Calculations With Integral Matrix Groups

Alexander Hulpke
Department of Mathematics
Colorado State University
Fort Collins, CO, 80523, USA
www.hulpke.com

Matrix Group Calculations

Matrix groups over commutative ring (here: \mathbb{Z}), given by (finite number) of generating matrices.

What can we say about such groups?

Finite Quotients key to computability

Over finite fields: matrix group recognition

Uses: Divide-and-conquer approach. Data structure composition tree. Reduction to simple groups.

Effective Homomorphisms, recursion to kernel, image.

Hasse Principle

Instead of working (globally) over \mathbb{Z} , work (locally) modulo different coprime numbers, combine (Paradigm: "Chinese" Remainder Theorem: Aryabhata and Brahmagupta)

Aim: Show how this principle applies to a certain class of integral matrix groups.

Matrix Groups Over $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$

First consider $m=p^2$. ($m=p^a$ ditto.)

Reduction mod p gives hom. $\varphi: SL_n(\mathbb{Z}_m) \to SL_n(\mathbb{Z}_p)$. Kernel $\{I+pA|A\in\mathbb{Z}_p^{n\times n}\}$. Note: $\det(I+pA)=1+p\cdot Tr(A)$.

Multiplication:

 $(I+pA)(I+pB)=I+p(A+B)+p^2...=I+p(A+B) \mod m$

is by addition of the the A-parts modulo p.

(Under map $A \mapsto I + pA$, ker φ is adjoint module in Liesense.)

Working With $G \leq GL_n(\mathbb{Z}_m)$

If $m=p^a$, first consider image H of G modulo p.

- Matrix group recognition on *H*. Get comp. tree. Split in radical factor and solvable radical.
- Presentation gives (module) generators of kernel. Consider p/p^2 layer as F_p -vector space. Basis with Spinning Algorithm.
- Combine to presentation of $G \mod p^2$
- Iterate on p^2/p^3 kernel etc.

Multiple Primes

If *m* is product or multiple primes, *G* is a subdirect product of its images modulo prime powers.

To get standard solvable radical data structure:

- \triangleright Consider images H_p modulo each prime.
- Combine radical factor homomorphisms ρ_p for different primes to direct product of images.
- Combine the PCGS for the radicals for different primes.
- Extend PCGS through the extra layers if there are higher prime powers in m. (Take new kernel generators each time, linear algebra on 1/p(I-x).)

Result: Data structure, in particular order, for $G \leq GL_n(\mathbb{Z}_m)$.

Multiple Primes

If *m* is product or multiple primes, *G* is a subdirect product of its images modulo prime powers.

To get standard solvable radical data structure:

- \triangleright Consider images H_p modulo each prime.
- Combine radical factor homomorphisms ρ_p for different primes to direct product of images.
- Combine the PCGS for the radicals for different primes.
- PCGS the bugh the extra lavers if there are higher PCGS: polycyclic generating set data structure for solvable group that combines bases for different vector space layers into object that can get coefficients.

Multiple Primes

- ct or multiple primes, G is a subdirect product of oprime powers.
- solvable radical data structure:
- $ges H_p$ modulo each prime.
 - ical factor homomorphisms ρ_p for different direct product of images.
- Combine the PCGS for the radicals for different primes.
- Extend PCGS through the extra layers if there are higher prime powers in m. (Take new kernel generators each time, linear algebra on 1/p(I-x).)

Result: Data structure, in particular order, for $G \leq GL_n(\mathbb{Z}_m)$.

```
gap> LoadPackage("matgrp"); # available for GAP 4.8.3
  [...]
gap> g:=SL(3,Integers mod 1040);
SL(3,Z/1040Z)
gap> ff:=FittingFreeLiftSetup(g);;
gap> Size(g);
849852961151281790976000
gap> Collected(RelativeOrders(ff.pcgs));
[ [ 2, 24 ], [ 3, 1 ] ]
qap> m:=MaximalSubgroupClassReps(g);;time;
24631 #24 seconds
gap> List(m,x->Size(g)/Size(x));
[ 256, 7, 7, 8, 183, 183, 938119, 1476384, 3752476,
123708, 123708, 123708, 31, 31, 3100, 3875, 4000 ]
```

Arithmetic Groups

<u>Roughly:</u> Discrete subgroup of Lie Group, defined by arithmetic properties on matrix entries(e.g. det=1, preserve form).

