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ABSTRACT
Metabolic control analysis is a powerful quantitative framework for

understanding the relationship between the steady-state properties

of a (bio)chemical reaction network as a whole and the properties

of its component reactions. Although in essence it is a typical sen-

sitivity analysis of a dynamical system, the stoichiometric structure

of reaction networks gives it a character of its own. It has proved

very useful for both theoretical and experimental analysis of cel-

lular systems, leading to deep insights into matters of control and

regulation. This paper attempts to capture in a nutshell the detailed

derivation from first principles of all of the important theorems of

control analysis starting with the general kinetic model of a reaction

network.

1. INTRODUCTION
Like the evolution of life, the development of metabolic control

analysis can be likened to a process of tinkering. What now stands

as the theoretical body of control analysis is the result of a piece-

meal addition to and refinement of theorems presented in the origi-

nal papers of Kacser and Burns [21, 22] and Heinrich and Rapoport

[11]. A landmark paper on the formalisation of control analysis

is by Reder [30], although others have provided some formal de-

scription from first principles [2, 3, 8, 9, 10, 41]. At present the

most complete formalisation can be found in [13]. One may there-

fore rightly question the need for another treatment. However, re-

inventing the metaphorical wheel often yields new insights, and it

is in this spirit that this paper is offered as a journey of discovery

through the algebraical landscape of metabolic control analysis.

We start at the very beginning with the general kinetic model for

a network of chemical reactions, and then proceed step by step,

doing our best to avoid those unexplained jumps which, although

seemingly obvious to experienced mathematicians, leaves us lesser

mortals feeling woefully inadequate. Nevertheless, the reader is at

least assumed to be acquainted with introductory differential calcu-

lus. The great strength and elegance of symbolic matrix algebra is

utilised throughout, but there is nothing mysterious about it. The

rules of matrix algebra are similar to those of ordinary algebra [37],

but be mindful of two things: (i) two matrices can only be multi-

plied if the number of columns of the first matrix equals the number

of rows of the second (an m × n matrix can only be multiplied by a

n×k matrix; the product will have dimensions m×k), and (ii) matrix

multiplication is not commutative, i.e., the product AB is usually

not equal to BA. For those that feel more comfortable with explicit

matrix equations, the example provided in Appendix B serves as a

starting point.

It must, however, be made clear from the outset that this is neither a

literature review, nor a discussion of the theoretical and experimen-

tal applications of control analysis or the physical interpretation of

control properties. For this the reader is referred to the original

literature, perhaps with the excellent monographs [5] and [13] as

points of departure. Here only selected key references are supplied.

2. THE KINETIC MODEL
The kinetic model for any (metabolic) network of coupled chemical

reactions and transport processes can be written as a set of nonlin-

ear differential equations (see e.g., [30]):

ds

dt
= Nv[s,p] (1)

where, for a system of n coupled reactions that inter-convert m sub-

stances (from here on called ‘metabolites’), s is an m-dimensional

column vector of metabolite concentrations, N is an m × n-dimen-

sional matrix of stoichiometric coefficients (the stoichiometric ma-

trix), v is an n-dimensional column vector of reaction rates, and

p is a p-dimensional column vector of parameters. Only variable

metabolite concentrations are included in s; metabolite concentra-

tions which are buffered externally and can therefore be regarded

as constant are considered to be included in the parameter vector p.

In any systemic state the reaction rates v are functions of both

metabolite concentrations s and parameters p such as kinetic con-

stants and fixed external concentrations. This is expressed in eqn. 1

by the functional relationship v = v[s,p].

The structure or topology of the reaction network is embodied in

the stoichiometric matrix N. An element ci j of N is the stoichiom-

etry, usually an integer, with which metabolite Si participates in

reaction j (if Si is a reactant, ci j < 0; if a product, ci j > 0; oth-

erwise, ci j = 0). Two invariant properties can be extracted from

N, namely (i) the conservation relationships that arise when the

differential equations are not all linearly independent, and (ii) the

steady-state flux relationships [30]. Here we discuss the first; the

second will follow once the steady state has been treated.

By Gaussian elimination to row echelon form (see, e.g., [37]) we

can determine whether the rows of N (and, therefore, the differen-

tial equations themselves) are linearly independent (see Appendix B

for an example). If they are independent then r = m, where r is

the rank of N (the number of independent equations). If r < m

then there are m− r dependencies among the differential equations.

Eliminating m − r dependent rows of N leaves a reduced stoichio-

metric matrix, NR, with r independent rows. N and NR can be re-

lated by constructing a link matrix L with dimensions m × r so that

N = LNR [30]. If N is re-arranged so that the independent rows
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come first, then L and the concentration vector s that corresponds

to the rows of the re-arranged N have the structure

L =

[

Ir

L0

]

and s =

[

si

sd

]

(2)

where Ir is an r-dimensional identity matrix and L0 an (m − r) × r-

dimensional matrix that expresses the dependent time derivatives

in terms of the independent time derivatives (see eqn. 6 below); si

refers to independent and sd to dependent concentrations.

