Covariant Spectator Theory© (CST) of Nuclear Forces

Mumbai Conference, November 22, 2009

Franz Gross JLab and W&M Done in collaboration with ★ Motivation and description of the Alfred Stadler CST ★ Precision fits to the np data Thanks to: J. W. Van Orden -- 1991 models and Binding energy of the triton and \star deuteron from factors three-body forces Karl Holinde (and R. Machleidt) ★ Currents and form factors -- Bonn code Dick Arndt -- SAID ★ Outlook and conclusions Johan de Swart (and others in the Nijmegen group -- Timmermans and Rentmeester) -- advice

In Memoriam:

John Tjon (1937 -- Sept 20, 2010)

Dick Arndt (1933 -- April 10, 2010)

Motivation and description of the Covariant Spectator Theory© (CST)

- **\star** Step 1: As in χ EFT, assume nucleons and mesons are point-like particles
- * Step 2: the exact scattering amplitude is the sum of all Feynman diagrams

- ***** Step 1: As in χ EFT, assume nucleons and mesons are point-like particles
- ★ Step 2: the exact scattering amplitude is the sum of all Feynman diagrams

 Step 3: Divide the sum into irreducible and 2-body reducible terms, and collect the irreducible terms into a kernel, which is iterated

- ***** Step 1: As in χ EFT, assume nucleons and mesons are point-like particles
- * Step 2: the exact scattering amplitude is the sum of all Feynman diagrams

 Step 3: Divide the sum into irreducible and 2-body reducible terms, and collect the irreducible terms into a kernel, which is iterated

Kernel (potential) is the sum of all two-body irreducible diagrams

★ Step 4: Field theory becomes field dynamics when the kernel is phenomenological $M(p',p;P) = V(p',p;P) + \int V(p',k;P)G(k;P)M(k,p;P)$

- **\star** Step 1: As in χ EFT, assume nucleons and mesons are point-like particles
- * Step 2: the exact scattering amplitude is the sum of all Feynman diagrams

 Step 3: Divide the sum into irreducible and 2-body reducible terms, and collect the irreducible terms into a kernel, which is iterated

Kernel (potential) is the sum of all two-body irreducible diagrams

- ★ Step 4: Field theory becomes field dynamics when the kernel is phenomenological $M(p',p;P) = V(p',p;P) + \int V(p',k;P)G(k;P)M(k,p;P)$
- ★ Spin 1/2 particles have a Dirac structure

When is it necessary to sum diagrams to all orders?

★ In schematic form, the integral equation looks like

$$M = V + VgM = V + VgV + VgVgV + \bullet \bullet \bullet = \frac{V}{1 - gV}$$

\star must sum when $gV \approx 1$ (even if V is small, g might be large)

• example: atomic states

★ Necessary for the description of bound states

- A bound state is a new particle (not in the Lagrangian).
- shows up as a pole in the scattering matrix (i.e. gV = 1)
- generated non-perturbatively from the sum of an infinite number of diagrams

★ Necessary to describe unitarity $(g \propto \sqrt{4m^2 - W^2} \rightarrow i\sqrt{W^2 - 4m^2}$ when W > 2m)

$$M = \frac{V}{1 - igV} \implies \operatorname{Im} M = \frac{gV^2}{1 + (gV)^2} = g|M|^2$$

Why use the Dirac equation for a spin 1/2 particle?

The Dirac equation for the coulomb interaction (with $A^{\mu} = \{\phi, \mathbf{A}\}$) is *

$$i\frac{\partial}{\partial t}\Psi = (\alpha \cdot (\mathbf{p} - e\mathbf{A}) + \beta m + e\phi)\Psi$$

Taking the non-relativistic limit gives [to order $(v/c)^2$] n-relativistic infinit gives the equation of *