Definition: G linear algebraic group, over number field K. An *arithmetic group* is $\Gamma < G$, such that for integers O < K the intersection $\Gamma \cap G(O)$ has finite index in both intersectants.

<u>Prototype</u>: Subgroups of $SL_n(\mathbb{Z})$, $Sp_{2n}(\mathbb{Z})$ of finite index.

<u>Applications:</u> Number Theory (Automorphic Forms), Topology, Expander Graphs, String theory, ...

Theoretical algorithms for problems, such as conjugacy, known, but infeasible in practice.

Arithmetic Groups

<u>Roughly:</u> Discrete subgroup of Lie Group, defined by arithmetic properties on matrix entries(e.g. det=1, preserve form).

Definition: G linear algebraic group, over number field K. An arithmetic group is $\Gamma < G$, such that intersection $\Gamma \cap G(\mathcal{O})$ has finite inde Prototype: Subgroups of $SL_n(\mathbb{Z})$, Sp Applications: Number Theory (Aut

Theoretical algorithms for problems, such as conjugacy, known, but infeasible in practice.

Topology, Expander Graphs, String

Subgroups Of $SL_n(\mathbb{Z})$, $Sp_{2n}(\mathbb{Z})$

Take subgroup $G < SL_n(\mathbb{Z})$ (or Sp_{2n}) given by finite set of generators. G is arithmetic if it has finite index.

- Can we determine whether G has finite index?
- If G has finite index, can we determine it?

Here: Only SL case.

Joint work with ALLA DETINKO, DANE FLANNERY (St. Andrews / NUI Galway).

Proving Finite Index

Consider $SL_n(\mathbb{Z})$ as finitely presented group.

Generators: Elementary matrices.

Relators (obvious ones: orders of products, commutators of generators) are known.

Write generators of *G* as words in these generators (Gaussian Elimination. Often better: Words in images mod *m* for sufficiently large *m*).

Enumerate cosets (Todd-Coxeter). If the index is finite this process will terminate, and give the correct index.

Proving Finite Index

Consider $SL_n(\mathbb{Z})$ as finitely presented group.

Generators: Elementary matrices.

Relators (obvious ones: orders of products,

Enumerate cosets (Todd-Coxeter). If the index is finite this process will terminate, and give the correct index.

Second Caveat

The obstacles of coset enumeration are inherent to the problem.

 $SL_n(\mathbb{Z})$ contains free subgroups if $n \ge 3$, and it is thus impossible to have an decision algorithm that is guaranteed to answer *whether* elements generate a subgroup of finite index.

Thus assume an *oracle* promises finite index (or hope to be lucky).

Second Caveat

The obstacles of coset enume the problem.

on Turing-machine equivalent computer. Entscheidungsproblem

 $SL_n(\mathbb{Z})$ contains free cabgroups if $n \ge 3$, and it is thus impossible to have an decision algorithm that is guaranteed to answer *whether* elements generate a subgroup of finite index.

Thus assume an *oracle* promises finite index (or hope to be lucky).

Easy Example

LONG,

REID

Let
$$SL_3(\mathbb{Z}) \geq \beta_T =$$

$$\begin{pmatrix} -1+T^3-T&T^2\\0&-1&2T\\-T&0&1 \end{pmatrix}, \begin{pmatrix} -1&0&0\\-T^2&1&-T\\T&0&-1 \end{pmatrix}, \begin{pmatrix} 0&0&1\\1&0&T^2\\0&1&0 \end{pmatrix}$$

then $[SL_3(\mathbb{Z}): \beta_{-2}]=3670016$. (Barely) doable.