Using these relationships the kinetic model in eqn. 1 can be written

as

ds

dt
= LNRv[si, sd,p] (3)

where the functional relationship v = v[si, sd,p] emphasises the

fact that the dependencies among the differential equations allows

the partitioning of s into r independent concentrations si and m − r

dependent concentrations sd. Now the kinetic model can be ex-

panded into

d

dt

[

si

sd

]

= LNRv[si, sd,p] =

[

Ir

L0

]

NRv[si, sd,p] (4)

which can be split into two equations:

dsi

dt
= NRv[si, sd,p] (5)

dsd

dt
= L0NRv[si, sd, p] = L0

dsi

dt
(6)

which, when combined, give

ds

dt
= L

dsi

dt
(7)

It is clear that if L0 is known we need only consider the kinetics as

expressed by eqn. 5, as eqn. 6 allows the expression of the linear

dependencies between the rates of change of metabolite concentra-

tions:

d

dt
(sd − L0si) = 0 (8)

where 0 is a null vector (a vector of zeros). This implies that

sd = L0si + T (9)

where T is an (m − r)-dimensional vector of constant (conserved)

sums of concentrations. The full concentration vector s can there-

fore be expressed as a function of si and T:

s =

[

si

sd

]

=

[

Ir

L0

]

si +

[

0

T

]

= Lsi +

[

0

T

]

(10)

where 0 represents an r-dimensional subvector of zeros.

2.1 Functional relationships in the steady state
In the steady state the kinetic model ds/dt = 0, and the equations

simplify to a system of non-linear equations of the form

NRv[si, sd,p] = 0 (11)

When there are no conservation relationships (when r = m), the

equation system reduces to a slightly simpler form

Nv[s,p] = 0 (12)

but we shall only consider eqn. 11 as it is more general. The solu-

tion to eqn. 11 is a vector of independent concentrations

si = si[T,p] (13)

Note that the concentrations are now steady-state concentrations

(as the context is clear we deem it wise not to confuse things by

altering the symbol; from here on s, si, and sd only refer to steady-

state concentrations). Furthermore, the solution can be expanded to

a vector of dependent steady-state concentrations, which depends

through eqn. 9 on si and T,

sd = sd[si,T] (14)

and a steady-state reaction rate vector

J = v[si, sd, p] (15)

for which we reserve the special name flux vector.

Usually, we cannot solve for the steady-state concentrations and

fluxes analytically, although the powerful symbolic manipulators

available today (e.g., Mathematica, Maple, Reduce) enlarge the

scope of what is possible. Except for the simplest cases, analytical

solutions are in any case extremely difficult to interpret. The cen-

tral question asked by metabolic control analysis is how the steady-

state variables change when the steady-state changes in response

to a perturbation in one or more parameters. In order to answer

this question it is necessary to differentiate the steady-state equa-

tions with respect to the parameters, and for this we must have an

accurate picture of the functional relationships in these equations.

A diagrammatic representation makes these nested functional rela-

tionships more transparent:

v

sd psi

p T T

�

�
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@
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�
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@
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It is clear that the steady-state concentrations si and sd as well as

the steady-state fluxes J, ultimately depend only on the parameters

p and the conservation sums T. Nevertheless, the intermediary lev-

els of functional dependencies are important when the steady-state

equations are differentiated with respect to p and T. However, be-

fore we turn to this topic we complete our structural analysis of

N by considering the relationships that exist between fluxes in the

steady state.

2.2 Flux-relationships in the steady state
We showed above that linear dependencies among the rows of N

can be captured in the link matrix L. Similarly, in the steady state

when NRv = 0 (or Nv = 0, if there are no conservation relation-

ships) their exist dependencies among the columns of N (or NR)

that can be expressed as

NK = 0 or NRK = 0 (16)

where K is the kernel (or nullspace) of N [30]. Each column of K

is a particular solution to eqn. 16, and the set of columns are lin-

early independent and therefore span the nullspace. Because each

column represents an independent flux, it follows that:

J = KJi (17)

where J is an n-dimensional column vector of all the steady-state

fluxes, and Ji is an (n − r)-dimensional column vector of indepen-

dent fluxes (recall that r is the rank of the stoichiometric matrix). K



therefore has dimensions n × (n − r). If K is re-arranged so that the

n − r rows that correspond to independent fluxes come first, then

the flux vector J is partitioned into n − r independent fluxes Ji and

r dependent fluxes Jd, and eqn. 17 becomes
[

Ji

Jd

]

=

[

In−r

K0

]

Ji (18)

where I is an (n−r)-dimensional identity matrix and K0 an r×(n−r)-

dimensional matrix that expresses the dependent fluxes in terms of

the independent fluxes, Jd = K0Ji.