★ Each of these terms has a special history:

$$\frac{\mathbf{p}^{4}}{8m^{3}} \quad \text{relativistic mass increase} \qquad \qquad \frac{e}{8m^{2}} \nabla^{2} \phi = -\frac{e}{8m^{2}} \nabla \cdot \mathbf{E} = \frac{Ze^{2}}{8m^{2}} \delta^{3}(r) \quad \text{Darwin term} \\
\frac{e}{4m^{2}r} \frac{d\phi}{dr} \sigma \cdot \mathbf{L} = \frac{e}{2m^{2}r} \frac{d\phi}{dr} \mathbf{S} \cdot \mathbf{L} \quad \text{spin-orbit term} \\
\frac{e}{2m} (\mathbf{p} \cdot \mathbf{A} + \mathbf{A} \cdot \mathbf{p}) - \frac{e}{2m} \sigma \cdot \mathbf{B} = -\frac{e}{2m} \mathbf{B} \cdot (\mathbf{L} + \sigma) = -\frac{e}{2m} \mathbf{B} \cdot (\mathbf{L} + 2\mathbf{S}) \quad \text{Zeeman effect (with the gyromagnetic ratio of 2)}$$

So, why doesn't everyone use the Dirac equation?

- ★ The Dirac equation has negative energy solutions
 - can be reinterpreted as anti-particle states when we use field theory
- ★ Two choices (or points of view):
 - 1. Avoid the Dirac equation, because we abhor negative energy states; they are unphysical and definition of a Hilbert space in unclear
 - 2. Keep the Dirac equation, because
 - We are impressed with the physics it contains
 - We are willing to truncate the field theory (i.e. invent a new "field dynamics" which may require uncontrolled approximations),
 - We are willing to have a formalism with "off-shell" particles and negative energy states
- ★ Field Dynamics is a truncated field theory that keeps the full Dirac structure.

Relation between the BS and CST[©] two-body equations

* The Bethe-Salpeter (BS) propagator depends on all four components of the relative momentum, $\{k_0, k\}$. For two spinor particles it is

$$G_{BS}(k;P) = \frac{1}{\left(m_1 - \not p_1 + \Sigma(\not p_1) - i\varepsilon\right)\left(m_2 - \not p_2 + \Sigma(\not p_2) - i\varepsilon\right)} \quad \text{with} \quad \begin{cases} p_1 = \frac{1}{2}P + k \\ p_2 = \frac{1}{2}P - k \end{cases}$$

★ The Covariant Spectator Theory[©] propagator depends on only three components of the relative momentum, k. One particle is on-shell

$$G_{CS}(k;P) = \frac{2\pi i \,\delta_{+} \left(m_{1}^{2} - p_{1}^{2}\right) \left[m_{1} + \hat{p}_{1}\right]}{\left(m_{2} - p_{2} + \Sigma(p_{2}) - i\varepsilon\right)} = \frac{2\pi i \,\delta(p_{10} - E_{1})}{\left(m_{2} - p_{2} + \Sigma(p_{2}) - i\varepsilon\right)} \frac{m_{1}}{E_{1}} \sum_{s} u(\mathbf{p}_{1}, s) \overline{u}(\mathbf{p}_{1}, s)$$

Diagrammatic notation for 2-body CST equations:

on-shell projection

Bound state equations emerge automatically: NO extra assumptions

***** The vertex function Γ describes how the bound state couples to particles in the Lagrangian:

$$p_1 = \frac{1}{2}P + p$$

$$p_2 = \frac{1}{2}P - p$$

$$\Gamma(p)$$

Notation: P=total momentum (always conserved) p relative momentum

 The bound state equation follows from the assumption the M matrix has a pole at the bound state, and substituting

$$M(p',p;P) = \frac{\Gamma(p')\overline{\Gamma}(p)}{M_B^2 - P^2} + R(p',p;P)$$

$$M(p',p;P) = \frac{\Gamma(p')\overline{\Gamma}(p)}{M_B^2 - P^2} + R(p',p;P) = V(p',p;P) + \int V(p',k;P)G(k;P) \left\{ \frac{\Gamma(k)\overline{\Gamma}(p)}{M_B^2 - P^2} + R(k,p;P) \right\}$$
at the pole: $\Gamma(p') = \int V(p',k;P)G(k;P)\Gamma(k)$

