## Calculations With Integral Matrix Groups

Alexander Hulpke
Department of Mathematics
Colorado State University
Fort Collins, CO, 80523, USA
www.hulpke.com

ICTS Bengaluru, November '16

## Matrix Group Calculations

Matrix groups over commutative ring (here: $\mathbb{Z}$ ), given by (finite number) of generating matrices.

What can we say about such groups?

## Finite Quotients key to computability

Over finite fields: matrix group recognition
Uses: Divide-and-conquer approach. Data structure composition tree. Reduction to simple groups.

Effective Homomorphisms, recursion to kernel, image.

## Hasse Principle

Instead of working (globally) over $\mathbb{Z}$, work (locally) modulo different coprime numbers, combine (Paradigm: "Chinese" Remainder Theorem: Aryabhata and Brahmagupta )

Aim: Show how this principle applies to a certain class of integral matrix groups.

## Matrix Groups Over $\mathbb{Z}_{\mathrm{m}}=\mathbb{Z} / \mathrm{m} \mathbb{Z}$

First consider $m=p^{2}$. ( $m=p^{a}$ ditto.)
Reduction mod $p$ gives hom. $\varphi: S L_{n}\left(\mathbb{Z}_{m}\right) \rightarrow S L_{n}\left(\mathbb{Z}_{p}\right)$.
Kernel $\left\{1+p A \mid A \in \mathbb{Z}_{p}^{n \times n}\right\}$. Note: $\operatorname{det}(I+p A)=1+p \cdot \operatorname{Tr}(A)$. Multiplication:
$(I+p A)(I+p B)=1+p(A+B)+p^{2} \ldots \equiv 1+p(A+B) \bmod m$
is by addition of the the $A$-parts modulo $p$.
(Under map $A \mapsto /+p A$, ker $\varphi$ is adjoint module in LIEsense.)

## Working With $\mathrm{G} \leq \mathrm{GL}_{n}\left(\mathbb{Z}_{\mathrm{m}}\right)$

If $m=p^{a}$, first consider image $H$ of $G$ modulo $p$. Matrix group recognition on $H$. Get comp. tree. Split in radical factor and solvable radical.
Presentation gives (module) generators of kernel. Consider $p / p^{2}$ layer as $\mathrm{F}_{p}$-vector space. Basis with Spinning Algorithm.
Combine to presentation of $G \bmod p^{2}$
Iterate on $p^{2} / p^{3}$ kernel etc.

## Multiple Primes

If $m$ is product or multiple primes, $G$ is a subdirect product of its images modulo prime powers.
To get standard solvable radical data structure:
Consider images $H_{p}$ modulo each prime.
Combine radical factor homomorphisms $\rho_{p}$ for different primes to direct product of images.
Combine the PCGS for the radicals for different primes.
Extend PCGS through the extra layers if there are higher prime powers in $m$. (Take new kernel generators each time, linear algebra on $1 / p(1-x)$.)

Result: Data structure, in particular order, for $G \leq G L_{n}\left(\mathbb{Z}_{m}\right)$.

## Multiple Primes

If $m$ is product or multiple primes, $G$ is a subdirect product of its images modulo prime powers.
To get standard solvable radical data structure:
Consider images $H_{p}$ modulo each prime.
Combine radical factor homomorphisms $\rho_{p}$ for different primes to direct product of images.
Combine the PCGS for the radicals for different primes.
-Fxtend PCGS th bugh the extra lavers if there are higher PCGS: polycyclic generating set - data structure for solvable group that combines bases for different vector space layers into object that can get coefficients.

## Multiple Primes

ct or multiple primes, G is a subdirect product of lo prime powers.
solvable radical data structure:
ges $H_{p}$ modulo each prime.
cal factor homomorphisms $\rho_{p}$ for different direct product of images.
Combine the PCGS for the radicals for different primes.
Extend PCGS through the extra layers if there are higher prime powers in $m$. (Take new kernel generators each time, linear algebra on $1 / p(1-x)$. )
Result: Data structure, in particular order, for $G \leq G L_{n}\left(\mathbb{Z}_{m}\right)$.

- gap> LoadPackage("matgrp"); \# available for GAP 4.8.3 [...]
gap> g:=SL(3,Integers mod 1040);
- SL(3, Z / 1040 Z$)$
- gap> ff:=FittingFreeLiftSetup(g) ; ;
- gap> Size(g);
- 849852961151281790976000
- gap> Collected(RelativeOrders(ff.pcgs)) ;
- [ $[2,24],[3,1]$ ]
- gap> m:=MaximalSubgroupClassReps(g); ;time;
- 24631 \#24 seconds
- gap> List(m,x->Size(g)/Size(x)) ;
. $[256,7,7,8,183,183,938119,1476384,3752476$, $123708,123708,123708,31,31,3100,3875,4000$ ]


## Arithmetic Groups

Roughly: Discrete subgroup of Lie Group, defined by arithmetic properties on matrix entries(e.g. det=1, preserve form).

