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Multi-phonon giant resonancesMulti-phonon giant resonances

Observation of multi-phonon states
=

direct proof of vibrational character

• Existence
• Harmonicity of nuclear response
• Damping/Coupling of multi-phonon states
• 'Applications'  (RHIC, LHC, RIB production) 
• .......

 

En = n ∙ ħω 



  

Quantized Harmonic OszillatorQuantized Harmonic Oszillator

En = n E1

Γn = n Γ1

Pn ~ Poisson     
 distributed

(Bose statistics)



  

Two-phonon giant resonances were observed in:

•  Double-charge exchange reactions:  DIAS ,  DGDR (∆Tz = ± 2)   [Los Alamos]

•  Inelastic heavy-ion scattering : isoscalar DGQR   [Orsay]

•  Relativistic Coulomb breakup: isovector  DGDR (∆Tz = 0)   [GSI]

[early review articles]



  

Double charge-exchange reaction Double charge-exchange reaction 
 (  ( ++ππ ,  , - - π ) π ) 

Features of  ( +π , - π ) reaction: 

 ΔS = 0 in forward scattering  ( pion is spinless )
 ΔT = 2 ; ΔTz = -2 ;   T = Tz  favored

 IAS and GDR strongly populated in pion reactions
         (pion strongly absorbed at  nucl. surface

+ surface-peaked IAS,GDR transition density)

Experiments performed at LAMPF / Los Alamos,
pion energies 200 – 300 MeV + EPICS spectrometer  



  

Double charge-exchange reactions Double charge-exchange reactions 
 (  ( ++ππ ,  , - - π ) π ) 

Double IAS (DIAS) , double GDR (DGDR), 
and  GDR☺IAS observed  



  

LAMF data 
[MOR96]



  

Double charge-exchange reactions Double charge-exchange reactions 
 (  ( ++ππ ,  , - - π ) π ) 

short SUMMARY: 

  
DGDR systematically observed in A = 12 … A=197 nuclei

excitation energy and width within expectation for
a sequential excitation 

angular distributions show ΔL = 2 pattern

 But:   cross sections difficult to analyze
          ΔL = 0 component seemingly missing



  

Double isoscalar GQRDouble isoscalar GQR



  

Evidence for 

two-phonon giant quadrupole resonance

from direct-proton decay

(missing mass spectra, 40Ca + 40Ca)

            J.A.Scarpaci et al., Phys.Rev.Lett., 1994

calculated

observed



  

SUMMARY



  

Double-Phonon Giant Dipole Resonance  
(DGDR)



  

Relativistic heavy-ion collisionsRelativistic heavy-ion collisions

LARGE cross sections :

~  barns for GDR

~  100  mb for DGDR

DGDR

GDR

see lecture T. Aumann 
for details

GQR



  

Double-photon decay:

10-4 branch



  

DGDR and TGDR – summary of resultsDGDR and TGDR – summary of results
LAND collaboration LAND collaboration 

S. Ilievski et al. , Phys. Rev. Lett.  (2004)



  

LAND experimental setup&methodLAND experimental setup&method
The invariant mass measurementThe invariant mass measurement

≈20 m

      The experiment 

 e.g., 208Pb ~ 500 MeV/A

 select projectile breakup 
       (neutron emission)
 background measured
    with empty target
 nuclear contribution
    measured with C target

      The experiment 

 e.g., 208Pb ~ 500 MeV/A

 select projectile breakup 
       (neutron emission)
 background measured
    with empty target
 nuclear contribution
    measured with C target
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Excitation energy – from kinematically 
complete measurement of momenta of 
all outgoing particles:

notice:
  total kinetic energy ~  100 GeV
  measured exc. energy ~ 10 MeV
  achieved resolution      ~   1 MeV



  

208Pb

please notice 
perfect fit of 
one-phonon part



  

1.33



  

quick look into the decay of DGDR

Neutron decay spectra in 208Pb
 Maxwell distribution (here, linearized)



  

Harmonic response ?Harmonic response ?

Deviations from harmonic response:
• Splitting  of  Iπ  = 0+  and  Iπ  = 2+  states
• Shifts in centroid energy

Experimental 
resolution

and

physical resolution

 ( = spreading width)

much too poor 

Experimental 
resolution

and

physical resolution

 ( = spreading width)

much too poor 



  

Harmonic response ?Harmonic response ?

Excitation 
probabilities 

?

Excitation 
probabilities 

?