3. DIFFERENTIATION OF THE STEADY-

STATE EQUATION
Because the parameters p and T determine the steady-state, any

change in these parameters can potentially change the steady state.

If the parameter perturbation is small enough, the change from

steady state (s1, J1) to steady state (s2, J2) is approximated by

s2 = s1 +
∂s

∂p
(p2 − p1) (19)

and

J2 = J1 +
∂J

∂p
(p2 − p1) (20)

the first two terms in the so-called multivariate Taylor expansion.

Similar equations for perturbations in T can be obtained by re-

placing p by T. The matrices of partial derivatives ∂s/∂p, ∂J/∂p,

∂s/∂T, and ∂J/∂T are thus of great interest and will be obtained

next.

Readers will be familiar with the differentiation of an explicit math-

ematical equation of the form y = f (x) with respect to x, or if, as is

the case here, y is a function of more than one variable y = f (x, z),

partial differentiation with respect to either x or z or both at the

same time. However, we are working not with simple scalar vari-

ables, but with vector variables. In addition, equations such as

eqn. 11 are implicit functions. Fortunately, the extension to vec-

tor variables and implicit functions is not difficult at all. Let us

first get a feel for this process by differentiating eqn. 14, the ex-

plicit function sd = L0si[T,p] + T. We use the part of the diagram

of functional relationships given above that starts at sd as a guide.

First, let us partially differentiate sd with respect to si (at constant

T and p):
(

∂sd

∂si

)

T,p

= L0 (21)

When we differentiate with respect to T at constant p there are two

routes from sd to T, one via si and one direct:
(

∂sd

∂T

)

p

=

(

∂sd

∂si

)

T,p

(

∂si

∂T

)

p

+

(

∂sd

∂T

)

si ,p

(22)

Inserting eqn. 21 we obtain
(

∂sd

∂T

)

p

= L0

(

∂si

∂T

)

p

+ Im−r (23)

Note how we use the chain rule to follow the different branches of

the tree structure of the diagram of functional relationships. Be-

cause we are differentiating with respect to vectors, all the dimen-

sions have to be consistent; this is why an identity matrix Im−r ap-

pears rather than a 1. Finally, we differentiate with respect to p at

constant T:
(

∂sd

∂p

)

T

=

(

∂sd

∂si

)

T,p

(

∂si

∂p

)

T

= L0

(

∂si

∂p

)

T

(24)

We shall need all three of these equations when we next proceed

to differentiate the kinetic model in steady state. We first differen-

tiate with respect to p at constant T, and then with respect to T at

constant p.

Case 1: dp , 0, dT = 0

Eqn. 11 is an implicit equation of the form f (x, y, z) = 0. In gen-

eral, to obtain, say, ∂y/∂x one could in principle solve for y and

partially differentiate with respect to x while keeping z constant.

This is often impossible, but there is, fortunately, a much simpler

way around this, namely implicit differentiation

d f =

(

∂ f

∂x

)

y,z

dx +

(

∂ f

∂y

)

x,z

dy +

(

∂ f

∂z

)

x,y

dz = 0 (25)

where d f is called the total differential. If only one variable, say x,

is considered to change at constant y and z, then one obtains
(

∂ f

∂x

)

y,z

+

(

∂ f

∂y

)

x,z

(

∂y

∂x

)

z

+

(

∂ f

∂z

)

x,y

(

∂z

∂x

)

y

= 0 (26)

To differentiate Eqn. 11 with respect to p we use this technique in

combination with the chain rule to traverse the three routes from v

to p on the diagram of functional relationships:

NR













(

∂v

∂si

)

sd ,T,p

(

∂si

∂p

)

T

+

(

∂v

∂sd

)

si ,T,p

(

∂sd

∂si

)

T,p

(

∂si

∂p

)

T

+

(

∂v

∂p

)

T

]

= 0 (27)

where 0 is a null matrix. Inserting eqn. 21 and collecting the first

two terms in the square brackets we obtain

NR

[

∂v
∂si

∂v
∂sd

]

[

Ir

L0

] (

∂si

∂p

)

T

+NR

(

∂v

∂p

)

T

= 0 (28)

By definition the column vector of matrices is L. The partitioned

matrix [ ∂v
∂si

∂v
∂sd

] is the matrix (∂v/∂s)T,p of partial derivatives of re-

action rate functions with respect to the individual concentrations

in s. In control analysis these partial derivatives are called elasticity

coefficients, defined as ε̄
vk
s j
= ∂vk/∂s j. The above matrix of elastic-

ity coefficients is symbolised with ε̄s. Similarly, (∂v/∂p)T is a ma-

trix of elasticity coefficients with respect to p, symbolised by ε̄p.