CST equations for three-body bound state*

★ Define three-body vertex functions for each possibility

Then three body Faddeev-like equations emerge automatically. For identical particles they are:

$$\left|\Gamma_{2}^{1}\right\rangle = 2M_{22}^{1}G_{2}^{1}P_{12}\left|\Gamma_{2}^{1}\right\rangle$$

^{*}Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)

Generalizing the CST to n-body systems

★ In the *n* nucleon problem, make the following substitution for *n* - 1 nucleon propagators (with $\overline{u}_{\alpha}(\mathbf{p}_{i},s)u_{\alpha}(\mathbf{p}_{i},s') = \delta_{ss'}$)

$$S_{\alpha\beta}(p_i) = \frac{\left(m + p_i\right)_{\alpha\beta}}{m^2 - p_i^2 - i\varepsilon} \Longrightarrow 2\pi i \delta_+(m^2 - p_i^2) 2m \sum_s u_\alpha(\mathbf{p}_i, s) \overline{u}_\beta(\mathbf{p}_i, s)$$

★ The off-shell propagator is (in the CM with $k = P - \sum_i p_i$)

$$S_{\alpha\beta}(k) = \frac{\left(m + \varkappa\right)_{\alpha\beta}}{m^2 - k^2 - i\varepsilon} \Longrightarrow \left(\frac{m}{E_k}\right) \sum_{s} \left\{\frac{u_\alpha(\mathbf{k}, s)\overline{u}_\beta(\mathbf{k}, s)}{(2E_k - W)} - \frac{v_\alpha(-\mathbf{k}, s)\overline{v}_\beta(-\mathbf{k}, s)}{W}\right\}$$

- ★ Integration over all internal $p_{i0's}$ places n-1 particles on their *positive energy* mass-shell. All 4-d integrations reduce to 3-d integrations.
- **\star** If $n \ge 4$, additional equations emerge (as in the AGS equations)
- ★ Deriving the equations for n ≥ 4 is a work in progress; extensions to many body systems will be difficult, and might best be done through reduction to the nonrelativistic limit

Normalization conditions obtained directly from the CST equations

- Covariant bound state normalization conditions follow from examination of the residue of the bound state pole
 - 2-body case

$$1 = \langle \Gamma | \frac{dG}{dM_d^2} | \Gamma \rangle - \langle \Gamma | G \frac{dV}{dM_d^2} G | \Gamma \rangle$$

• 3-body case

$$1 = 3\left\langle \Gamma_{2}^{1} \left| \left(1 + 2P_{12} \right) \frac{dG_{2}^{1}}{dM_{d}^{2}} \right| \Gamma_{2}^{1} \right\rangle - 3\left\langle \Gamma_{2}^{1} \left| \left(1 + 2P_{12} \right) G_{2}^{1} \frac{dV_{22}^{1}}{dM_{d}^{2}} G_{2}^{1} \left(1 + 2P_{12} \right) \right| \Gamma_{2}^{1} \right\rangle$$

★ Define the 2-body relativistic wave function: $|\Psi\rangle = G|\Gamma\rangle$. Then, if $\frac{dV}{dM_{\perp}^2} = 0$,

$$2M_{d} = \left\langle \Psi \left| \gamma^{0} \right| \Psi \right\rangle \quad \left(\text{because } \frac{dG}{dM_{d}^{2}} = \frac{1}{2M_{d}} \frac{dG}{dM_{d}} = \frac{1}{2M_{d}} G \gamma^{0} G \right)$$

- Identical to the normalization condition for the Dirac equation
- ★ Similar interpretation for the 3-body normalization condition
- ★ Similar derivation for the Bethe-Salpeter (and Schrödinger) equations

- ★ Original motivation: 1965 study of the deuteron form factors in dispersion theory (too complicated!)
- Preserves cluster separability: when one particle is separated to infinity, the equation for the remaining system is not affected by its presence
- Maintains manifest covariance without adding more momentum variables
 - Gives a smooth nonrelativistic limit
 - Equations are "easy" to solve; like NR equations but with more channels
- ★ CST in OBE gives the *exact result* for the sum of all ladders and crossed ladders in special cases
 - Gives the correct "one body limit"