  

The Double-Phonon Giant Dipole Resonance in 
136Xe, 208Pb, and 238U

K. Boretzky et al. 



  

' Cross section enhancement '

evoked many discussions

Anharmonicities ?

but also many attempts

to find explanation

by means of other effects



  

‘Mixed’ – Phonon Contributions

DGDR

GDR x GQR

Lanza, Volpe, 
Chomaz et al.

contributions from mixed-
phonon states typically   
on a 10% level

in the following, tentatively 
subtracted



  

II. Dynamical Effects 

See papers:
B. Carlsson et al.,

Gu and Weidenmueller

DGDR

Compound

Hot GDR

ħ / Γ↓  ~  10-21 s

tint   ~   10-22 s

should have a much more significant 
effect at lower beam velocities

should have a much more significant 
effect at lower beam velocities

~ 10 %~ 10 %

Γ↓
tint



  

mixed phonons
dyn. effects



  



  



  



  



  



  

Triple – Phonon  GDR   ?

relativistic Coulomb-Fission of  238U



  

simple-minded argument:

Multi-phonon states are located at increasing excitation energy
+

Fission probability increases steeply with excitation energy 

Higher-phonon states appear enriched in fission channel 
                                     (relative to neutron evaporation channel)



  

Coulomb 
cross section

fission 
probability pf

neutron decay 
pxn 



  

Experiment:
Land setup equipped with 
fission-fragment detectors

measure neutron multiplicity in 
coincidence to fission 
fragments

use neutron multiplicity as a 
measure for excitation energy
 (from literature)
 



  
 1 neutron ≡ 2 – 3 hits 



  



  

 Two-phonon giant resonances were observed

•  Double-charge exchange reactions:  DIAS ,  DGDR (∆Tz = ± 2)   [Los Alamos]

•  Inelastic heavy-ion scattering : isoscalar DGQR   [Orsay, GANIL]

•  Relativistic Coulomb breakup:  DGDR (∆Tz = 0)   [LAND, GSI]

●     Evidence for triple-phonon GDR

Harmonic Response (within ~ 10%)

Summary



 

Physics 
with 

Rare-Isotope Beams 

RIKEN,  FRIB, SPIRALII,   FAIR ,   EURISOL .....

   

Outlook

Here:   future FAIR facilities
emphasis  on GR related topics



H. Simon ●  The ELISe electron rare isotope scattering exp. ...

Preparing for FAIR (Startversion)                                  Preparing for FAIR (Startversion)                                  
~2017/18 ~2017/18 

RIB -Intensity increase 3-4 orders of magnitude ! 

20182018



  

External – Target  Experiments (R3B)
( T. Aumann )

Storage and Cooler Rings  (EXL)
( P. Egelhof)

Electron – Ion collider  (ELISe)
  (H. Simon - coordinator)

RIB at FAIR



  

Experimental method Light-ion scattering
Electron scattering

relevant observables in
Exotic nuclei

elastic scattering
(p,p) 
(e,e)

nuclear matter distribution
charge distribution

(neutron) Halo and Skin

inelastic scattering 
(p,p’);  (4He,4He’)
(e.e')

surface collective states
electric giant resonances

new collective modes

charge exchange
(p,n); (d,2He); (3He,t) spin-isospin excitations; (stellar) weak interaction rates;

transfer reaction
(p,d); (d,3He); (p,t) spectroscopic factors single-particle structure 

quasi-free scattering
(p,2p); (p,np); (p, p 4He)
(e,e'p)

single-particle spectral 
function;
cluster knockout

(inner-shell) single-particle structure
nucleon-nucleon (cluster) 
correlations
in-medium interactions

   Exotic nuclei and light-ion / electron 
scattering – shopping list

EXL collaboration
see P. Egelhof



  

Reversed kinematics:
Excitation energy and    

Form factors from   
low-energy/momentum 

recoils

Light-Ion scattering in STORAGE RING:
Elastic (p,p) …
Inelastic (p,p’), (α,α’) ...
Charge exchange: (p,n), (3He,t), (d,2He) …
Quasifree (p,pn), (p,2p), (p, pα) …

Light-Ion scattering in STORAGE RING:
Elastic (p,p) …
Inelastic (p,p’), (α,α’) ...
Charge exchange: (p,n), (3He,t), (d,2He) …
Quasifree (p,pn), (p,2p), (p, pα) …

 need THIN (gaseous) targets

     STORAGE RING

   regain luminosity by 

   accummulation/storage

   recirculation (106 s-1)  

  regain resolution by cooling

 Selective Spin-Isospin probes

  Form factor sensitive to   
transition multipolarity

 Selective Spin-Isospin probes

  Form factor sensitive to   
transition multipolarity



  

