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Abstract

The living cell is a complex system of interacting processes. The properties 
of the agents that facilitate these processes, such as enzymes, transporters 
and receptors, must be tuned to each other if the system is to behave 
harmoniously. The present chapter describes how the regulatory design of 
cellular subsystems that makes this harmonious behaviour possible can be 
visualized on a graph that combines the so-called log–log rate characteristics of 
these subsystems. The tools that are needed to create and analyse these graphs 
are metabolic control analysis, supply-demand analysis, enzyme kinetics and 
computer simulation.

Introduction

An important aim of systems biology is to understand how all the components 
of the living cell interact harmoniously to give rise to emergent, systemic 
properties that characterize life, such as the homoeostatically maintained, 
far-from-equilibrium steady state. During the recent era of molecular 
biology the idea that all of this was directed by a genetic programme that 
resided in the DNA had widespread prevalence. However, it has become 
increasingly clear that DNA does not incorporate anything like an explicit 
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program [1,2]. Compared with a recipe, which specifi es both ingredients and 
the instructions for combining the ingredients into a dish, DNA provides 
only the basic data for making the ingredients (i.e. sequence data) and, of 
course, the range of available ingredients. The ability to make the ingredients 
and the rules for cooking the dish of life are embedded in the properties of 
the ingredients themselves (in the cell the active ingredients are, for example, 
the enzymes, ribozymes, transporters and supramolecular structures such as 
ribosomes, proteasomes, spliceosomes and chaperonins). In a loose sense it is 
like a cook combining the ingredients in a bowl and watching them transform 
themselves into a dish. But even this picture is misleading: there is no cook; 
there is only a cookbook, a very unusual cookbook that only specifi es a range 
of ingredients, some of which are able to read from the book how to make 
themselves and the others and, ultimately, the dish [3]. In terms of the living 
cell this means that its ‘programme’ is not in the DNA but rather embedded 
in and distributed amongst the properties of all of the active agents in the 
cell, hence the more accurate idea of a ‘cellular programme’. At face value it 
seems that such a programme must be so complicated that it is impossible to 
describe or visualize. In the present chapter I show that, even though it may 
prove too diffi cult, or even impossible, to give one encompassing view of the 
whole cellular programme, there is nevertheless a highly informative way of 
representing and understanding at least part of the programme. Just as a sphere 
can be described as the sum of an infi nite set of planar approximations, so it 
should be possible to see the cellular programme as the sum of such partial 
views.

The molecular economy in the cell

I have, in collaboration with Athel Cornish-Bowden, used a theoretical 
framework called metabolic control analysis [4–6] in conjunction with 
computer modelling to try and understand how cellular processes such as 
metabolism are functionally organized and regulated in the living cell. The 
problem with conventional metabolic studies is that they draw artificial 
boundaries around a metabolic pathway, forgetting that the function of such 
a pathway is to produce a product that is used by another subsystem in the 
cell. For example, amino acids are made for use in protein synthesis, and 
nucleotides are made for use in RNA and DNA synthesis. In fact, much of the 
cell is made up of such supply–demand systems. Conventionally, the rates at 
which these metabolic products are made are purported to be controlled by 
so-called ‘rate-limiting’ steps within the supply pathways. Biotechnology, for 
instance, often takes this textbook wisdom for granted and tries to manipulate 
these rates by engineering the levels of the ‘rate-limiting’ enzymes, usually 
with little success. Our analysis of supply–demand systems [7,8], in which the 
supply is subject to feedback inhibition by the product, shows that this view is 
wrong and that, as expected from a systemic and functional point of view, the 
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control of metabolic steady-state fl uxes should lie in the demand processes. 
In contrast, the supply enzymes actually take on the role of maintaining 
homoeostatically the intracellular steady-state concentrations of metabolites. 
Experimental verifi cations of our theory have recently been published [9–15]; 
see also the commentary in Nature by Oliver [16]. There may of course be 
supply–demand systems where, from a functional point of view, supply is 
expected to have control over the fl ux. A recent example is the muscle supply–
demand system around glucose 6-phosphate, which is supplied from blood 
glucose and consumed by glycolysis and glycogen synthesis [17].