Illustrate this point on the following slides

★ In general, we believe CST converges more rapidly that the BS equation

BS and CST are equivalent when both are solved exactly

★ To 6th order, the generalized ladder sum is M > m

BS and CST are equivalent when both are solved exactly

***** In the BS theory, these terms require the following *irreducible* kernel:

2nd order

4th order

6th order

BS and CST are equivalent when both are solved exactly

The one-body limit and the cancellation theorem

- ★ If particle 1 is a neutral scalar particle and $m_1 \Rightarrow \infty$, the equation should reduce to a one-body equation for m_2 . This is the *one-body limit*.
- The generalized ladder sum has this property to each order. Diagrammatically, for the 2nd and 4th orders

★ For scalar theories in the $m_1 \Rightarrow \infty$ limit, the OBE approximation in CS theory gives the *exact* result for the generalized ladder sum.

Show stopper: Singularities ...

★ In Minkowsky space

- BS equation is full of singularities;
- Path integrals (Lattice Gauge Theory) also do not converge
- ★ The "solution" is to work in Euclidian space.
 - Wick rotation for the BS equation
 - By fiat for Lattice Gauge Theory and Schwinger-Dyson equations
 - BUT amplitudes are not physical in Euclidian space !
- ★ The CST equations live in Minkowsky space
 - therefore have some singularities.
- ★ Major new development
 - beautiful (?) new philosophy -- called option C
 - redefine propagators so that all singularities are removed!

modified propagator -- Option C

★ The option C propagator is
$$\frac{1}{\mu^2 - q^2} \Rightarrow \frac{1}{\mu^2 + |q^2|}$$

the "direct" term is unaffected by the cutoff because -q² is always positive
 p k

$$-q^{2} = (\mathbf{p} - \mathbf{k})^{2} - (E_{p} - E_{k})^{2} \ge (p - k)^{2} - (E_{p} - E_{k})^{2}$$
$$\ge 2E_{p}E_{k} - 2pk - 2m^{2} \ge 0$$

* the "exchange" term (required to maintain particle symmetry) can have negative $-q^2$ and singularities. This term is affected by the cutoff

$$\begin{array}{c} \mathbf{p} \quad \mathbf{k} \\ \hline \mathbf{k} \\ \mathbf{k} \\ \hline \mathbf{k} \\ \mathbf{k} \\ \hline \mathbf$$

Illustration of the effect of option C

Conclusions to Part I (1):

Why develop a relativistic theory (in particular, *field dynamics*)?

- ★ Intellectual: preserve an exact symmetry (Poncare' invariance)
- ★ Practical: calculate boosts and Lorentz kinematics to all orders
 - essential when energies are of the order of 1 GeV
- ★ Consistent: use *field dynamics* for guidance in the construction of
 - forces (2⇔3 body consistency)
 - currents consistent with forces
- ★ Efficient: "phenomenological economy"
 - spin 1/2 particles (Dirac equation)
 - interpretation of L•S forces (covariant scalar-vector theory of N matter)
 - One CST one boson exchange (OBE) model of NN forces (WJC-2) has only 15 parameters (will discuss soon)!
- ★ Provide an alternative picture which may give insight

Conclusions to Part I (2): Principals of the Covariant Spectator Theory (CST)

- ★ Start from relativistic quantum field theory: manifest covariance built in
- Maintain manifest covariance in all modifications; keep Dirac structure of off-shell particles
- ★ Bound states and unitarity require an an infinite sum of diagrams; perturbation theory is NOT enough.
- ★ Formulate integral equations to sum infinite series of diagrams
- ★ Base the dynamics on generalized ladder sum (i.e. ladders and crossed ladders). Treat vertex corrections and self energies phenomenologically ⇒ "Field dynamics"
- ★ To sum ladders and crossed ladders efficiently leads to the placement of particles on shell

Precision fits to the np data

Model the kernel using one boson exchange (OBE) diagrams

Justification for OBE:

- **★** simplest possible model
- ★ directly related to hadronic phenomenology
- ***** can be extended *consistently* to N-body systems
- ***** can be extended *consistently* to electromagnetic currents
- **★** implements the cancellation theorem
- \star connection to QCD through large N_c(?)