The bar in ε̄ reminds us that these are ordinary partial derivatives,

not the normalised (scaled) partial derivatives which are usually

used in control analysis and which we shall encountered further on

(and for which we shall use the unbarred symbol; this distinction

between barred (non-normalised) and unbarred (normalised) sym-

bols is made throughout the paper for all the coefficients of control

analysis and their matrices). Using this symbolism eqn. 28 is writ-

ten as

NRε̄sL

(

∂si

∂p

)

T

+NRε̄p = 0 (29)

The steady-state eqn. 15 for fluxes is explicit. Differentiation with

respect to p yields:
(

∂J

∂p

)

T

=

(

∂v

∂si

)

sd ,T,p

(

∂si

∂p

)

T

+

(

∂v

∂sd

)

si ,T,p

(

∂sd

∂si

)

T,p

(

∂si

∂p

)

T

+

(

∂v

∂p

)

T

(30)

This expression is identical to the sum of terms within the square

brackets of eqn. 27. Substituting and collecting terms as before



gives
(

∂J

∂p

)

T

= ε̄sL

(

∂si

∂p

)

T

+ ε̄p (31)

Case 2: dp = 0, dT , 0

Now we implicitly differentiate eqn. 11 with respect to T at con-

stant p. On the diagram of functional relationships there are two

routes from v to T; one of them branches at sd into two subroutes

to T. We differentiate in two steps to avoid getting things mixed

up—first we differentiate to the level of si and sd:

NR













(

∂v

∂si

)

sd ,T,p

(

∂si

∂T

)

p

+

(

∂v

∂sd

)

si ,T,p

(

∂sd

∂T

)

p













= 0 (32)

Now we must take care of the two routes from sd to T. In fact, we

have already done this in eqn. 22 so we just substitute:

NR













(

∂v

∂si

)

sd ,T,p

(

∂si

∂T

)

p

+

(

∂v

∂sd

)

si ,T,p













L0

(

∂si

∂T

)

p

+ Im−r

























= 0 (33)

Multiplying out and collecting the first two terms as before gives

NR













ε̄sL

(

∂si

∂T

)

p

+ ε̄sd













= 0 (34)

Explicit differentiation of eqn. 15 with respect to T at constant p

gives:
(

∂J

∂T

)

p

=

(

∂v

∂si

)

sd ,T,p

(

∂si

∂T

)

p

+

(

∂v

∂sd

)

si ,T,p

(

∂sd

∂T

)

p

(35)

We proceed exactly as in eqns. 33 and 34 to obtain
(

∂J

∂T

)

p

= ε̄sL

(

∂si

∂T

)

p

+ ε̄sd
(36)

This concludes the differentiation of the steady-state equations.

4. METABOLIC CONTROL ANALYSIS
We are now in a position to derive the basic definitions of and re-

lationships between all the different matrices of the coefficients of

metabolic control analysis (the boxed equations in the rest of this

section).

4.1 Concentration response with respect to p
The matrix product NRε̄sL, which appears in eqn. 29, is the so-

called Jacobian matrix, which we symbolise with M. The nature

and significance of the Jacobian matrix is explained in Appendix A.

Here we just note that if a steady state exists the Jacobian matrix

is invertible. From here on, for the sake of brevity, we leave out

the subscripts that indicate which vectors remain constant during

differentiation. In this spirit, eqn. 29 is now written as

∂si

∂p
= −M−1NRε̄p (37)

From eqn. 24 it follows that

∂sd

∂p
= L0

∂si

∂p
= −L0M

−1NRε̄p (38)

Combining the eqns. 37 and 38 gives














∂si

∂p
∂sd

∂p















= −

[

Ir

L0

]

M−1NRε̄p (39)

which simplifies to

∂s

∂p
= (−LM−1NR)ε̄p (40)

We have therefore obtained the first of the matrices of partial deriva-

tives that we seek. The elements of this matrix are concentration-

response coefficients, defined as R
s j
pk
= ∂s j/∂pk; they quantify the

steady-state response in a metabolite concentration s j to a pertur-

bation in parameter pk. The matrix ∂s/∂p will be symbolised by

R̄s
p.

4.2 Concentration-control coefficients
What are the elements of the matrix −LM−1NR, or in more ex-

plicit form, −L(NRε̄sL)−1NR? Besides L and NR, which are integer

matrices, this matrix contains only partial derivatives of the rates

with respect to the steady-state concentrations, i.e., elasticity coef-

ficients; nothing in the matrix depends explicitly on p or T. Now,

consider a set of parameters such that each uniquely affects a single

reaction, i.e., in the elasticity matrix ε̄p

∂vk

∂pk

, 0 and
∂vk

∂pl

= 0 for k , l (41)

This means that ε̄p is now a diagonal matrix (only the diagonal el-

ements ∂vk/∂pk are non-zero). The inverse of a diagonal matrix

is again a diagonal matrix but with all diagonal elements in recip-

rocal form. Therefore, by multiplying both sides of eqn. 40 with

this inverse leads to a matrix expression for −LM−1NR in which an

element in row j and column k is

∂s j

∂pk

/
∂vk

∂pk

(42)

This is, in fact, the fundamental definition of a concentration-control

coefficient:

C̄
s j

k
=
∂s j

∂pk

/
∂vk

∂pk

(43)

The matrix −LM−1NR is therefore the matrix of concentration-control

coefficients

C̄s = −LM−1NR (44)

The matrix ∂s/∂p can be recognised as a matrix of concentration-

response coefficients R̄s
p. Eqn. 40 is therefore a statement of the

partitioned concentration-response property of metabolic systems:

R̄s
p = C̄s

ε̄p (45)

4.3 Flux-response and control coefficients
Differentiation of the steady-state flux equation with respect to p

led to eqn. 31. Inserting eqn. 37 we obtain

∂J

∂p
= ε̄s

(

−LM−1NR

)

ε̄p + ε̄p (46)

From eqn. 44 we recognise the bracketed term as C̄s, so that

∂J

∂p
=

(

ε̄sC̄
s + In

)

ε̄p (47)

Similar to the previous section, an element in the ith row and kth

column of ε̄sC̄
s + In can be seen to be a flux-control coefficient of

reaction k:

C̄
Ji

k
=
∂Ji

∂pk

/
∂vk

∂pk

(48)



so that the matrix of flux-control coefficients is defined as

C̄J = ε̄sC̄
s + In (49)

The matrix ∂J/∂p can be recognised as a matrix R̄J
p of flux-response

coefficients, individually defined as R
Ji
pk
= ∂Ji/∂pk , that quantify

the steady-state response in a flux Ji to a perturbation in parameter

pk. Eqn. 47 is therefore a statement of the partitioned flux-response

property of metabolic systems:

R̄J
p = C̄J

ε̄p (50)

4.4 Concentration-response with respect to T

Differentiation of eqn. 11 with respect to T led to eqn. 34, which, if

∂si/∂T containing concentration-response coefficients with respect

to the conservation sums is symbolised by R̄
si

T
, can be written as

NRε̄sLR̄
si

T
+NRε̄sd

= 0 (51)

which, using NRε̄sL =M and re-arranging gives

R̄
si

T
= −M−1NRε̄sd

(52)

Eqn. 23 can be written as

R̄
sd

T
= L0R̄

si

T
+ Im−r (53)

which, inserting eqn. 52, is

R̄
sd

T
= −L0M

−1NRε̄sd
+ Im−r (54)

Combining eqns. 52 and 54 gives
[

R̄
si

T

R̄
sd

T

]

= −

[

Ir

L0

]

M−1NRε̄sd
+

[

0

Im−r

]

(55)

which reduces to

R̄s
T = −LM−1NRε̄sd

+

[

0

Im−r

]

(56)

As −LM−1NR = C̄s we get

R̄s
T = C̄s

ε̄sd
+

[

0

Im−r

]

(57)

Finally, we prefer to write this equation in terms of the full elasticity

matrix. This can be done if we realise that

ε̄sd
=

[

ε̄si
ε̄sd

]

[

0

Im−r

]

= ε̄s

[

0

Im−r

]

(58)

Therefore

R̄s
T
= (C̄s

ε̄s + Im)

[

0

Im−r

]

(59)

The righthand matrix singles out the dependent metabolites that are

each unique to a different conservation equation, ensuring that each

conservation sum is perturbed independently.

4.5 Flux-response with respect to T

Differentiation of eqn. 15 with respect to T led to eqn. 36, which,

if ∂J/∂T containing flux-response coefficients with respect to the

conservation sums is symbolised by R̄J
T

, can be re-written as

R̄J
T
= ε̄sLR̄

si

T
+ ε̄sd

(60)

We can now insert the expression for R̄
si

T
in eqn. 52 to give

R̄J
T
= ε̄s(−LM−1NR)ε̄sd

+ ε̄sd
(61)

As C̄s = −LM−1NR we obtain

R̄J
T
= (ε̄sC̄

s + In)ε̄sd
(62)

The bracketed term is the defining expression for C̄J (eqn. 49).

Therefore,

R̄J
T
= C̄J

ε̄sd
(63)

As before, we rather write this in terms of the full elasticity matrix

R̄J
T
= C̄J

ε̄s

[

0

Im−r

]

(64)

It is possible to express R̄J
T

in terms of R̄s
T
. Inserting eqn. 49 into

eqn. 64 gives

R̄J
T
= (ε̄sC̄

s + In)ε̄s

[

0

Im−r

]

(65)

Multiplying the first RHS product out and recollecting terms gives

R̄J
T
= ε̄s(C̄

s
ε̄s + Im)

[

0

Im−r

]

(66)

Using eqn. 59 we finally get [1]

R̄J
T
= ε̄sR̄

s
T

(67)

4.6 Normalising the central equations
In control analysis the use of the dimensionless normalised form of

the control and elasticity coefficients is generally preferred [13, 14].