Definition: G linear algebraic group, over number field $K$. An arithmetic group is $\Gamma<G$, such that for integers $\theta<K$ the intersection $\Gamma \cap G(\theta)$ has finite index in both intersectants.

Prototype: Subgroups of $S L_{n}(\mathbb{Z}), S p_{2 n}(\mathbb{Z})$ of finite index. Applications: Number Theory (Automorphic Forms), Topology, Expander Graphs, String theory, ...
Theoretical algorithms for problems, such as conjugacy, known, but infeasible in practice.

## Arithmetic Groups

Roughly: Discrete subgroup of Lie Group, defined by arithmetic properties on matrix entries(e.g. det=1, preserve form).

Definition: G linear algebraic group, over number field $K$. An arithmetic group is $\Gamma<G$, such that intersection $\Gamma \cap G(\theta)$ has finite inde

Prototype: Subgroups of $S L_{n}(\mathbb{Z}), S p$


Applications: Number Theory (Aut Topology, Expander Graphs, String
Theoretical algorithms for problems, such as conjugacy, known, but infeasible in practice.

## Subgroups Of $\mathrm{SL}_{n}(\mathbb{Z}), \mathrm{Sp}_{2 n}(\mathbb{Z})$

Take subgroup $G<\mathrm{SL}_{n}(\mathbb{Z})$ (or $\mathrm{Sp}_{2 n}$ ) given by finite set of generators. $G$ is arithmetic if it has finite index.

Can we determine whether $G$ has finite index?
If $G$ has finite index, can we determine it? Here: Only SL case.

Joint work with Alla Detinko,
DANE FLANNERY
(St. Andrews / NUI Galway).

## Proving Finite Index

Consider $S L_{n}(\mathbb{Z})$ as finitely presented group.
Generators: Elementary matrices.
Relators (obvious ones: orders of products, commutators of generators) are known.

Write generators of $G$ as words in these generators (Gaussian Elimination. Often better: Words in images mod $m$ for sufficiently large $m$ ).

Enumerate cosets (Todd-Coxeter). If the index is finite this process will terminate, and give the correct index.

## Proving Finite Index

Consider $\mathrm{SL}_{n}(\mathbb{Z})$ as finitely presented group.
Generators: Elementary matrices.
Relators (obvious ones: orders of products,

## Caveat: Coset enumeration is a method, not an algorithm: run-time cannot be bounded. If index is infinite the process does not terminate.

Enumerate cosets (Todd-Coxeter). If the index is finite this process will terminate, and give the correct index.

## Second Caveat

The obstacles of coset enumeration are inherent to the problem.
$S L_{n}(\mathbb{Z})$ contains free subgroups if $n \geq 3$, and it is thus impossible to have an decision algorithm that is guaranteed to answer whether elements generate a subgroup of finite index.

Thus assume an oracle promises finite index (or hope to be lucky).

## Second Caveat

The obstacles of coset enume the problem.
on Turing-machine equivalent computer.
Entscheidungsproblem
$S L_{n}(\mathbb{Z})$ contains free enveroups if $n \geq 3$, and it is thus impossible to have an decision algorithm that is guaranteed to answer whether elements generate a subgroup of finite index.

Thus assume an oracle promises finite index (or hope to be lucky).

## Easy Example

Let $\mathrm{SL}_{3}(\mathbb{Z}) \geqq \beta_{\mathrm{T}}=$

# $\left\langle\left(\begin{array}{ccc}-1+T^{3} & -T & T^{2} \\ 0 & -1 & 2 T \\ -T & 0 & 1\end{array}\right),\left(\begin{array}{ccc}-1 & 0 & 0 \\ -T^{2} & 1 & -T \\ T & 0 & -1\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & T^{2} \\ 0 & 1 & 0\end{array}\right)\right.$ 


then $\left[\mathrm{SL}_{3}(\mathbb{Z}): \beta-2\right]=3670016 . \quad$ (Barely) doable.
But $\left[L_{3}(\mathbb{Z}): \beta_{7}\right]=24193282798937316960$
$=25345.71019 \cdot 347821 \sim 2^{64}$.
Hopeless.