CS Dynamics: OBE with off-shell couplings

OBE parameters obtained from the recent precision fits

$c = \frac{g_b^2}{g_b^2}$											
Ь	Ι	$G_b = \frac{3b}{4\pi}$		$m_{ m b}$		$\lambda_{b} \; or \; v_{b}$		$\kappa_{ m v}$		Λ_{b}	
π^{0}	1	14.608	14.038	134	4.9766	0.153	0.0			4400	3661
π^{\pm}	1	13.703	14.038*	13	9.5702	-0.312	0.0			4400*	3661*
η	0	10.684	4.386	604	547.51	0.622	0.0			4400*	3661*
$oldsymbol{\sigma}_{_0}$	0	2.307	4.486	429	478	-15.169	-2.594			1435	3661*
$\sigma_{_1}$	1	0.539	0.477	515	454	4.763	9.875			1435*	3661*
ω	0	3.456	8.711	657	782.65	0.843	0.0	0.048	0.0	1376	1591
ρ	1	0.327	0.626	787	775.50	-1.263	-2.787	6.536	5.099	1376*	1591*
h_1	0	0.0026	0.0					·		1376*	
a_1	1	-0.436	0.0							1376*	
left column: W.TC-1 27 parameters Λ_N								1656	1739		

right column: WJC-2 15 parameters

- ★ The $G_{\pi^{\pm}}$ that emerges from the WJC-1 fit is close to Nijmegen (13.567), but the others are larger
- ★ The off-shell pion couplings (λ_{π}) are either 0 (WJC-2) or small (WJC-1) in agreement with chiral symmetry
- * The meson masses that were adjusted are all near 500 MeV as expected if a dispersion integral is saturated by a mass near the 2π =280 MeV threshold. Only the ρ is larger.
- ★ The axial vector contributions are 0 (WJC-2) or very small (WJC-1) implying convergence in the exchange quantum numbers/masses. G_{a_1} (WJC-1) is negative; must be a contact interaction and not a boson exchange.

WJC-1 and -2 are precision fits to the 2007 data base

★ Comparison with other precision fits (all to 350 MeV)

	Nodels		$\chi^2/N_{\rm data} (N_{\rm data})$			
Ref	Ref year		1993	2000	2007	
PWA93	1993	39	0.99 (2514)			
			1.09 (3011)	1.12 (3336)	1.13 (3788)	
Nijm I	1993	41	1.03 (2514)			
AV18	1995	40	1.06 (2526)			
CD-Bonn	2000	43		1.02 (3058)		
WJC-1	2007	27	1.03 (3011)	1.05 (3336)	1.06 (3788)	
WJC-2	2007	15	1.09 (3011)	1.11 (3336)	1.12 (3788)	

#'s in green are for fits to BOTH np and pp data

Changes in the phase shifts

- Nijmegen phases differ by several degrees from the WJC-1 phases. (Explains earlier problem fitting the data.)
- ★ This is a NEW PHASE SHIFT ANALYSIS!

Low χ^2 implies excellent fits to data (of course)

New accurate differential cross sections

Total cross sections fit over the entire energy range

Scaling and rejection of data sets (1)

RA(98)

Scaling and rejection of data sets (2)

Fits to the data are excellent; all data shown are scaled by the fit; some data with large systematic errors is excluded

total cross section; entire energy range

162 MeV differential cross section; brown data excluded

319 MeV differential cross section; shows scaling permitted by systematic errors

Rejected data sets can be identified

★ Nijmegen identifies a 3σ criterion. Data sets with χ^2 too large or too small are rejected.