But $[SL_3(\mathbb{Z}): \beta_7]=24193282798937316960$

 $=2^{5}3^{4}5\cdot7^{10}19\cdot347821\sim2^{64}$. Hopeless.

Congruence Subgroups

The *m*-th congruence subgroup $\Gamma_m \leq SL_n(\mathbb{Z})$ is the kernel of the reduction φ_m modulo m. Image is $SL_n(\mathbb{Z}_m)$.

If $G \leq SL_n(\mathbb{Z})$ has finite index, there exists integer l such that $\Gamma_l \leq G$. The smallest such l is called the *level* of G.

Then $[SL_n(\mathbb{Z}):G]=[SL_n(\mathbb{Z}_I):\varphi_I(G)].$

Calculate this second index from generators of *G* modulo *l*.

Thus sufficient to find level to get index.

Strategy

Consider congruence images $\varphi_m(G) < SL_n(\mathbb{Z}_m)$ for increasing values of m to find level l of G.

- Find the primes dividing /
- Find the prime powers dividing /
- Criterion on whether $I_m=[SL_n(\mathbb{Z}_m): \varphi_m(G)]$ increases.

Same Index

Let $G \leq SL_n(\mathbb{Z})$ and $C(m)=\ker \varphi_m$.

If for a given m and prime p we have that $I_{m}=I_{mp}$ but $I_{mp}\neq I_{mp}^2$, then (modulo mp^2) G contains a supplement to C(mp).

We show such supplements do not exist, thus a stable index remains stable.

Kernel Supplements

Let p be prime, $a \ge 2$, $m=p^a$ and $H=SL(n,\mathbb{Z}_m)$ for $n \ge 2$ (or $H=Sp(2n,\mathbb{Z}_m)$ for $n \ge 1$). Let $C(k) \triangleleft H$ kernel mod k.

Theorem: (D-F-H.) $C(p^{a+1})$ has no proper supplement in $C(p^a)$.

Theorem: (Beisiegel 1977, Weigel 1995, ..., D-F-H.)

Let a=2. C(p) has a supplement in H if and only if

- (a) $H=SL(2,\mathbb{Z}_4)$, $SL(2,\mathbb{Z}_9)$, $SL(3,\mathbb{Z}_4)$, or $SL(4,\mathbb{Z}_4)$.
- (b) $H=Sp(2,\mathbb{Z}_4)$, $Sp(2,\mathbb{Z}_9)$.

Proof: Small cases/counterexample by explicit calculation. Use nice elements to show supplement contains kernel.

Index Algorithm

- Assume that G has (unknown) finite index and level I. Assume we know the set \mathscr{D} of primes dividing I.
- 1. Set $m=lcm(4, \prod \mathcal{L})$.
- 2. While for any $p \in \mathcal{D}$ we have $[SL_n(\mathbb{Z}_m):\phi_m(G)] < [SL_n(\mathbb{Z}_{pm}):\phi_{pm}(G)]$, set m:=pm.
- 3. Repeat until index is stable, level divides *m*.
- Show also that one can work prime-by-prime.

Index Algorithm

Assume that G has (unknown) finite index and level I. Assume we know the set \mathscr{D} of primes dividing I.

- 1. Set $m=lcm(4, \prod \mathcal{L})$.
- 2. While for any $p \in \mathcal{L}$ we have $[SL_n(\mathbb{Z}_m):\phi_m(G)] < [SL_n(\mathbb{Z}_{pm}):\phi_{pm}(G)]$, set m:=pm.
- 3. Repeat until index is stable, level divides *m*.

Show also that one can worl because we start with 4

Index Algorithm

- Assume that G has (unknown) finite index and level I. Assume we know the set \mathscr{D} of primes dividing I.
- 1. Set $m=\text{lcm}(4, \prod \mathcal{D})$.
- While for any p∈ Dwe have
 A group projecting onto PSL_n(p) has only trivial subdirect products with subgroups of PSL_n(q)
 3. Tep at until mack is stable, level divides m.
- Show also that one can work prime-by-prime.