With one trivial exception, the basic equations developed in the pre-

vious sections look exactly the same in normalised form, provided

that the K, L, NR and M-matrices and are scaled appropriately. To

do this we define the diagonal matrices DJ and Ds which respec-

tively have the steady-state fluxes and concentrations on their diag-

onal (just as with the coefficient matrices the flux and concentration

vectors are arranged so that the independent variables come first,

the dependent variables second). Their inverses (DJ)−1 and (Ds)−1

have inverse fluxes and inverse steady-state concentrations on their

diagonals. Similarly, we define Dsi , Dp, and DT. Using these diago-

nal matrices, the matrices that occur in the control-matrix equation

are scaled as follows (note that the absence of a bar denotes nor-

malised matrices):

CJ = (DJ)−1
· C̄J
· DJ (68)

Cs = (Ds)−1
· C̄s
· DJ (69)

εs = (DJ)−1
· ε̄s · D

s (70)

RJ
p = (DJ)−1

· R̄J
p ·D

p (71)

Rs
p = (Ds)−1

· R̄s
p ·D

p (72)

RJ
T
= (DJ)−1

· R̄J
T
·DT (73)

Rs
T = (Ds)−1

· R̄s
T ·D

T (74)

L = (Ds)−1
· L ·Dsi (75)

K = (DJ)−1
·K ·DJi (76)

NR = (Dsi )−1
·NR ·D

J (77)

M = (Dsi )−1
·M ·Dsi (78)

The equations central to control analysis derived above (the boxed

equations) are now summarised in the normalised format:



Matrix definition of concentration-control coefficients

Cs = −LM
−1
NR (79)

Matrix definition of flux-control coefficients

CJ = εsC
s + In (80)

Partitioned concentration-response property with respect to param-

eters p:

Rs
p = Cs

εp (81)

Partitioned flux-response property with respect to parameters p:

RJ
p = CJ

εp (82)

The partitioned response properties with respect to T differ slightly

from the non-normalised eqns. 59 and 64 in that the identity sub-

matrix in the righthand matrix is replaced by a matrix containing

inverse mole fractions of the dependent metabolites on its diago-

nal. The partitioned concentration-response property with respect

to T is:

Rs
T = (Cs

εs + Im)

[

0

D
T
sd

]

(83)

Partitioned flux-response property with respect to T:

RJ
T
= CJ

εs

[

0

D
T
sd

]

(84)

Relationship between RJ
T

and Rs
T
:

RJ
T
= εsR

s
T (85)

4.7 Summation theorems
The summation equations for flux and concentration control coef-

ficients follow directly from the definitions of Cs (eqn. 79) and CJ

(eqn. 80) and the relationship NRK = 0 (the normalised form of

NRK = 0). The first is called the summation theorem for concen-

tration-control coefficients:

Cs
K = −L(NRεsL)−1

NRK = 0 (86)

and the second the summation theorem for flux-control coefficients:

CJ
K = (εsC

s + In)K = K (87)

4.8 Connectivity theorems
The flux and concentration connectivity equations follows from the

invertibility of the Jacobian matrixNRεsL (the normalised form of

NRε̄sL). Multiplying Cs and CJ by εsL gives, first, the connectivity

theorem for flux-control coefficients:

Cs
εsL = −L(NRεsL)−1

NRεsL = −L (88)

and, second, the connectivity theorem for flux-control coefficients:

CJ
εsL = (εsC

s + In)εsL = 0 (89)

Together, the summation and connectivity theorems allows the ex-

pression of control coefficients in terms of elasticity coefficients.

This is arguably the most powerful feature of metabolic control

analysis and is treated next.

4.9 The control-matrix equation
It is possible to combine the summation and connectivity theorems

into a generalised matrix form, which we call the control-matrix

equation. Quite a few permutations of such an equation have been

suggested [2, 3, 6, 7, 8, 23, 30, 33, 34, 36, 39, 40], but the one that

follows arises naturally from the formalism developed in this paper

[16, 18]. Furthermore, it simplifies to the form CiE = I (see be-

low), which shows explicitly how the matrix expressing indepen-

dent systemic properties, Ci, and the matrix expressing structural

and local properties, E, are inverses of each other (if the product

of two square matrices equals the identity matrix, then they are in-

verses of each other). This means that control coefficients can be

calculated from elasticity coefficients, Ci = E−1, and vice versa,

E = (Ci)−1 (the last case being strictly true only if there are no con-

servation equations; see next section). The result will once again

stress the fundamental role of theK andL-matrices in control anal-

ysis.

The control-matrix equation is formed by combining eqns. 86–89

as [16, 18]:
[

CJ

Cs

]

[

K −εsL
]

=

[

K 0

0 L

]

(90)

The matrices can be partitioned in terms of independent and depen-

dent variables to give





























CJi

CJd

Csi

Csd





























[

K −εsL
]

=





























In−r 0

K 0 0

0 Ir

0 L0





























(91)

Extracting the equations for the independent variables Ji and si

gives:
[

CJi

Csi

]

[

K −εsL
]

=

[

In−r 0

0 Ir

]

(92)

which, if Ci = [CJi Csi ]T and E = [K −εsL], reduces to the par-

ticularly elegant form:

CiE = In (93)

Both Ci and E are square invertible n × n matrices [13, 16], i.e.,

the equation can also be written as ECi = I, which expresses flux-

control coefficients in terms of concentration-control and elasticity

coefficients. These equations are completely general and hold for

any network of reactions.