Deuteron wave functions		WJC-1		WJC-	-2
	Probability	exact	scaled	exact	scaled
	Ps	97.3876	92.3330	95.7607	93.5985
Normalization condition	PD	7.7452	7.3432	6.5301	6.3827
Normalization condition	P _{Vt}	0.1180	0.1119	0.0103	0.0101
	P _{Vs}	0.2234	0.2118	0.0090	0.0088
$dr \{u^2 + w^2 + v_t^2 + v_s^2\} + \langle V' \rangle = 1$	ΣΡ	105.4743	100.0000	102.3101	100.0000
	$\langle V' \rangle$	-5.4743		-2.3101	
	total	100.0000		100.0000	
$\begin{array}{c} 3.0\\ 2.5\\ 2.0\\ 1.5\\ 1.0\\ 0.5\\ 0.0\\ -0.5\end{array}$	et let	$\begin{array}{c} 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0 \\ -0.1 \\ 0 \end{array}$		3	4
0 200 400 600 800	1000	<i>r</i> (fm)			
p(MeV)				()	

Binding energy of the triton and three-body forces

In a pure OBE theory there are NO three-body forces

iteration of OBE

3-body force diagrams

In a pure OBE theory there are NO three-body forces

In a pure OBE theory there are NO three-body forces

 Therefore, consistency requires that they also be excluded from the 3-body sector

How well can the CST OBE model predict the ³H binding energy?

How can we get the right binding with NO 3-body force?

- Off-shell couplings remove the off-shell propagator, contracting the interaction to a point
- In the 2-body space, offshell couplings are equivalent to effective non-OBE type interactions with loops
- In the 3-body space, offshell couplings are equivalent to 3-body forces

$$v_{\sigma} \frac{m - \cancel{k}}{2m} \left(\frac{1}{m - \cancel{k}}\right) g_{\sigma} + g_{\sigma} \left(\frac{1}{m - \cancel{k}}\right) \frac{m - \cancel{k}}{2m} v_{\sigma} = \frac{g_{\sigma} v_{\sigma}}{m}$$
$$\frac{v_{\sigma} - \cancel{k}}{1} - \frac{g_{\sigma} - \cancel{k}}{1} + \frac{g_{\sigma} - \cancel{k}}{1} - \frac{g_{\sigma} v_{\sigma}}{1} - \frac{g_$$

Equivalence theorem

★ The equivalence is very complicated !!

Can we make a direct connection with $\chi \text{EFT}?$

Currents and form factors

Construction of the current operator in CST[©]

- -- Gauge invariant* one-body current operator
- Exact gauge invariance currents can be constructed following the method of FG and Riska.* These have been used for both relativistic and nonrelativistic calculations
- ★ Proceed in two steps:
 - Step 1: construct one body currents that satisfy the Ward-Takahashi identity
 - Step 2: couple these currents to all charges (or momentum dependent couplings) in ALL of the infinite number of diagrams under consideration.
- **Step 1**: Construct a one-body current that satisfies the WT identity:

$$q_{\mu}j_{N}^{\mu}(p',p) = S^{-1}(p) - S^{-1}(p')$$
 where $S(p) = \frac{h^{2}(p)}{m-p}$

with h(p) a nucleon form factor that dresses the propagator.

^{*}FG, and D. O. Riska, PRC 36, 1928 (1987)

Construction of the current operator in CST[®]

- -- Gauge invariant* two- and three-body current operators
- **Step 2**: coupling to ALL charges not so difficult -- if the equations are used.

Construction of the current operator in CST[©]

-- Gauge invariant* interaction current operator

★ Interaction current for the OBE model:

★ Simplest one-body current operator that satisfied the WT identity

$$j^{\mu}(p',p) = F_{0} \left\{ \gamma^{\mu} + \left(F_{1}-1\right) \left(\gamma^{\mu} - \frac{\mathscr{A}q^{\mu}}{q^{2}}\right) + F_{2} \frac{i\sigma^{\mu\nu}q_{\nu}}{2m} \right\} + G_{0} \Lambda_{-}(p') \left\{ \gamma^{\mu} + \left(F_{3}-1\right) \left(\gamma^{\mu} - \frac{\mathscr{A}q^{\mu}}{q^{2}}\right) \right\} \Lambda_{-}(p)$$
purely
transverse
$$j^{\mu}(p',p) = F_{0} \left\{ F_{1}\gamma^{\mu} + F_{2} \frac{i\sigma^{\mu\nu}q_{\nu}}{2m} \right\} + G_{0}F_{3} \Lambda_{-}(p')\gamma^{\mu} \Lambda_{-}(p) \quad \text{off-shell effects}$$

$$F_{0} = \frac{h(p)}{h(p')} \left(\frac{m^{2}-p'^{2}}{p^{2}-p'^{2}}\right) - \frac{h(p')}{h(p)} \left(\frac{m^{2}-p^{2}}{p^{2}-p'^{2}}\right) \quad G_{0} = \left(\frac{h(p')}{h(p)} - \frac{h(p)}{h(p')}\right) \frac{4m^{2}}{p^{2}-p'^{2}}$$