The idea of viewing the living cell as an economy is not particularly new. 
There is, however, a vast difference between using such a description in a 
metaphorical sense and, as we have done, using it as the basis for a quantitative 
explanatory theory. What is the justifi cation for this view? How does the net-
work of connected chemical reactions in a cell become a molecular economy? 
The answer lies in the realization that living cells are subject to environmental 
pressures that force them to adapt through the process of evolution. Through 
genetic variation and subsequent natural selection, the properties of the 
enzymes that catalyse the individual metabolic reactions become optimized 
to fulfi ll specifi c systemic functions, the most important of which is to con-
trol the rates of metabolic reactions and the concentrations of the metabolic 
compounds that link these reactions. This adaptive process has resulted in 
the metabolic networks inside cells becoming functionally differentiated into, 
on the one hand, supply processes (think of them as molecular factories) 
that produce key metabolic commodities such as chemical energy, reduc-
ing equivalents and small building-block molecules, and, on the other hand, 
demand processes that consume these commodities to make large molecules 
such as proteins, nucleic acids, complex carbohydrates and lipids for growth. 
In essence, this is exactly what happens in human economies—as the environ-
ment changes, market pressures cause adaptation in the behaviour of the eco-
nomic agents so that they become functionally organized into producers and 
consumers. Human and molecular economies of course differ in the details of 
their agents and the rules by which they interact; in the molecular economies 
that we study, the agents are enzymes that are governed by the laws of enzyme 
kinetics and thermodynamics. The greatest difference, which, ironically, makes 
classical supply–demand economics more applicable to biomolecular than to 
human economies, lies in the premise of rational behaviour of agents being 
perfectly valid for enzymes, but for humans at best an optimistic approxima-
tion, at worst a pipe-dream. Under any specifi c set of conditions all molecules 
of a particular enzyme behave the same; try that for humans!

How does our theory differ from existing metabolic theories? Imagine 
yourself an economist, producing a report on some manufacturing industry 
without considering consumer demand in your analysis. You will be laughed 
out of the boardroom. However, this is exactly what the classical theory of 
metabolic regulation does. Open any modern biochemistry textbook and you 
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will fi nd that metabolic regulation is discussed only in terms of the supply 
parts, those parts that manufacture the end-products of metabolism. In fact, 
the discussion usually focuses only on a few so-called ‘key’ steps in the supply. 
As discussed in the beginning of this section, we have shown that when one 
takes into account the demand parts the whole picture changes and the clas-
sical theory of metabolic regulation is turned on its head. Our theory explic-
itly recognizes that the evolved properties of any part of a system can only be 
understood in relation to the whole: it is, therefore, a systems theory of the 
cellular processes. Although it is perfectly possible to describe any part of a 
system fully in terms of its constituents and their interactions, it is impossible 
to understand why that part of the system has the properties it has without 
considering it in the context of the intact, whole system. More importantly, we 
also have shown how embedding a part in the whole changes the control and 
regulatory properties that one observes when studying the part in isolation.

The design of the cellular program: an example

What we have learnt from supply–demand analysis is how to consider, 
simultaneously, the quantitative properties of the subsystems from which a 
more complex system is constructed. Using log–log rate characteristics, we 
have developed a graphical visualization that highlights in a novel way the 
integrated functional organization of that system. This is, in my opinion, 
the closest we can get at present to a view of at least part of the cellular 
programme. In this section, rate characteristic analysis is applied to a system 
that should be familiar to most biochemists and molecular biologists.

