Nuclear structure studies through in-flight measurements

Today

- 3. Physics case: ,Shell model and isospin symmetry'
- 4. Physics case: ,Neutron deficient Sn nuclei and the seniority scheme'
- γ -ray tracking Part I

High resolution γ-spectroscopy at the FRS

array array

RISING

RISING experimental setup

CAlorimeter TElescope CATE Particle Identification and Tracking after Target

R. Lozeva et al, NIM B, 204 (2003) 678

Tracking: - Doppler correction - scattering angle

New Shell Structure at N»Z - the mirror point of view -

Isospin symmetry in Z=20 isotopes - excited states in ³⁶Ca vs ³⁶S

Particle identification before and after the secondary target

Selection by FRS N Si-Energy [a.u. 10³ Cate 3500 21 ³⁷Ca (85 %) 3000 20 2*10³ p/sec 10² 2500 ³⁶K (10 %) 19 2000 18 10 1500 17 1000 16 500 1.6 1.7 1000 1500 1.8 1.9 2.1 $=\frac{e}{uc}\frac{B\rho}{\beta^{\prime\prime}}$ A/Q $\Delta E \sim Z^2; \frac{\Lambda}{2}$

Selection by CATE

E(2⁺)-transition in ³⁶Ca

³⁶Ca E(2⁺) - ³⁶S E(2⁺) = -276(16) keV

Shell model calculation for ³⁶Ca and ³⁶S

 sd shell model with (USD)^{*} interaction and experimental single particle energies (SPE) from ¹⁷O and ¹⁷F reproduce the S_n energy shift qualitatively <u>871</u>1/2+ 6-6 vgap 600 5-5 πgap S_p πgap <u>495</u>1/2+ 4vgap 4 $SM\pi gap$ <u>EX 3291 keV</u> SMvgapEX 3015 keV 3-3 3133 keV S_p SM 2876 keV $5/2^{+}$ $5/2^{+}$ 2-2 17F 170 MeV I-01 0 \rightarrow MED = -257 keV $^{36}_{20}$ Ca₁₆ ${}^{36}_{16}S_{20}$

*B.A. Brown, B.H. Wildenthal: Ann. Rev. of Nucl. Part. Sci. 38 (1988) 29

Shell model calculation for ³⁶Ca and ³⁶S

*Y. Utsuno et al., Phys. Rev. C 60 (1999) 054315

Shell model calculation for T=1,2 nuclei in sd-shell

*H. Herndl et al., Phys. Rev. C 52 (1995) 1078 P. Doornenbal et al., Phys. Lett. B647, 237 (2007).

Ad hoc modifikation introduced H. Grawe

- For A = 16 28 increased $\pi Od_{5/2}$ SPE by 200 keV
- For A = 28 40 reduced $\pi Od_{5/2}$ SPE by 300 keV $v Od_{5/2}$ SPE by 900 keV

=> reduced neutronen gap in ³⁴Ca (Δ_v = 5.498 MeV) with respect to protonen gap in ³⁴Si (Δ_{π} = 6.241 MeV)

*Y. Utsuno et al., Phys. Rev. C 60 (1999) 054315

Shell model calculation for T=1,2 nuclei in sd-shell

Relativistic Coulomb Excitation of Nuclei Near ¹⁰⁰Sn

- B(E2, 2⁺->0⁺) values provide E2 correlations related to core polarization.
- Lifetime measurements hampered by isomeric 6⁺ states in even Sn isotopes
- 2⁺->0⁺ decay too fast for electronic timing methods.
- Coulomb excitation of instable Sn isotopes

Seniority Scheme

Experimental 2⁺ and 4⁺ Levels of Sn isotopes are text book examples.

How about the B(E2) values?

Relativistic Coulomb excitation of nuclei towards ¹⁰⁰Sn

- ^{108,112}Sn secondary beam with 150MeV/u
- Au Coulex target

¹⁰⁸Sn B(E2:2+→0+) value:

EXP: 15.1 (3.3) W.u. TH1: 11.2 W.u. Morten Hjorth-Jensen TH2: 11.5 W.u. Frederic Nowacki

A. Banu, et al.; PRC 72, 061305(R) (2005)

Comparison with Shell Modell calculations

----- theory (meutron wallence and of Smcore lexcitations and) ⁹⁰Zr as closed-shell core)

Experimental B(E2) values of Sn Isotopes

An new measurement of ¹¹⁴Sn would enlighten the picture!