★ $F_3(Q^2)$ is unknown, except $F_3(0)=1$. This freedom can be exploited.

Form Factor calculations

- Current is conserved exactly, even in the presence of hadronic form factors
- ★ CIA approximation: all calculations (so far) ignore interaction currents
- ★ Deuteron¹: Model IIB (1992); no off-shell couplings
 - Needs to be updated
 - v-dependent off-shell couplings generate interaction currents expected to be important
- ★ Three-body²: two cases:
 - WXX models of 1997 v-dependent couplings but fits have $\chi^2/N_{data} \approx 2$
 - WJC models of 2008 -- but in CIA-0 approximation (full off-shell wave functions were not available then)

¹J. W. Van Orden, N. Devine, & FG, Phys. Rev. Lett. **75**, 4369 (1995) ²Sergio A. Pinto, A. Stadler, & FG, Phys. Rev. C **79**: 054006 (2009); **81**: 014007 (2010)

Deuteron Form Factors (comparisons)

CST-IIB (van Orden, Devine, FG)

LF-HD (Huang and Polyzou)

.......

MW (Phillips, Mandelsweig and Wallace) QCB (Dijk and Bakker)

Recall the CST v-dependent families

W00/MMD **3-body Form Factors** W10/MMD Isoscalar WXX¹ W16/MMD W16/Galster **W19/MMD** IARC/Galster W26/MMD 3 10 10^{-1} 2 10^{-2} ${\rm F}^{\rm S}{}_{\rm C}\!/\!{\rm F}_{\rm scale}$ 10^{-3} 10^{-4} 10^{-5} -2 10^{-6} -3<u></u> 9 0 2 7 8 9 2 3 5 6 8 3 5 6 $Q (fm^{-1})$ $Q (fm^{-1})$ 10 3 10^{-2} F_{M}^{S}/F_{scale} 10^{-3} 10^{-4} 0 10^{-5} -1 10^{-6} $\begin{array}{cc} 4 & 5 \\ Q \ (fm^{-1}) \end{array}$ 7 8 9 0 2 3 6 $\begin{array}{c} 4 & 5 \\ Q (fm^{-1}) \end{array}$ 7 8 0 3 6 2 9 1

¹Sergio A. Pinto, A. Stadler, & FG, Phys. Rev. C 79: 054006 (2009)

3-body Form Factors Isovector WXX

3-body Form Factors Isoscalar WJC¹

²Sergio A. Pinto, A. Stadler, & FG, Phys. Rev. C 81: 014007 (2010)

Conclusions from the three-body form factors

- ★ Results for W16 and both WJC models are very reasonable
 - In remarkable agreement with IARC despite very different framework and dynamical input
 - IARC: Impulse Approximation with Relativisitc Corrections using AV18 and UIX 3-N force (Marcucci, et. al.)
- ★ We do not expect to fit data
 - No interaction currents -- known to be large for the isovector terms
 - Isoscalar terms in fair agreement
 - Same wave functions for ³H and ³He (no Coulomb)
 - but figures compare to a special IARC with no Coulomb (prepared by Laura Marcucci
- **★** Binding energy $E_t \sim 1/\langle r^2 \rangle$ determines the form factors to relatively large Q
- ★ WJC-1 shows the largest differences with the others
 - probably due to admixture of pion γ^5 coupling with large pair terms
- ★ REMEMBER: These currents are gauge invariant, EVEN THOUGH STRONG FORM FACTORS ARE PRESENT!

Outlook and conclusions

Future -- What it the connection to χEFT ?

