entropy to save the second law [3]. The basic
working principle of the Szilard engine (SZE) is schemati-
cally illustrated in Fig. 1. If one acquires the information
concerning which side the molecule is in after dividing the
box, the information can be utilized to extract work, e.g.,
via an isothermal expansion. The crucial question here is
how this cyclic thermodynamic process is compatible with
the second law. Now it is widely accepted that the mea-
surement process including erasure or reset of demon’s
memory requires the minimum energy cost of at least
kB ln2 (kB is the Boltzmann constant), associated with
the entropy decrease of the engine, and that this saves the
second law [4–7].

Although the SZE deals with a microscopic object,
namely, an engine with a single molecule, its fully quantum
analysis has not yet been conducted except for the mea-
surement process [8,9]. In this Letter we present the first
complete quantum analysis of the SZE. The previous lit-
erature takes for granted that insertion or removal of the
wall costs no energy. This assumption is justified in clas-
sical mechanics but not so in quantum mechanics [10]
because the insertion or removal of the wall alters the
boundary condition that affects the eigenspectrum of the
system. As shown below, a careful analysis of this process
leads to a concise analytic expression of the total net work
performed by the quantum SZE. If more than one particle
is present in the SZE, we encounter the issue of indistin-
guishability of quantum identical particles. Indeed, how
much work is extracted from the quantum SZE strongly
depends crucially on whether it consists of either bosons
or fermions. We also show that the crossover from
indistinguishability to distinguishability occurs as the tem-
perature increases. We assume that the measurement is

performed perfectly. The case of imperfect measurement
is discussed in terms of mutual information in Ref. [7].
To define the thermodynamic work in quantum mechan-

ics, let us consider a closed system described as Hc n ¼
Enc n, where H, c n, and En are the Hamiltonian of the
system, its nth eigenstate, and eigenenergy, respectively.
The internal energy U of the system is given as U ¼P

nEnPn, where Pn is the mean occupation number of
the nth eigenstate. In equilibrium Pn obeys the canonical
distribution. From the derivative of U, one obtains dU ¼P

nðEndPn þ PndEnÞ. Analogous to the classical thermo-
dynamic first law, TdS ¼ dUþ dW, where S and W are
the entropy and work done by the system, respectively, the
quantum thermodynamic work (QTW) can be identified as
dW ¼ !P

nPndEn [11,12]. Note that
P

nEndPn should be

FIG. 1 (color online). Schematic diagram of the thermody-
namic processes of the classical SZE. Initially a single molecule
is prepared in an isolated box. (A) A wall depicted as a vertical
gray bar is inserted to split the box into to two parts. The
molecule is represented by the dotted circles to indicate that at
this stage we do not know in which box the molecule is. (B) By
the measurement, we find where the molecule is. (C) A load is
attached to the wall to extract a work via an isothermal expan-
sion at a constant temperature T.
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WB � IB on the compressed box size. To simplify our analysis, we only consider boxes

such that lx = 2ly. In figure 3, we plot WB � IB as a function of the box size parameter

� = lx/d = 2ly/d. The smaller � the smaller the box. Notice that WB� IB < 0. We also
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Figure 3. Plot of the deviation from reversibility WB�IB for the two-particle Szilard
engine protocol implemented in response to measuring each particle in a separate half
of the box (outcome B) as a function of the box size parameter � = lx/d = 2ly/d.

observe that the process becomes reversible (WB � IB = 0) when � < 4 (lx < 4d and

ly < 2d); the box is so small when � < 4 that both particles cannot fit into the same

half of the box. Consequently, when the partition is inserted during the reverse process

each particle is confined to a separate half of the box, preparing the post-measurement

state with probability one.

Further insight can be gained by noting that the ratio Z2/Z̄2 in (14), which controls

the degree of reversibility, has a simple physical interpretation in terms of the change

in free energy during an irreversible mixing of two indistinguishable particles, each in

separate boxes of sizes lx/2⇥ ly, into one box of the same size, lx/2⇥ ly:

�Fmix = � ln

�
Z2(lx/2, ly)

Z̄2(lx/2, ly)

⇥

. (15)

Thus, this protocol is reversible when there is an infinite free energy di⇥erence between

the states in which both particles are in the same box and where each particle is in a

separate box. For an ideal gas �Fmix = ln 2: two indistinguishable ideal gas particles

confined to the same box have half as many distinct microscopic configurations than

when they are in seperate boxes. For ideal gases our protocol is not optimal (�Fmix ⇤= 0

and WB � IB ⇤= 0), as it exploits particle interactions.

3.2. N-particle Szilard engine

As a final illustration, we present an optimal feedback protocol for a classical N -particle

Szilard engine. Consider N indistinguishable, classical, point particles with short-

ranged, repulsive interactions confined to a box of volume V in weak thermal contact

with a thermal reservoir at temperature kT = 1. The protocol begins by isothermally

No information is wasted 
(W=kTH) if the box is small 
and the particle have a finite 

size.

An example: multiparticle Szilard engines



Many particles (Hal Tasaki)

Traps

This protocol is optimal if the number 
of traps exactly matches the number 
of particles in each side of the box.



Why the protocol extracts energy?

kT

kT

The number of traps has to match the number of 
particles in each side of the box