Figure 1 shows the functional organization of cellular processes around a 
metabolic end-product that serves as a building block for macromolecular syn-
thesis (think of an amino acid for protein synthesis, or a nucleotide for DNA 
or RNA synthesis). This scheme should be seen as generic, in that it incor-
porates our generalized knowledge about the biochemical properties of such 
systems, in particular the biosynthetic part: the fi rst biosynthetic enzyme E1 is 
usually not only allosterically inhibited by the end-product P, but its synthesis 
is also controlled by the intracellular concentration of P, which acts as a co-
repressor (often some or all of the biosynthetic enzymes form part of an 
operon under control of a repressor/co-repressor complex, but, for simplicity, 
only the fi rst enzyme is here considered to be controlled at the genetic level). 
In this particular model, E1 is considered to be insensitive to its immedi-
ate product and is therefore rate-limiting in the biosynthetic block (but, as 
will become clear, not necessarily in the full system). The growth demand is 
considered to bind P strongly, so that it is readily saturated at relatively low 
physiological levels of P (look ahead to Figure 2 where near-saturation of 
growth demand by P already occurs at 0.1 concentration units).

We have shown previously that the regulatory design of such a meta-
bolic junction can be understood in terms of a graph of combined log–log 
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rate characteristics [8,18–20], which has proved to be a powerful explanatory 
tool. Rate characteristics not only allow one to understand how the steady 
state responds to perturbations, but they also provide a broad picture of how 
the system behaves over a large range of variation in the concentration of P 
and in the activities of supply and demand. The mathematical basis for this 
type of analysis is developed in [7,8]. However, in the present chapter we do 
not consider the mathematics because the rate characteristics in themselves 
provide a clear enough picture. Figure 2 provides the example that will serve 
as the basis for discussion. Figure 2(A) shows how the fl uxes local to the 
biosynthetic supply and growth demand respond to changes in the concen-
tration of P. Consider fi rst the rate characteristic of the biosynthetic supply 
(with S, the supply substrate, buffered at a constant value). It is a complicated 
curve that can be divided into a number of regions that will be identifi ed with 
the numbered points on the graph. The region around point 1 is determined 
by allosteric inhibition of E1. The steepness of the curve depends on the 
degree of co-operativity with which P binds to E1; the higher the degree of 
co-operativity, the steeper the slope of the curve. The concentration range in 
which P inhibits the enzyme kinetically is determined by the half-saturation 
constant of the enzyme for P (which in this case is 1). At concentrations of P 
above 10 the inhibitory effect is abolished (the reasons for this are discussed 
in [21,22]). As P nears its equilibrium value (which depends on the set 
concentration of S and the overall equilibrium constant for the supply block), 
the rate of biosynthesis rapidly falls to near zero (the region around point 6). 