4.10 The inverse problem
We have seen that Ci = E−1: if all the elasticity coefficients have

been determined (either experimentally or by calculation as the nor-

malised partial derivatives of the rate equations), the control coeffi-

cients with respect to the independent concentrations and fluxes can

be calculated by inverting E. The control coefficients with respect

to the dependent variables are calculated using the relationships:

Csd = L0C
si (94)

CJd = K0C
Ji (95)

which follow from eqns. 2 and 18.

However, consider the inverse problem, i.e., calculating the elas-

ticity coefficients from experimentally determined control coeffi-

cients. Using E = (Ci)−1 we can calculate E by inverting Ci. If

L = I, i.e., if there are no conservation constraints, the task is

accomplished—the righthand r columns of E form the elasticity

matrix −εs and therefore contain the values of the elasticity co-

efficients. However, if L , I, some elements in the righthand r

columns of E contain linear functions of elasticity coefficients, and

more information is needed to solve for the individual elasticities.



This extra information can only be obtained by perturbing the con-

servations sums in the column vector T and measuring the resulting

steady-state changes in all the fluxes and concentrations. We aug-

ment on the left both sides of eqn. 85:

RJ
T
= εsR

s
T (96)

with the matrix εsL to give

[εsL RJ
T
] = [εsL εsR

s
T] (97)

which can be re-arranged to solve for εs:

εs = [εsL RJ
T

][L Rs
T]−1 (98)

The n × n matrix [L Rs
T
] has been proved to be invertible [1].

5. DISCUSSION
This paper set out to provide, in a nutshell, the complete formal

basis for metabolic control analysis in a way that leaves as little as

possible unexplained. In particular, care has been taken to show

how the functional relationships in the steady-state equations hang

together, thereby proscribing how the steady-state equations should

be differentiated. For a more extensive exposition of much of the

material covered in this paper the reader is referred to the excel-

lent monograph by Heinrich and Schuster [13], which is a treasure

trove of information on biochemical modelling and control analy-

sis. However, there are aspects covered here which are either absent

from their treatment (the response to T in Sections 4.4 and 4.5, and

the inverse problem in 4.10) or different (Sections 4.7, 4.8, and 4.9,

where full scaling is used instead of the partial scaling used in [13]).

Metabolic control analysis has been applied to many types of sys-

tems, which has led to interesting extensions of the theory, for ex-

ample, multi-level or hierarchical systems [20, 24], modular sys-

tems [31, 35], signal transduction pathways [26], time-dependent

phenomena [12, 13], transition times [28], oscillating systems [4],

channelled systems [25], and group-transfer pathways [27].

Co-response analysis [16] is an extension built on the control-matrix

equation described in this paper. It not only has useful experimental

implications (control analysis requiring neither kinetic knowledge

of the component reactions nor quantitative information about the

magnitudes of the effects of perturbations on individual enzyme

activities), but also forms the basis for the analysis of regulatory

aspects of metabolism (for example, supply-demand analysis [14,

15, 17]).
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APPENDIX

A. THE JACOBIAN MATRIX
In general, any dynamical system dx/dt = f(x), where the f are

nonlinear functions of x, can be linearised around any current state

xo (transient or steady) to give dxo/dt = Mxo, where M is the Ja-

cobian matrix ∂f/∂x, i.e., the matrix of partial derivatives of f with

respect to x evaluated at state xo. If a steady state is considered,

a necessary condition for its existence is that the Jacobian matrix

be invertible (its determinant be non-zero), and for its asymptotic

stability that the eigenvalues of the Jacobian matrix have negative

real parts (see, e.g., [13]). The Jacobian matrix therefore charac-

terises the local behaviour around the steady state. We now show

that for the kinetic model discussed in this paper M = NRε̄so L is

the Jacobian matrix.

Assume that for the kinetic model

ds

dt
= Nv[s,p] (99)

the current state is symbolised by the vector of concentrations so.

As p is assumed to be constant in the following, we simplify the

representation of the kinetic model to

dso

dt
= Nv[so] (100)

When the current concentrations are perturbed by δs so that

s(t) = so + δs(t) (101)

the kinetic model becomes:

d

dt
(so + δs) = Nv[so + δs] (102)

From multivariate calculus we know that Taylor’s theorem enables

us to approximate to any degree of accuracy the function v[so + δs]

by the expansion

v[so] +

(

∂v

∂s

)

so

(δs) +
1

2!