## Congruence Subgroups

The $m$-th congruence subgroup $\Gamma_{m} \leq \mathrm{SL}_{n}(\mathbb{Z})$ is the kernel of the reduction $\varphi_{m}$ modulo $m$. Image is $\mathrm{SL}_{n}\left(\mathbb{Z}_{m}\right)$.

If $G \leq S L_{n}(\mathbb{Z})$ has finite index, there exists integer / such that $\Gamma_{I} \leq G$. The smallest such / is called the level of $G$. Then $\left[S L_{n}(\mathbb{Z}): G\right]=\left[S L_{n}\left(\mathbb{Z}_{l}\right): \varphi_{l}(G)\right]$.

Calculate this second index from generators of $G$ modulo $l$.

Thus sufficient to find level to get index.


## Strategy

Consider congruence images $\varphi_{m}(G)<S L_{n}\left(\mathbb{Z}_{m}\right)$ for increasing values of $m$ to find level / of $G$.

ק Find the primes dividing /

- Find the prime powers dividing I

Criterion on whether $I_{m}=\left[S L_{n}\left(\mathbb{Z}_{m}\right): \varphi_{m}(G)\right]$ increases.

## Same Index

Let $G \leq S L_{n}(\mathbb{Z})$ and $C(m)=\operatorname{ker} \varphi_{m}$.
If for a given $m$ and prime $p$ we have that $I_{m}=I_{m p}$ but $I_{m p} \neq I_{m p^{2}}$, then (modulo $m p^{2}$ ) G contains a supplement to $\mathrm{C}(m p)$.
We show such supplements do not exist, thus a stable index remains stable.
$S L_{n}(\mathbb{Z})$ N

## Kernel Supplements

Let $p$ be prime, $a \geq 2, m=p^{a}$ and $H=S L\left(n, \mathbb{Z}_{m}\right)$ for $n \geq 2$ (or $H=\operatorname{Sp}\left(2 n, \mathbb{Z}_{m}\right)$ for $n \geq 1$ ). Let $C(k) \triangleleft H$ kernel $\bmod k$.
Theorem: (D-F-H.) C( $p^{a+1}$ ) has no proper supplement in $C\left(p^{a}\right)$.
Theorem: (Beisiegel 1977, Weigel 1995, ...,D-F-H.) Let $a=2 . C(p)$ has a supplement in $H$ if and only if (a) $H=S L\left(2, \mathbb{Z}_{4}\right), S L\left(2, \mathbb{Z}_{9}\right), S L\left(3, \mathbb{Z}_{4}\right)$, or $\operatorname{SL}\left(4, \mathbb{Z}_{4}\right)$. (b) $H=\operatorname{Sp}\left(2, \mathbb{Z}_{4}\right), \operatorname{Sp}\left(2, \mathbb{Z}_{9}\right)$.

Proof: Small cases/counterexample by explicit calculation. Use nice elements to show supplement contains kernel.

## Index Algorithm

Assume that $G$ has (unknown) finite index and level
l. Assume we know the set $\mathscr{P}$ of primes dividing $l$.

1. Set $m=\operatorname{cm}(4, \Pi \mathscr{R})$.
2. While for any $p \in \mathscr{R}$ we have $\left[S L_{n}\left(\mathbb{Z}_{m}\right): \varphi_{m}(G)\right]<\left[S L_{n}\left(\mathbb{Z}_{p m}\right): \varphi_{p m}(G)\right]$, set $m:=p m$.
3. Repeat until index is stable, level divides $m$.

Show also that one can work prime-by-prime.

## Index Algorithm

Assume that $G$ has (unknown) finite index and level l. Assume we know the set $\mathscr{P}$ of primes dividing $l$.

1. Set $m=\operatorname{cm}(4, \Pi \mathscr{R})$.
2. While for any $p \in \mathscr{R}$ we have $\left[\mathrm{SL}_{n}\left(\mathbb{Z}_{m}\right): \varphi_{m}(G)\right]<\left[S L_{n}\left(\mathbb{Z}_{p m}\right): \varphi_{p m}(G)\right]$, set $m:=p m$.
3. Repeat until index is stable, level divides $m$.

Show also that one can worl because we start with 4

## Index Algorithm

Assume that $G$ has (unknown) finite index and level l. Assume we know the set $\mathscr{C}$ of primes dividing $l$.

1. Set $m=\mathrm{cm}(4, \Pi \mathscr{R})$.
2. While for any $p \in \mathscr{R}$ we have

A group projecting onto PSLn $(p)$ has only trivial subdirect products with
$n(G)]$, set $m:=p m$.
3. Nep aubgroups of PSL_(q)

Show also that one can work prime-by-prime.