RP

1 Biosynthetic
supply

Growth
demand

Catabolic
demand

−

−

+

PS

E1

R

Figure 1. A typical metabolic junction
A biosynthetic end-product P (e.g. an amino acid or nucleotide) is both catabolized (catabolic 
demand) and used for macromolecular synthesis (growth demand). P is synthesized from a 
substrate S by a biosynthetic supply pathway of which the fi rst enzyme E1 is subject to allosteric 
inhibition by P (E1 is shown as a separate entity; the plus sign next to the dotted arrow that 
connects E1 to the box representing the fi rst biosynthetic step indicates catalysis). In addition, 
P acts as a co-repressor, binding to the repressor R to form the RP complex that prevents 
transcription of the structural gene for E1 and therefore synthesis of E1. E1 is also degraded, so 
that it can reach a steady-state level which is determined by the properties of the system.
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Figure 2. Visualizing with combined log–log rate characteristics the part of the 
cellular program that pertains to the biosynthetic end-product P in Figure 1
Each curve shows how the steady-state fl ux local to one of the three reaction blocks in Figure 1 
responds to a change in the concentration of P. In (A) the behaviour of the system at various 
growth demand activities is depicted with and without induction of the fi rst biosynthetic enzyme. 
The grey bands depict ranges where the concentration of P is homoeostatically maintained 
in the face of changes in growth demand. In (B) the effect of adding catabolic demand is 
shown for two growth demand activities (the total demand for P, i.e. the sum of growth and 
catabolic demands, is depicted by the dotted lines). The numbered disks indicate points where 
the rates of supply of and demand for P are equal and therefore where the steady state is 
obtained. The different situations are discussed in the text. The numerical simulation, details 
of which can be obtained from the author, was performed using the open-source metabolic 
modelling program PySCeS [26]. All reactions were modelled with realistic, reversible enzyme 
kinetic rate equations. The first biosynthetic enzyme, which determines the response of 
the biosynthetic reaction block to P, was modelled using the reversible Hill equation with one 
allosteric modifi er [27].
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Whereas, around point 1, the inhibitory effect of P is purely kinetic, around 
point 6 it is thermodynamic and independent of the kinetic properties of the 
supply enzymes. At very low concentrations of P there is of course no inhibi-
tion and the activity of E1 is determined by its limiting velocity, Vmax, and the 
concentration of its substrate S. In the absence of genetic regulation, this con-
centration of P would be at point 2 (the grey curve through point 2 showing 
the supply rate characteristic under these conditions). However, when P acts 
as a co-repressor of E1 synthesis, low concentrations of P (where the repres-
sor–co-repressor complex dissociates) relieve repression and increase the con-
centration of E1, leading to the supply rate characteristic that passes through 
points 3 and 5. The concentration of P at which this increased synthesis of E1 
kicks in is determined by the affi nity of the repressor protein R for P. At a 
lower affi nity, the supply rate characteristic would change to, for example, the 
grey curve that passes through points 4 and 5.

Figure 2(A) also shows the rate characteristic of the demand for P at four 
different demand activities. Note that, in the log–log representation used, the 
demand curve retains its shape when demand activity changes. Wherever the 
supply and demand rate characteristics intersect the rates are equal and the full 
system reaches a steady state; the steady-state fl ux and concentration of P can 
be read directly from such an intersection point. The beauty of log–log rate 
characteristics is that the degree of control that supply and demand have over 
the steady-state fl ux and over the concentration of P can be deduced directly 
from the graph: the ratio of slopes (more accurately, the absolute value of this 
ratio) determines the distribution of fl ux-control between supply and demand 
(if the demand slope is shallower than the supply slope, the demand has a high-
er degree of control over the fl ux, and vice versa). The mathematical control 
theory behind this statement is described in [8]. In Figure 2(A) demand clearly 
controls the fl ux at points 1, 3, 4 and 6, whereas supply controls the fl ux at 
points 2 and 5.

The combined rate characteristics also show that when one block controls 
the fl ux, the other block takes over the function of homoeostatic regulation of 
the concentration of P. Consider for example, the grey banded region around 
point 1. Imagine moving the demand rate characteristic curve up or down until 
the intersection point reaches the limit of the band (this of course represents 
what would happen if the demand activity increases or decreases). Clearly the 
fl ux increases directly in proportion to demand, because, with a slope of near 
zero, demand has complete control over the fl ux. It is also clear that the narrow-
ness of the band (and therefore the effectiveness of homoeostatic maintenance 
of P) is solely determined by the supply rate characteristic, more specifi cally 
by its slope. Increasing the demand beyond the capacity of the supply, whether 
the supply is (point 5) or is not (point 2) genetically regulated, causes a switch in 
the fl ux-control profi le: the supply now controls the fl ux, whereas the demand 
determines how the steady-state concentration of P responds. From the point 
of view of regulatory design, it would be desirable for the allosteric inhibition 
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of the activity of E1 and the genetic regulation of the concentration of E1 to be 
tuned to one another to give a supply rate characteristic such as the one through 
point 4. The supply characteristic through point 3 shows how a mismatch leads 
to two regions in which P is homoeostatically maintained (these two regions 
would of course operate on different timescales, the one around point 1 respond-
ing much faster than the one around point 3).