Strong Approximation

Theorem: Let $G \leq SL_n(\mathbb{Z})$. If there is a prime p > 2 such that $G \mod p = SL_n(p)$, then this holds for almost all primes. Such a group is called *Zariski* -

dense (which agrees with the usu

Caveat: There are dense subground of not have finite index. (They a subground of the subgro

Strong Approximation

Theorem: Let $G \leq \operatorname{SL}_n(\mathbb{Z})$. If there is a prime p > 2 such that $G \mod p = \operatorname{SL}_n(p)$, then this holds for almost all primes. Such a group is called *Zariski* - *dense* (which agrees with the usual definition).

Caveat: There are dense subgroups of $SL_n(\mathbb{Z})$ that do not have finite index. (They are called *thin*.) This goes back to the impossibility of an algorithm that determines whether G has finite index.

Finding The Set Of Primes

Theorem: Let $n \ge 3$ and suppose G has finite index. The set \mathcal{L} of primes dividing the level I consists of those primes p for which

- 1. p>2 and $G \mod p \neq SL_n(p)$, or
- 2. p=2 and $G \mod 4 \neq SL_n(\mathbb{Z}_4)$

Proof: If other primes divided the level, there would be a supplement modulo p^2 (or 8).

Irreducible modulo Prime

Let $\rho: G \to GL_n(\mathbb{Z})$ a representation that is absolutely irreducible modulo one prime.

The \mathbb{Z} -lattice $L \leq \mathbb{Z}^{n \times n}$ spanned by G_P has rank n^2 .

 G_P is absolutely irreducible modulo each prime that does not divide discriminant of L (i.e. almost all).

To find these primes: Approximate L with (random) elements of G_P until full rank.

Transvections

Arithmeticity implies the existence of *transvections*, elements $t \in G$ with rk (t-1)=1.

For such an element let $N = \langle t \rangle^G$ be the normal closure.

Let ρ be reduction modulo prime p with G_{ρ} = $SL_n(p)$. If $t \rho - 1 \neq 0$, then $t \rho$ is transvection and N_{ρ} is absolutely irreducible. For odd n this implies it is SL.

Let L be the \mathbb{Z} -lattice spanned by (elements of) N.

Then \mathscr{D} (primes with $G \mod p \neq \operatorname{SL}_n(p)$) consists of primes dividing lcm(disc.L, gcd of entries of t–1).

```
gap> g:=BetaT(7);
<matrix group with 3 generators>
gap> t:=b1beta(g); # transvection from Long/Reid paper
[ [-685,14,-98], [-16807,344,-2401], [2401,-49,344] ]
gap> RankMat(t-t^0);
gap> PrimesForDense(g,t,1);time;
[ 7, 1021 ]
60
gap> MaxPCSPrimes(g,[7,1021]);time;
Try 7 7
Try 49 7
Try 343 7
Try 343 1021
Try 350203 1021
[350203, 24193282798937316960 ] #Proven Index in SL
291395 # about 5 minutes
```

General Case

If we have no transvections but know index is finite:

Use other representations to identify primes.

Note: Representations of $SL_n(p)$ are given by polynomials on matrix entries, <u>come from</u> $SL_n(\mathbb{Z})$

Identify Subgroups

Take a set \mathcal{R} of polynomial representations of $SL_n(\mathbb{Z})$, such that:

- 1. For every $\alpha \in \mathcal{R}$ the reduction α_p : $SL_n(p) \rightarrow \mathbb{Z}_p^{m \times m}$ modulo p is a well-defined representation.
- 2. For prime p sufficiently large (i.e. p>const(n)), α_p is absolutely irreducible.
- 3. For every maximal $M < SL_n(p)$, there exists $\alpha \in \mathcal{R}$, such that α_p is not abs. irreducible on M.

Existence: Steinberg representation.