2 Methods applicable for neutron deficient Sn isotopes:

Sub-barrier Coulex

 110 Sn B(E2) = 0.220(22) $e^{2}b^{2}$ J. Cederkäll et al., PRL98, 172501(2007)

Intermediate Energy Coulex

 108 Sn B(E2) = 0.230(57) e²b² A. Banu et al, PRC 72 061305(R) (2005)

Coulex Experiment with stable beams

- Previous Coulex measurements were performed using ¹¹⁴Sn as target material
- Natural abundance is only 0.65%
- Enriched materials have contaminations of other Sn isotopes, which cannot be separated, as the 2⁺ levels have the same energy

¹¹⁴Sn used as beam and studied via inverse kinematics

¹¹⁶Sn measured in addition to minimize systematic errors

Sub-barrier beam energies of 3.4 A MeV provided by UNILAC at GSI

Particle Identification

Scattered particle identification with PPAC

ϕ and θ determination

B(E2) Systematics for Sn isotopes

Enhanced B(E2) values towards ¹⁰⁰Sn

¹⁰⁰Sn core v(d_{5/2}g_{7/2}s_{1/2}h_{11/2}), $e_v = 1.0e$

⁹⁰Zr core

 $\begin{array}{l} v(d_{5/2}g_{7/2}s_{1/2}h_{11/2}), \ e_v=0.5e, \\ \pi(g_{9/2}g_{7/2}d_{5/2}d_{3/2}s_{1/2}), \ e_\pi=1.5e \end{array}$

 πv monopoles tuned to ESPEs and Z = 50 shell gap

A. Banu et al, PRC, 72 061305(R) (2005)

- J. Cederkäll et al., PRL98, 172501 (2007)
- A. Ekström et al., PRL 101, 012502 (2008)
- C. Vaman et al., PRL 99, 162501 (2007),
- P. Doornenbal et al., PRC 78, 031303 (R) (2008)

Triaxiality in even-even core nuclei of N=75 odd-odd isotones

RISING collaboration

H.J. Wollersheim^a, D.E. Appelbe^b, A. Banu^a, R. Bassini^{c,d}, T. Beck^a,
F. Becker^a, P. Bednarczyk^{a,d,e}, K.-H. Behr^a, M.A. Bentley^f, G. Benzoni^{c,d},
C. Boiano^{c,d}, U. Bonnes^g, A. Bracco^{c,d}, S. Brambilla^{c,d}, A. Brünle^a,
A. Bürger^h, K. Burkard^a, P.A. Butlerⁱ, F. Camera^{c,d}, D. Curien^j, J. Devin^j,
P. Doornenbal^a, C. Fahlander^k, K. Fayz^b, H. Geissel^a, J. Gerl^a, M. Górska^{a,*},
H. Grawe^a, J. Grębosz^{a,e}, R. Griffiths^b, G. Hammond^f, M. Hellström^a,
J. Hoffmann^a, H. Hübel^h, J. Jolie^l, J.V. Kalben^g, M. Kmiecik^e, I. Kojouharov^a,
R. Kulessa^m, N. Kurz^a, I. Lazarus^b, J. Li^{a,n}, J. Leske^h, R. Lozeva^{a,o}, A. Maj^e,
S. Mandal^a, W. Męczyński^e, B. Million^{c,d}, G. Münzenberg^a, S. Muralithar^p,
M. Mutterer^g, P.J. Nolanⁱ, G. Neyens^q, J. Nyberg^r, W. Prokopowicz^a,
V.F.E. Pucknell^b, P. Reiter^l, D. Rudolph^k, N. Saito^a, T.R. Saito^a, D. Seddonⁱ,
H. Schaffner^a, J. Simpson^b, K.-H. Speidel^h, J. Styczeń^e, K. Sümmerer^a,
M. Winkler^a, M. Ziębliński^e

Local FRS & RISING group:

A. Banu, T. Beck, F. Becker, P. Bednarczyk, K.-H. Behr, P. Doornenbal,
H. Geissel, J. Gerl, M. Gorska, J. Grebosz, M. Hellström, M. Kavatsyuk,
O. Kavatsyuk, I. Kojouharov, N. Kurz, R. Lozeva, S. Mandal, S. Muralithar, N. Saito,
T. Saito, H. Schaffner, H. Weick, M. Winkler, H.J. Wollersheim

GSI Darmstadt, Germany

Summary

Coulomb excitation results from fast beam RISING

- Coulomb excitation at 130-150 MeV established
- Coulomb excitation of 2⁺, in ^{108,112}Sn A. Banu et al., Phys. Rev. C 72, 061305(R) (2005)
- Coulomb excitation of 2⁺₁ in ^{54,56,58}Cr A. Bürger et al., Phys. Lett. B 622, 29 (2005)
- RDDS results confirms B(E2) of ⁵⁶Cr M. Seidlitz et al., Phys. Rev. C 84, 034318 (2011)
- Collective modes and E1 strength distribution: ⁶⁸Ni O. Wieland et al., Phys. Rev.Lett. 102, 092502 (2009)
- Coulomb excitation of 2⁺₁ and 2⁺₂ in ¹³⁴Ce, ¹³⁶Nd T. Saito et al., Phys. Lett. B 669 (2008) 19
- Mirror symmetry in ³⁶Ca P. Doornenbal et al., Phys. Lett. B647, 237 (2007).

Future

fast beam experiments PRESPEC employing γ-ray tracking