Whereas derepression of the synthesis of E1 allows the system to respond 
adaptively to high demand activity, it is clear that the system as depicted in 
Figure 2(A) cannot cope with very low demand activity: when demand falls 
too low, E1 cannot keep the concentration of P in the far-from-equilibrium, 
homoeostatic range around point 1, so that it jumps to near-equilibrium 
values (point 6). For most biosynthetic systems (which have large equilibrium 
constants) this would be disastrous, because the cell, having a limited solvent 
capacity, cannot cope with the resultant high concentrations of end product 
(and of other biosynthetic intermediates).

If this were not so, then the response profi le around point 6 would seem 
highly favourable: observe that under these conditions demand still controls 
the fl ux and the homoeostasis of P is excellent. However, thermodynamic 
properties cannot be controlled by enzymes. In addition, not only can the cell 
not cope with high near-equilibrium concentrations, but we have also shown 
[19] that, near equilibrium, the system responds sluggishly compared with one 
under kinetic control at P concentrations far from equilibrium. This points to 
one disadvantage of rate characteristics: there is no time dimension.

Figure 2(B) shows how the addition of a catabolic demand circumvents 
the jump to the near-equilibrium domain at low growth demand by adding a 
bypass that redirects P into catabolism, thereby creating a metabolic overfl ow 
valve. In order for catabolic demand to start functioning only when P increases 
beyond a certain point again requires tuning of the binding properties of 
the fi rst catabolic enzyme. Figure 2(B) depicts such a properly tuned system 
operating at normal demand and at low demand. Note that the steady state is 
now obtained where the supply fl ux matches that of the combined demands 
(this amounts to adding the rate characteristics of growth and catabolic 
demand to give the total demand, which is depicted by the dotted lines on the 
graph). Consider the situation at low demand: instead of the concentration of 
P jumping to point 6, the presence of the catabolic branch now keeps it from 
increasing beyond point 7 even if the demand decreases further. At demand 
activities in the range for which the system is designed to operate (the grey 
rate characteristic for growth demand through point 1) the catabolic demand 
is effectively switched off. Note again how important it is for the correct 
functioning of the system that the properties of the different subsystems are 
attuned to each other. If, for example, the fi rst catabolic enzyme were to bind 
P with higher affi nity (displacing the catabolic rate characteristic to the left), it 
could cause a wasteful diversion of P into catabolism, or, alternatively, provide 
a regulatory mechanism for partitioning fl ux between growth and catabolism.
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Conclusion

Although systems biology means many things to many people, these, often 
seemingly divergent, views are all compatible and can be consolidated into 
something along the lines of “explaining or understanding the emergence 
of systemic functional properties of the living cell as a result of the interactions 
of its components” [3]. Whether this is attempted via an ‘omics’ approach 
[23] or a ‘silicon cell’ approach [24], we still need conceptual tools with which 
to analyse the experimental or numerical results. The present chapter describes 
a set of such tools that, together, provide a quantitative framework that can be 
used to design experiments, guide computer simulations and explain results.

A seeming shortcoming of the analysis as presented above is that the 
coupled processes should communicate through the coupling metabolite only. 
Recently, we have devised a method called generalized supply–demand analysis 
[25] which extends the analysis to any metabolite in a system of arbitrary 
complexity, allowing for communication between supply and demand blocks 
other than through the coupling metabolite.

Summary

• Nothing in an organism makes sense except in the light of functional 

context.

• The harmonious behaviour of coupled cellular processes depends on the 

properties of the molecular agents that facilitate these processes being 

fi nely tuned to each other.

• The regulatory design of cellular processes can be visualized with com-

bined log–log rate characteristics.

• Supply–demand analysis (and, by implication, metabolic control analy-

sis) allows the quantifi cation of the degree to which the functions of 

fl ux-control and the homoeostatic maintenance of metabolite concen-

trations are distributed among coupled cellular processes.
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