Identify Subgroups

Take a set \mathcal{R} of polynomial representations of $SL_n(\mathbb{Z})$, such that:

- 1. For every $\alpha \in \mathcal{R}$ the reduction α_p : $SL_n(p) \rightarrow \mathbb{Z}_p^{m \times m}$ modulo p is a well-defined representation.
- 2. For prime p sufficiently large (i.e. p>const α_p is absolutely irreducible.
- 3. For every maximal $M < SL_n(p)$, there exist such that α_p is not abs. irreducible on M.

Existence: Steinberg representation.

MALLE, ZALESKIĬ

Small n

Let R be

- 1. Actions on homogeneous poly.⁵ of degree ≤4
- 2. Antisymmetric square of natural representation.
- 3. For n=3 (for 3.A₆) a 15-dimensional constituent of the symmetric square of polynomials deg.2.

Then the conjecture holds for $n \le 11$ if p > 4.

Proof by inspection of lists of maximals.

BRAY,
HOLT,
RONEYDOUGAL
2013

Algorithm For Primes

For each polynomial representation $\rho \in \mathcal{R}$:

- Form (random) elements of G_P , span lattice L of full rank $deg(p)^2$.
- Find primes dividing disc(L).

```
gap> g:=Group([[778,2679,665],[323,797,665],
        [6674504920,-1557328,34062304949]],
> [[-274290687,140904793,1960070592],[853,4560,294],
> [151,930,209]]);;
gap> InterestingPrimes(g); # about 12 hours
irrelevant prime 11
i=1 Pol1
i=2 Pol2 ->[ 53 ]
i=3 Pol3
i=4 rep15 ->[ 19 ]
[ 2, 3, 5, 19, 53 ]
gap> MaxPCSPrimes(g,[2,3,5,19,53]);
Try 1 2, Try 2 2, Try 2 3, Try 6 3, Try 6 5, Try 30 5
Try 30 19, Try 570 19, Try 570 53, Try 30210 53
Index is 5860826241898530299904=[ [ 2,13 ], [ 3,4 ],
[ 13,3 ], [ 19,3 ], [ 31,1 ], [ 53,3 ], [ 127,1 ] ]
[ 30210, 5860826241898530299904 ]
```

Thin Groups

A dense subgroup that is not arithmetic is called *thin*. It will have infinite index.

For such subgroups our algorithm determines the arithmetic closure (smallest arithmetic overgroup).

Example

Class of monodromy groups In SP4(\mathbb{Z}), associated to Calabi-Yau threefolds. Seven are arithmetic.

Question: Indices of arithmetic closure C. So far known: One arithmetic group A containing G.

Example

Class of monody $r_{ransvection}$ grows In SP4(\mathbb{Z}), associated to Calabi-Yau three rection ven are arithmetic.

Question: Indices of arithmetic closure C. So far known: One arithmetic group A containing G.

Arithmetic

(d,k)	M	Index C	Time	Index A
(1,3)	2	6	5.8	1
(1,2)	2	10	5.4	1
(2,3)	2 ³	263.5	7.1	3.5
(3,4)	2232	2 ⁹ 3 ⁵ 5 ²	12.6	24 5
(4,4)	26	220325	10.1	26 3 ² 5
(6,5)	2332	2103652	15.6	2 ⁴ 3·5 ²
(9,6)	2.35	2831452	19.2	27 34 5
(5,5)	2.53	28335813	11.9	2 ⁷ 3 ² 13
(2,4)	24	211325	7.3	3 ² 5
(1,4)	22	2 ⁵ 5	5.8	1
(16,8)	210	240325	20.1	2 ¹⁶ 3 ² 5
(12,7)	2532	2173252	25	28 3· 5 ²
(8,6)	27	224325	12.3	2 ⁸ 3 ² 5
(4,5)	2 ⁵	2133.5	9.9	24 3 .5

Correct

Prior

Open Questions, Directions

- Analog result for Sp or other classical groups.
- ASCHBACHER theorem, Better tools!
- Better arithmetic for matrices over \mathbb{Z}_{m} .
- Algorithm finds arithmetic closure for dense subgroups. *Prove* finite index in certain cases more efficiently than coset enumeration?

