CMB driven cosmology: the story thus far ...

ICTS Cosmology day

(April 8, 2014)

Tarun Souradeep I.U.C.A.A.

(Thanks to Sanjit Mitra's IUCAA talk)

Ping the 'Cosmic drum'

(Fig: Einsentein)

More technically, the Green function

150 Mpc.

Quadrupole Anisotropy

Thompson scattering of the CMB anisotropy quadrupole at the surface of last scattering generates a linear polarization pattern in the CMB.

Sourced by electron velocity

Thomson Scattering

Linear Polarization

(Fig: Hu & White, 97)

CMB anisotropy measurements 1st, 2nd and into the 3rd decade

COBE, Post-COBE Ground & Balloon Experiments

Interferometer)

Pre-Planck Angular power spectrum

Planck Angular power spectrum

PLANCK

Planck: Non-Parametric Peak Location forecast

(Amir Aghamousa, Mihir Arjunwadkar, TS Phys Rev D. 2014)

6-Parameter ΛCDM

	Planck+WP+highL		<i>WMAP</i> -7+SPT (S12)	
Parameter	Best fit	68% limit	Best fit	68% limits
$100\Omega_{\rm b}h^2$	2.207	2.207 ± 0.027	2.223	2.229 ± 0.037
$\Omega_{\rm c} h^2$	0.1203	0.1198 ± 0.0026	0.1097	0.1093 ± 0.0040
$10^{9}A_{s}$	2.211	2.198 ± 0.056	2.143	2.142 ± 0.061
$n_{\rm s}$	0.958	0.959 ± 0.007	0.963	0.962 ± 0.010
au	0.093	0.091 ± 0.014	0.083	0.083 ± 0.014
$100\theta_*$	1.0415	1.0415 ± 0.0006	1.0425	1.0429 ± 0.0010
Ω_{Λ}	0.683	0.685 ± 0.017	0.747	0.750 ± 0.020
H_0	67.2	67.3 ± 1.2	72.3	72.5 ± 1.9

Simple... yet, an exotic universe

FRW Universe + Gravitational Structure formation tells us :

- 95% of the energy of the universe is in some exotic form
- Dark Matter: we cannot see it directly, only via gravitational clustering effect.
- Dark Energy: smooth form of energy which does NOT cluster under gravity.
- Some new Ultra-high energy (possibly, fundamental) physics for generating primordial perturbations.

Inflation *a paradigm in search of a model*

A phase of rapid expansion in the scale factor of the universe

Inflation: *a paradigm in search of a model*

Generic Inflation model

A scalar field displaced from the minima of its potential

Generic Inflation model

A scalar field displaced from the minima of its potential

Generation of fluctuations

Adiabatic scalar perturbations

•The inhomogeneous scale factor on which the space creation rate is constant is a measure of adiabatic scalar perturbations

$$\delta N(x, t_{rh}) \equiv \delta(\ln a) \mid_{H_{rh}}$$
$$= \frac{H}{\dot{\phi}} \delta \phi$$

• It is equivalent to the Gauge invariant Bardeen potential on super-Hubble radius scales

Bardeen potential :
$$\zeta \approx \delta(\ln a) |_{H_{rh}}, k \ll aH$$

$$\zeta = \frac{\delta \rho}{(\rho + p)} |_{k=aH} \Rightarrow \frac{\delta \rho}{\rho} |_{reenter} >> \frac{\delta \rho}{\rho} |_{exit}$$

Early Universe in CMB

- The Background universe
 - Homogeneous & isotropic space: Cosmological principle
 - Flat (Euclidean) Geometry
- The nature of initial/primordial perturbations
 - Power spectrum : 'Nearly' Scale invariant /scale free form

Spin characteristics: (Scalar) Density perturbation

- Type of scalar perturbation: Adiabatic no entropy fluctuations
- Underlying statistics: Gaussian

Spectral index of perturbations

Planck Collaboration: Constraints on inflation

Model	Parameter	Planck+WP	Planck+WP+lensing	<i>Planck</i> + WP+high- ℓ	Planck+WP+BAO
ACDM + tensor	n _s	0.9624 ± 0.0075	0.9653 ± 0.0069	0.9600 ± 0.0071	0.9643 + 0.0059
	$r_{0.002}$	< 0.12	< 0.13	< 0.11	< 0.12
	$-2\Delta \ln \mathcal{L}_{max}$	0	0	0	-0.31

multipole moment c

		Independent KSW	ISW-lensing subtracted KSW	
	SMICA Local Equilateral Orthogonal	9.8 ± 5.8 -37 ± 75 -46 ± 39	$2.7 \pm 5.8 \\ -42 \pm 75 \\ -25 \pm 39$	
I_{NL} = +	5000 Levelsion	flocal NL -30-20-10 0 10 20 30 40	Planck recovers WMAP-9 (40+-20, 2- σ at Imax =500)	2500