(

∂2v

∂s2

)

so

(δs)2 + higher order terms (103)

For small deviations δs the first two terms suffice to approximate

the function, so that

dso

dt
+

d

dt
(δs) = Nv[so] + N

(

∂v

∂s

)

so

(δs) (104)

which amounts to a linearisation around state so. By definition the

matrix of partial derivatives ∂v/∂s is the matrix of non-normalised

elasticity coefficients ε̄so evaluated at the state characterised by so.

Using eqn. 100 we obtain the linearised form of the kinetic model

at state so:

d

dt
(δs) = Nε̄so · δs (105)



If the number of independent concentrations is less than the num-

ber of metabolites then by definition N = LNR and s = Lsi, or

equivalently, δs = Lδsi. Using the argument of eqns. 4–6 it follows

that

d

dt
(δsi) = NRε̄so L · δsi (106)

From the general definition of the Jacobian matrix given in the first

paragraph of this section we see that

M = NRε̄so L (107)

is the Jacobian matrix.

The Jacobian matrix can be normalised as follows: Define the diag-

onal matrices Dvo
, Dso

and Dso
i which respectively have the reaction

rates, concentrations and independent concentrations obtaining at

state so on their diagonal (the rate and concentration vectors are ar-

ranged so that the independent variables come first, the dependent

variables second). Their inverses (Dvo
)−1, (Dso

)−1 and (Dso
i )−1 have

the inverse rates and inverse concentrations on their diagonals.

Using the identities

δ ln si = (Dso
i )−1δsi (108)

NR = (Dso
i )−1
·NR ·D

vo

(109)

εso = (Dvo

)−1
· ε̄so ·Dso

(110)

L = (Dso

)−1
· L · Dso

i (111)

eqn. 106 can be written as

d

dt
(δ ln si) = NRεsoL · δ ln si (112)

The kinetic model for perturbations from state so has therefore been

transformed to logarithmic space. From this formulation the nor-

malised Jacobian matrix is seen to be

M = NRεsoL (113)

which, if there are no dependent metabolites (L = I) simplifies to

M = Nεso (114)

B. AN EXPLICIT EXAMPLE
Fig. 1 represents a simple reaction network containing both a bran-

ched flux and a moiety-conserved cycle [19]. Here we show how

the K and L-matrices can be constructed from an analysis of its sto-

ichiometric matrix. Once these matrices are available it is a simple

matter to formulate the control matrix equation CiE = I explicitly

(for a numerical solution of this example see [16]).

X S

XX

X

X

1

3

4

2

S S

0

2 3

4

5

67

1

Figure 1: A example reaction network.

The first step is to write down the stoichiometric matrix N for this

system, labelling the rows and columns (the left-hand matrix in

eqn. 115). N is then augmented with an identity matrix in which

each column represents a time derivative (the right-hand matrix

in eqn. 115). Note that only variable metabolites Si are repre-

sented. The terminal X-metabolite concentrations must be constant

(at non-equilibrium values) for a steady state to exist, and are there-

fore considered part of the parameter set.

R1 R2 R3 R4 ṡ1 ṡ2 ṡ3

S1 1 0 −1 −1 1 0 0

S2 −1 1 0 0 0 1 0

S3 1 −1 0 0 0 0 1

(115)

Next the augmented matrix is subjected to Gaussian elimination to

row echelon form1:

R1 R2 R3 R4 ṡ1 ṡ2 ṡ3

S1 1 0 −1 −1 1 0 0

S2 0 1 −1 −1 1 1 0

S3 0 0 0 0 0 1 1

(116)

The rank of the stoichiometric matrix is 2 and there is one con-

servation relationship s2 + s3 = T , where T is the conserved sum.

There are two independent fluxes and two independent metabolites.

Choosing J3 and J4 (the R3 and R4-columns without pivots in the

reduced stoichiometric matrix NR in eqn. 116) as the independent

fluxes, the K-matrix follows from the flux relationships J = KJi:
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K is scaled to K = (DJ)−1KDJi as follows:
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Either S2 or S3 can be chosen as the dependent metabolite. We

choose S3. The L-matrix follows from the relationships in ds/dt =

Ldsi/dt, which are read off from the last row of the righthand ma-

trix in eqn. 116:
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L is scaled to L = (Ds)−1LDsi as follows:
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The matrix product −εsL for this system is
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1Simple systems can be analysed by hand, more complicated
systems with one of the numerous computer tools that do
this automatically, such as Mathematica, Matlab, etc. or
dedicated metabolic simulators (e.g., [29, 32, 38], Metatool
[ftp://mudshark.brookes.ac.uk/pub/software/ibmpc/metatool])



Note that the re-ordering of fluxes in the K-matrix is reflected in

εs.

Finally, the CiE = I control-matrix equation is constructed using

K and −εsL:
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To solve the inverse problem (εs from (Ci)−1,Rs
T
, and RJ

T
) we need

to construct eqn. 98. There is only one conserved sum s2 + s3 = T .

The matrix product εsL is known from (Ci)−1, so that
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