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Ç Ocean Data Assimilation: 

o Sequential and Variational Approaches 

Ç Predicting Loop Current in Gulf of Mexico 

o EnKF vs. 4DVAR 

Ç Hybrid 4DVAR-EnKF assimilation 

Ç Future Plans for the Saudi Seas 

 

2 

Talk Outline 
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How to Predict the State of the Ocean? 
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Examples of Red Sea Models at KAUST 



Ç Numerical solution of the discretized PDEs governing the 

evolution of the ocean variability 

Ç Highly complex, very expensive, strongly nonlinear, and 

chaotic models 

Ç Subject to many sources of uncertainties: Omitted 

physics, poorly known parameters, uncertain inputs, 

numerical errors, etc Χ 
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Facts about Ocean Models 

Ocean models are often only crude 

approximations of the real ocean  
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Uncertainties in Ocean Models 



Ç Sources of information:  

o   Numerical models, but imperfect 

o   Observations, but too sparse 

Ç Data assimilation (5th paradigm): Combines models and data  

o   Models dynamically interpolate data in space and time 

o   Data guide model toward the true trajectory 
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Data Assimilation 

The goal is to p redict, analyze, and quantify 

uncertainties of the ocean state  

Ç Difficulties:  

o  Huge dimension (106 ς 1010)  

o  Nonlinear, multiphysics, multiscales, very expensive models 

o Poorly known statistical properties of uncertainties   
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Bayesian Formulation 

Compute probability distribution function of the state 

given available observations  
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ü Data are assimilated over a given period 

ü Dynamically consistent solution  

ü Requires an adjoint model and non-convex optimization 
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Variational Assimilation ς 4DVAR 

Perfect Model 
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Sequential Assimilation ς Filtering 

ü Data are assimilated as they become available 

ü Update background B in time, and dynamically inconsistent solution 

ü Same solution as 4DVAR at end of assimilation for linear Gaussian systems  

Analysis Forecast  

MinJ(X) = X - Data
R- 1
2

+ X - Forecast
B- 1
2

Gaussian Update 



Forecast  

Time  

Analysis  

Data - BLUE 

Analysis  Forecast  Update  

Model  

Sequential Assimilation ς OI (Good Old Days!) 
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ü  No update of the background covariance B 
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Distributions  Ą   Estimates  &  Uncertainties (decision making) 
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Sequential Assimilation ς EnKFs 



Ç The Lorenz-96 model mimics time evolution of an atmospheric 
variable 

 

 

 

 
o A set of reference states      were retained 

o hōǎŜǊǾŀǘƛƻƴǎ ƻŦ άƻŘŘέ ǾŀǊƛŀōƭŜǎ ŦǊƻƳ   

o Initial pdf assumed 
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EnKF Showcase ς Lorenz-96 Model 
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Model Variables 

Quantifying  & Reducing Uncertainties with EnKF 

EnKF 20 members 

1 20 40 



Ç Predict the evolution of the loop current in the Gulf of 

Mexico to support oil industry 
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Ç Funded by BP, in collaboration with 

Bruce Cornuelle & G. Gopalakrishnan 

(Scripps), Patrick Heimbach (MIT), 

Armin Kohl (Hamburg), and Tim Hoar 

& Jeffrey Anderson (NCAR)  

Ç Prediction System:  

o   MIT general circulation  model 

o   Data:  Satellites & Gliders 

Predicting Loop Current in GoM 
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Ç 10× 10 km horizontal resolution and 50 vertical layers 

Ç Model state variables: U, V, S, T  (dim Ғ 2× 107) 

Ç 6-hourly NCEP atmospheric forcing (winds, heat, precipitation, Χ) 

Ç Initial conditions and Open boundaries: model nested in 
1/12× 1/12 degree global assimilated HYCOM 

Ç Monthly NCEP and HYCOM climatology for prediction 

MITgcm ς GoM 
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Model SSH Jan   AVISO SSH Jan 

+ 

Model   AVISO SSH 

Model vs. Altimetry 
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Assimilation System 

Ç Variational (15 iterations) and EnKF (50 members) assimilation 

Ç Along tracks satellites SSH data and satellite gridded SST data are 
assimilated every day 

Ç Assimilation and prediction period: 

 

 

Ç Performance evaluation:  

- RMSE between analysis/forecast and data 

- Comparison with gridded AVISO SSH and TMI SST products  

- Evaluation against un-assimilated gliders data and assimilated HYCOM 

Assimilation Period 
2 months: March - April 

Forecast Period 
2 months: May - June 



Satellite Forecast Analysis 

Weekly EnKF Forecasts and Analyses 
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4DVAR vs. EnKF in GoM ҍ !±L{h wa{9 
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4DVAR vs. EnKF in GoM ҍ CƻǊŜŎŀǎǘ {{I 
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