## Strong Approximation

Theorem: Let $G \leq S L_{n}(\mathbb{Z})$. If there is a prime $p>2$ such that $G \bmod p=S L_{n}(p)$, then this holds for almost all primes. Such a group is called Zariskidense (which agrees with the usi

Caveat: There are dense subgro
 goes back to the impossibility of arrargonthmertat determines whether $G$ has finite index.

## Strong Approximation

Theorem: Let $G \leq S L_{n}(\mathbb{Z})$. If there is a prime $p>2$ such that $G \bmod p=S L_{n}(p)$, then this holds for almost all primes. Such a group is called Zariskidense (which agrees with the usual definition).

Caveat: There are dense subgroups of $S L_{n}(\mathbb{Z})$ that do not have finite index. (They are called thin.) This goes back to the impossibility of an algorithm that determines whether $G$ has finite index.

## Finding The Set Of Primes

Theorem: Let $n \geq 3$ and suppose $G$ has finite index. The set $\mathscr{P}$ of primes dividing the level / consists of those primes $p$ for which

1. $p>2$ and $G \bmod p \neq S L_{n}(p)$, or
2. $p=2$ and $G \bmod 4 \neq S L_{n}\left(\mathbb{Z}_{4}\right)$

Proof: If other primes divided the level, there would be a supplement modulo $p^{2}$ (or 8).

## Irreducible modulo Prime

Let $\rho: G \rightarrow G L_{n}(\mathbb{Z})$ a representation that is absolutely irreducible modulo one prime.

The $\mathbb{Z}$-lattice $L \leq \mathbb{Z}^{n \times n}$ spanned by $G \rho$ has rank $n^{2}$.
$G p$ is absolutely irreducible modulo each prime that does not divide discriminant of $L$ (i.e. almost all).

To find these primes: Approximate $L$ with (random) elements of Gp until full rank.

## Transvections

Arithmeticity implies the existence of transvections, elements $t \in G$ with $r k(t-1)=1$.

For such an element let $N=\langle t\rangle G$ be the normal closure.
Let $\rho$ be reduction modulo prime $p$ with $G \rho=S L_{n}(p)$. If $t \rho-1 \neq 0$, then $t \rho$ is transvection and $N \rho$ is absolutely irreducible. For odd $n$ this implies it is SL.
Let $L$ be the $\mathbb{Z}$-lattice spanned by (elements of) $N$.
Then $\mathscr{P}$ (primes with $G \bmod p \neq \mathrm{SL}_{n}(p)$ ) consists of primes dividing Icm(disc. $L$, gcd of entries of $t-1$ ).

- gap> g:=BetaT(7);
: <matrix group with 3 generators>
- gap> t:=blbeta(g); \# transvection from Long/Reid paper
- [ [-685, 14, -98], [-16807, 344,-2401], [2401,-49,344] ]
- gap> RankMat(t-t^0);
- 1
- gap> PrimesForDense(g,t, 1);time;
- $[7,1021]$
- 60
- gap> MaxPCSPrimes(g, 7,1021$]) ; t i m e ;$

Try 77
Try 497
Try 3437
Try 3431021
Try 3502031021
[350203, 24193282798937316960 ] \#Proven Index in SL 291395 \# about 5 minutes

## General Case

If we have no transvections but know index is finite:
Use other representations to identify primes.
Note: Representations of $S L_{n}(p)$ are given by polynomials on matrix entries, come from $\mathrm{SL}_{n}(\mathbb{Z})$

## Identify Subgroups

Take a set $\mathscr{R}$ of polynomial representations of $S L_{n}(\mathbb{Z})$, such that:

1. For every $\alpha \in \mathscr{R}$ the reduction $\alpha_{p}: S L_{n}(p) \rightarrow \mathbb{Z}_{p} m \times m$ modulo $p$ is a well-defined representation.
2. For prime $p$ sufficiently large (i.e. $p>$ const( $n$ ) ), $\alpha_{p}$ is absolutely irreducible.
3. For every maximal $M<S L_{n}(p)$, there exists $\alpha \in \mathscr{R}_{\text {}}$ such that $\alpha_{p}$ is not abs. irreducible on $M$.
Existence: Steinberg representation.