*E. Epelbaum, H.-W. Hammer, Ulf-G. Meißner, Reviews of Modern Physics, arXiv:0811.1338 [nucl-th]

Future

-- Extracting a potential from the CST equations

★ CST equations have additional channels for the negative energy components of the wave functions:

$$(W - 2E_p)\psi^+(p) = \int \frac{d^3k}{(2\pi)^3 2E_k} \Big\{ V_{++}(p,k;W)\psi^+(k) + V_{+-}(p,k;W)\psi^-(k) \Big\}$$
$$W\psi^-(p) = \int \frac{d^3k}{(2\pi)^3 2E_k} \Big\{ V_{-+}(p,k;W)\psi^+(k) + V_{--}(p,k;W)\psi^-(k) \Big\}$$

★ Replacing $V_{--}(p,k;W) \rightarrow (2\pi)^3 2E_k \lambda \delta^3(p-k)$ gives an exact one-channel equation

$$(W - 2E_p)\psi^+(p) = \int \frac{d^3k}{(2\pi)^3 2E_k} V_{eff}(p,k;W)\psi^+(k)$$

with an effective non-local, energy dependent potential

$$V_{eff}(p,k;P) = \int \frac{d^3k}{(2\pi)^3 2E_{k'}} \frac{V_{+-}(p,k';W)V_{-+}(k',k;W)}{W - \lambda}$$

- * We are currently searching for the 16 possible parameters λ which best fit the data, and a mean energy W^{*} to remove the energy dependence.
- ★ The resulting equation with a non-local potential can be used in Schrödinger theory.

Future

-- Where are the quarks?

- ★ In this picture the quarks are "frozen" out, and do not need to be included explicitly until momenta >> X GeV (where X=??)
- ★ Still, quarks might "explain," through duality, the relative strength of meson exchange models:

The "exact kernel is a complicated sum of many contributions

Conclusions

- We have found two precision covariant models of the NN kernel based on OBE (WJC-1 and WJC-2)
 - Comparatively simple with only a few parameters
 - + WJC-2 has 15 compared to the 24 of χEFT
 - EXCELLENT description of the low energy NN data
 - $\chi^2/N \sim 1$ for the 2007 data base (most complete data base)
 - New phase shift analysis
- ★ OBE mechanism works VERY WELL, and (NEW) gives precision fits to data
 - probably because the relativistic (Dirac) structure of the equation is efficient
- ★ ALL Poincaré transformations are kinematic -- i.e. exact
 - Form factor calculations include recoil corrections to ALL orders
 - Can be expected to work at high Q²
- Three body forces are incorporated as off-shell effects arising from two body interactions
 - NO three body forces are needed!
 - Robust role of off-shell couplings to be tested and understood
- ***** These models can be used for precision calculations of few body interactions
- ★ The kernel provides a "bridge" between hadronic physics and QCD

END

Future

-- Extensions of the cancellation theorem

★ Has been proved only for scalar theories and QED

$$-\frac{N}{m_X^2 - t} + \frac{N}{m_X^2 - t} \cong 0$$

★ For pion exchanges with chiral symmetry treated as in the sigma model (i.e. γ^5 coupling with sigma type contact term δ^{ij} / m required by chiral symmetry, and use $\overline{\pi} \begin{bmatrix} u^5 & 1 & u^5 \end{bmatrix} = \overline{\pi} u^5 \begin{bmatrix} m \\ m \end{bmatrix} \begin{bmatrix} u\overline{u} & v\overline{v} \\ u\overline{u} & v\overline{v} \end{bmatrix} u^5 u^5 = 1$

$$\overline{u}\left[\gamma^{5}\frac{1}{(m-p')}\gamma^{5}\right]u = \overline{u}\gamma^{5}\left(\frac{m}{E_{p}}\right)\left\{\frac{uu}{E_{p}-p_{0}}-\frac{vv}{E_{p}+p_{0}}\right\}\gamma^{5}u \Longrightarrow -\frac{1}{2m} = -\eta$$

The 4th order kernel becomes

★ This can be generalized: see study of the large N_c limits by T. Cohen. et.al.*

^{*}see, for example, Phys.Rev.C65:064008,2002.