

Island of Inversion: Open questions

- •Where are the borders?
- •How does transition into island of inversion occur?

•Does picture of shape coexistence hold?

g-factor and spin of the ^{31,33}Mg ground state

laser spectroscopy and β -NMR g-factor and spin for ³¹Mg and ³³Mg from sign of g-factor \rightarrow parity

³¹Mg, $I^{\pi} = 1/2^+ v(sd)^{-3} (fp)^2$ ³³Mg, $I^{\pi} = 3/2^- v(sd)^{-2} (fp)^3$

→ pure 2p-2h intruder ground states !

Intruder ground state configurations:

G. Neyens et al., PRL 94, 022501 (2005) D. Yordanov et al., PRL 99, 212501 (2007)

Coulomb excitation ³¹Mg

GOSIA Coulomb excitation calculation

Results:

- one step E2 excitation

 $B(E2, 1/2^+ \rightarrow 5/2^+) = 182 e^2 fm^4$

- decay of (5/2+,3/2+) level via M1 transition

B(M1, 5/2⁺ \rightarrow 3/2⁺)=0.1 – 0.5 μ_n^2

- results confirms strong collective excitation - rotational sequence: $1/2^+ \rightarrow 3/2^+ \rightarrow 5/2^+$

M. Seidlitz et al; PLB 700 (2011) 181

M. Kimura, Phys. Rev. C 75, 041302(R) (2007)

Summary: Island of inversion

Nuclear structure studies through in-flight measurements

Today

- Method: Coulomb excitation at relativistic energies part II
- 2. Physics case: ,More about shell model modifications'
- 3. Physics case: ,Neutron deficient Sn nuclei and the seniority scheme⁴

Coulomb excitation at relativistic energies

- Sommerfeld Parameter $\eta >>1$
- adiabaticity parameter $\boldsymbol{\xi}$

$$\xi \equiv \frac{\omega_{\text{ph}}}{\omega_{\text{coll}}} \equiv \frac{\Delta E}{\hbar} \tau_{\text{coll}} = \frac{\Delta E}{\hbar c} \frac{b}{\gamma \beta} \qquad \text{for } \xi = 1 \quad \Delta E_{\text{max}} = \frac{\gamma \beta \hbar c}{b_{\text{min}}}$$

- higher excitation energies at relativistic energies
- access to GDR range 10 20 MeV

Coulomb excitation: ${}^{56}Cr \rightarrow {}^{197}Au$

E/A	5	60	130	500
	AMeV	AMeV	AMeV	AMeV
Adiabaticity parameter	0.6	0.17	0.11	0.05
E _{max}	1.6	5.7	8.6	18.6
	MeV	MeV	MeV	MeV

Coulomb excitation cross section

RarelSotopelNvestigation at GSI

Relativistic beams at GSI

accelerators:

- UNILAC (injector) E<15 AMeV</p>
- SIS E < 1 AGeV</p>

beams:

- All ion species up to ²³⁸U
- Ourrents:

²³⁸U - 2* 10⁸ pps medium mass nuclei- 10⁹ pps

High resolution γ-spectroscopy at the FRS

γ -spectroscopy at relativistic energies

High cross sections

- Coulomb excitation
- Secondary fragmentation

Thick targets

Lorentz boost of γ -rays

- Doppler shift
- Gain in geometrical efficiency
- Doppler broadening

Atomic background, a limiting factor

- X-rays from target atoms
- Radiative electron capture
- Primary Bremsstrahlung
- Secondary Bremsstrahlung
- σ (atomic) ~ 10000 * σ (nuclear)

High energetic reactions

In-beam *γ*-spectroscopy at relativistic energies

Disadvantage

Doppler broadening

Doppler shift

Rel. HPGe energy resolution: 0,18 %

In-beam γ -spectroscopy at relativistic energies

Lorentz transformation

- foreward boost=> efficiency
- angular distribution

 $\vartheta_{\gamma}=90^{\circ}$

In-beam γ -spectroscopy at relativistic energies

Atomic Background

- X-ray
- Radiative electron capture (capture of target electrons into bound states of projectile)
- Primary Bremsstrahlung (capture of target electrons into continuum states of projectile)
- Secondary Bremsstrahlung (stopping of high energy electrons in the target)

EUROBALL-Cluster array

15 EUROBALL Cluster detectors without ACS 105 Ge crystals

	Ring	Angle [deg]	Distance [mm]	Resolution [%]	Efficiency [%]
	1	15.9	700	1.00	1.00
	2	33.0	700	1.82	0.91
	3	36.0	700	1.93	0.89
			Total:	1.56	2.81

H.J. Wollersheim et al.; NIM A 537 (2005) 637

Ge-Cluster detectors

Seven encapsulated Ge crystals in common vacuum Efficiency ~60 % each, hexagonal tapered

RISING experimental setup

New Shell Structure at N>>Z Mirror symmetry of (sub)shell closures

quenching in N=20 isotones.

(sub)shell gaps at N=14,16 for Ca isotopes?

New Shell Structure at N>>Z Relativistic Coulex in N=28-34 Nuclei

- Large scale shell modell calculations - GXPF1, GXPF1A
 - M.Honma et al, Phys. Rev. C65(2002)061301
 - KB3G E.Caurier et al, Eur.Phys.J. A 15, 145 (2002)

- Transition matrix elements
 - B(E2) in ^{52,54,56}Ti (MSU)
 - B(E2) in 54,56,58Cr (GSI)

RI beam: fragment identification and tracking

mm

CAlorimeter TElescope CATE Particle Identification and Tracking after Target

R. Lozeva et al, NIM B, 204 (2003) 678

Tracking: - Doppler correction - scattering angle

New Shell Structure at N>>Z Relativistic Coulex in N=28-34 Nuclei

A. Bürger et al., Phys. Lett B 622, 29 (2005)

Comparison with 52,54,56Ti

D.-C. Dinca et al., Phys Rev. C 041302(R) (2005)

Stable beam lifetime measurement in ⁵⁶Cr

⁴⁸Ca(¹¹B,*p2n*)⁵⁶Cr @ 30 MeV Cologne tandem accelerator

Set up: Cologne plunger Foreward: EUROBALL Cluster Backward: 5 Ge-detector

lifetime measurement in ⁵⁶Cr

lifetime measurement in ⁵⁶Cr

M. Seidlitz et al. Phys Rev.C 84, 034318 (2011)

New Shell Structure at N»Z - the mirror point of view -

Isospin symmetry in Z=20 isotopes - excited states in ³⁶Ca vs ³⁶S