Nucleus production rate 
[1/s]

Lifetime including 
losses in NESR  [s]

Luminosity       
   [cm-2 s-1]

Luminosity       
   [cm-2 s-1]

11Be 2 x 109 36 > 1028 > 1028

46Ar 6 x 108 20 > 1028 > 1028

52Ca 4 x 105 12 2 x 1026 8 x 1025

55Ni 8 x 107 0.5 5 x 1026 ~ 1025

56Ni 1 x 109 3800 > 1028 > 1028

72Ni 9 x 106 4.1 1 x 1027 4 x 1026

104Sn 1 x 106 51 2 x 1027 1 x 1027

132Sn 1 x 108 93 > 1028 > 1028

134 Sn 8 x 105 2.7 3 x 1025 7 x 1024

187Pb 1 x 107 34 2 x 1028 5 x 1027

Feasibility

                          Typical  cross sections :  0.1 – 100 mb/sr

740 AMeV 100 AMeVTarget: 1014 H atoms cm-2 ;  beam loss included



  

  PerformancePerformance

Elastic proton scattering   
132Sn

( Matter Distribution )

Inelastic alpha scattering on 
Sn isotopes 

(Giant Monopole Resonance)
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 EXL: EXotic Nuclei Studied in Light-Ion Induced 
Reactions at the NESR Storage Ring

Electron
cooler

RIB‘s from the 
Super-FRS

   

EXL

Design goals:
 Universality: applicable to a wide class of reactions 
 High energy resolution and high angular resolution
 Large solid angle acceptance  
 Specially dedicated for low q measurements 
    with high luminosity (> 1029 cm-2 s-1)

Detection systems for:
 Target recoils and gammas (p,α,n,γ) 
 Forward ejectiles (p,n)
 Beam-like heavy ions



  

ESR at GSIESR at GSI
Storage-cooler ringStorage-cooler ring



  

(p,p), (α,α'), (3He,t) reactions 

Accepted Proposal for Feasibility Studies and First 
Experiments with RIB`s at the ESR

 
 

  

 

     

56Ni: doubly magic
  (p,p) reactions:   nuclear matter distr -skin 
  (α,α`) reactions:  giant resonances 
     ISGMR, IVGDR, parameters of the EOS
 (3He,t) reactions:  Gamow-Teller 
    matrix elements, important for astrophys.

 

  

 

     

EXL collaboration
see P. Egelhof



d break-up 

# 
co

un
ts

/M
eV

C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008)

56Ni (d, d’)

Alternative – active target  
MAYA @ GANIL



  

The ELISe electron The ELISe electron 
rare isotope rare isotope 

scattering scattering 
experiment  experiment  



H. Simon ●  The ELISe electron rare isotope scattering exp. ...

• 125-500 MeV electrons 
• 200-740 MeV/u RIBs

 up to 1.5 GeV CM energy

- spectrometer setup at the
  interaction zone & detector
  system in ring arcs

http://www.gsi.de/fair/reports/btr.html

AIC option:
•  30 MeV antiprotons
- detector system in ring arcs
- schottky probes 

NESR

Realization of an RIB electron collider setup

The ELISe experiment                      Haik Simon  •  GSI / Darmstadt



H. Simon ●  The ELISe electron rare isotope scattering exp. ...

Butterfly Magnet
(Pre-deflector)

Quadrupole
Magnet (MQ)

Hexapole
Magnet (MH)

Vertical 
Dipole
Magnet (VM)

Focal Plane Det.

 e

RI

z

y

x

High Resolution
Large Acceptance
Spectrometer



H. Simon   The ELISe electron rare isotope scattering exp. ...●
H. Simon ●  Crossing bounds: From exotic nucl. sys. to FAIR

  

Expected Luminosities Expected Luminosities 

   

Inelastic ( e.g. GR studies )

Quasielastic (spectroscopic factors)

charge distributions

charge radii

unstable nuclei (T1/2< 1d)

accessible for the first time !

890 Isotopes

1472 Isotopes



H. Simon   The ELISe electron rare isotope scattering exp. ...●
H. Simon ●  Crossing bounds: From exotic nucl. sys. to FAIR

Ions

SCRIT (Self-Confining RI Target)

Scattered electron

e-beam

Competing project: SCRIT for RARF
 Test setup @ KSR Kyoto Univ. 100 MeV/100mA

Courtesy: Toshimi Suda
RIKEN/RARF



  

Bright future -
– a lot to do
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