## Identify Subgroups

Take a set $\mathscr{R}$ of polynomial representations of $S L_{n}(\mathbb{Z})$, such that:

1. For every $\boldsymbol{\alpha} \in \mathscr{R}$ the reduction $\alpha_{p}: S L_{n}(p) \rightarrow \mathbb{Z}_{p}{ }^{m \times m}$ modulo $p$ is a well-defined representation.
2. For prime $p$ sufficiently large (i.e. $p>$ const $n$ (n) $\alpha_{p}$ is absolutely irreducible.
3. For every maximal $M<S L_{n}(p)$, there exis such that $\alpha_{p}$ is not abs. irreducible on $M$. 2001
Existence: Steinberg representation.

## Small $n$

## Let $R$ be

1. Actions on homogeneous polys of degree $\leq 4$
2. Antisymmetric square of natural representation.
3. For $n=3$ (for $3 . A_{6}$ ) a 15 -dimensional constituent of the symmetric square of polynomials deg. 2 .
Then the conjecture holds for $n \leqq 11$ if $p>4$.
Proof by inspection of lists of maximals.

BRAY, Holt,
Rodney-
Dougal 2013

## Algorithm For Primes

For each polynomial representation $\rho \in \mathscr{R}$ :

- Form (random) elements of Gp, span lattice L of full rank $\operatorname{deg}(\rho)^{2}$.
- Find primes dividing $\operatorname{disc}(L)$.
gap> InterestingPrimes(g); \# about 12 hours
irrelevant prime 11
- i=1 Pol1
- i=2 Pol2 ->[ 53 ]
- i=3 Pol3
- i=4 rep15 ->[ 19 ]
$[2,3,5,19,53]$
- gap> MaxPCSPrimes (g, $2,3,5,19,53])$;
- Try 1 2, Try 2 2, Try 2 3, Try 6 3, Try 6 5, Try 305 -Try 30 19, Try 570 19, Try 570 53, Try 3021053

Index is $5860826241898530299904=[\quad[2,13],[3,4]$, [ 13,3], [ 19,3], [ 31,1 ], [ 53,3 ], [ 127,1$]$ ] [ 30210,5860826241898530299904 ]

## Thin Groups

A dense subgroup that is not arithmetic is called thin. It will have infinite index.

For such subgroups our algorithm determines the arithmetic closure (smallest arithmetic overgroup).

## Example

Class of monodromy groups In SP4(Z), associated to Calabi-Yau threefolds. Seven are arithmetic.


Question: Indices of arithmetic closure C. So far known: One arithmetic group A containing G.

## Example

Class of monod $T_{r a n}$ oromos $\ln \mathrm{SP4}(\mathbb{Z})$, associated to Calabi-Yau threeis ivection en are arithmetic.


Question: Indices of arithmetic closure C. So far known: One arithmetic group A containing G.

|  | $(d, k)$ | M | Index C | Time | Index A |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(1,3)$ | 2 | 6 | 5.8 | 1 |
|  | $(1,2)$ | 2 | 10 | 5.4 | 1 |
|  | $(2,3)$ | $2^{3}$ | 263.5 | 7.1 | 3.5 |
|  | $(3,4)$ | $23^{2}$ | $29355^{2}$ | 12.6 | 245 |
|  | $(4,4)$ | $2^{6}$ | 220325 | 10.1 | 26325 |
|  | $(6,5)$ | $233^{2}$ | 2103652 | 15.6 | 243.52 |
|  | $(9,6)$ | $2 \cdot 35$ | 2831452 | 19.2 | $2^{7} 3^{4} 5$ |
|  | $(5,5)$ | 2.53 | 28335813 | 11.9 | $2^{7} 3^{2} 13$ |
|  | $(2,4)$ | $2^{4}$ | 211325 | 7.3 | 325 |
|  | $(1,4)$ | $2^{2}$ | 255 | 5.8 | 1 |
|  | $(16,8)$ | $2^{10}$ | 240325 | 20.1 | 216325 |
|  | $(12,7)$ | $2^{5} 3^{2}$ | 217325 | 25 | $2^{8} 3 \cdot 5^{2}$ |
|  | $(8,6)$ | $2^{7}$ | 24325 | 12.3 | 28325 |
|  | $(4,5)$ | $2^{5}$ | 2133.5 | 9.9 | 243.5 |
|  |  |  | Correct |  | Prior |

## Open Questions, Directions

Good set $\mathscr{R}$ of representations (small degree, easy construction)?

Analog result for Sp or other classical groups.
AsCHBACHER theorem, Better tools!
Better arithmetic for matrices over $\mathbb{Z}_{m}$.
Algorithm finds arithmetic closure for dense subgroups. Prove finite index in certain cases more efficiently than coset enumeration?