Generation of E & B modes

Density Wave

E-Mode Polarization Pattern

Scalar & Tensor perturbations

$$u_{k} = a\delta\phi_{k}, \quad v_{k} = ah_{k}$$

$$u_{k}'' + \left[k^{2} - V_{S}(\eta)\right] \quad u_{k} = 0$$

$$v_{k}'' + \left[k^{2} - V_{T}(\eta)\right] \quad v_{k} = 0$$

$$V_{S} = \frac{a''}{a} - \frac{m_{eff}^{2}}{H^{2}}, \quad V_{T} = \frac{a''}{a}$$

$$\frac{m_{eff}^{2}}{H^{2}} = (\varepsilon + \delta)(\delta + 3) + \frac{\dot{\varepsilon} - \dot{\delta}}{H}$$

$$\approx \frac{4\pi}{m_{P}^{2}} \frac{d^{2} \ln H}{d\phi^{2}}$$

(Fig:Souradeep, Thesis 1995)

Early Universe in CMB

- The Background universe
 - Homogeneous & isotropic space: Cosmological principle
 - Flat (Euclidean) Geometry
- The nature of initial/primordial perturbations
 - Power spectrum : 'Nearly' Scale invariant /scale free form

- Spin characteristics: (Scalar) Density perturbation. ... cosmic (Tensor) Gravity waves !?!
- Type of scalar perturbation: Adiabatic no entropy fluctuations
- Underlying statistics: Gaussian

Location: South Pole

- "An excellent site for millimeter-wave observation from the ground (DASI, BICEP1, QUAD & SPT)
 - Dry: exceptionally low precipitable water vapour, reducing atmospheric noise due to the absorption & emission of water at ~150GHz observing band.

- Calm : very stable weather, especially during the dark winter months,

 Finally, the Amundsen-Scott South Pole Station has hosted scientific research continuously since 1958. The station offers well-developed facilities with year-round staff and an established transportation infrastructure."

BICEP Polarization Maps

BICEP2: arXiv:1403.3985

Power Spectra

BICEP2: arXiv:1403.3985

Main Results claimed

- r=0.2 (GW) detected at 5.2σ
- r=0.0 (no GW) ruled out at 7.0σ

BICEP2: arXiv:1403.3985

Early Universe from CMB

• Energy scale and Model of inflation

(Souradeep & Sahni, 1992, Souradeep, Ph.D.thesis, 1995)

Early Universe from CMB

Tensor to scalar ratio is crucial discriminant of EU scenarios

Souradeep, Ph.D. thesis, 1995)

Same GW can be detected over 20-30 orders smaller scale !

Frequency (Hz)

- Planck measures polarisation and it is in our scientific objectives to detect or set limits on primordial B-modes in the CMB
- Planck's sensitivity allows in principle to measure the tensor-to-scalar ratio at the high level of signal detected by BICEP2, though in practice this depends on controlling systematic effects and foregrounds
- We plan to release all our data, including polarisation maps, at the end of October 2014.

Any concerns !!!?!!!

- Essentially based on single frequency measurements !!!!
 - Is it 'cleanest' patch in *polarized* foregrounds?

Concern

(Courtesy:Aditya)

Concern: foreground

• "detected signal is not foreground" ruled out at $\sim 2\sigma$?

"The constraint on the spectral index of the BB signal based on joint consideration of the BICEP2 auto, BICEP1-100 auto, and BICEP2×BICEP1-100 cross spectra. The curve shows the marginalized likelihood as a function of assumed spectral index. The vertical solid and dashed lines indicate the maximum likelihood and the $\pm 1\sigma$ interval. The blue vertical lines indicate the equivalent spectral indices under these conventions for the CMB, synchrotron, and dust. The observed signal is consistent with a CMB spectrum, while synchrotron and dust are both disfavored by > $\sim 2\sigma$."

polarised dust

"The main uncertainty in foreground modeling is currently the lack of a polarized dust map. (This will be alleviated soon by the next Planck data release.) In the meantime we have therefore investigated a number of existing models and have formulated two new ones."

BICEP2: arXiv:1403.3985

CMB Foregrounds as observed by Planck

Slides Courtesy: Tuhin Ghosh, IAS Orsay, France Planck Collaboration

Recent review talk at Moriond meeting Apr. 2014

Summary

- Popular models of inflation predict primordial GWs Amplitude o
- GWs induces B-mode polarisation in CMB
- BICEP2 claimed a > 5σ detection of primordial B-modes, reinforcing the existence of GW and Inflation
 - potentially a major milestone in cosmology and High energy physics.
 - →**but** we must wait for results from other frequency channels of Keck array and other detectors (**Planck**)

Thank You!