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Matrix Group Calculations

Matrix groups over commutative ring (here: Z), given
by (finite number) of generating matrices.

What can we say about such groups?

Finite Quotients key to computability

Over finite fields: matrix group recognition

Uses: Divide-and-conquer approach. Data structure
composition tree. Reduction to simple groups.

Effective Homomorphisms, recursion to kernel, image.



Hasse Principle

Instead of working (globally) over 7, work (locally)
modulo different coprime numbers, combine
(Paradigm: “Chinese” Remainder Theorem:
Aryabhata and Brahmagupta )

Aim: Show how this principle applies to a certain
class of integral matrix groups.



Matrix Groups Over Zn=7/mZ

First consider m=p?. (m=p2ditto.) C

Reduction mod p gives hom. : SLA(Zm) = SLA(Z)).

Q.
%
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Kernel {HpA|Aez,™". Note: det(H+pA)=1+p-Tr(A). g
Multiplication:

(H-pA) (H-pB)=H-p(A+B)+p?...=+p(A+B) mod m

kercp

is by addition of the the A-parts modulo p.

(Under map A~H-pA, ker is adjoint module in LIE-
sense.)



If m=pa, first consider image H of G modulo p.

Matrix group recognition on H. Get comp. tree.
Split in radical factor and solvable radical. 1

B Presentation gives (module) generators of
kernel. Consider p/p? layer as F,-vector space.
Basis with Spinning Algorithm.

pCombine to presentation of G mod p?
B lterate on p?/p3 kernel etc



Multiple Primes

If mis product or multiple primes, G is a subdirect product of
its images modulo prime powers.

To get standard solvable radical data structure:
& Consider images H, modulo each prime.

2 Combine radical factor homomorphisms p,, for different
primes to direct product of images.

& Combine the PCGS for the radicals for different primes.

B Extend PCGS through the extra layers if there are higher
prime powers in m. (Take new kernel generators each time,

linear algebra on 1/p(l-x).)
Result: Data structure, in particular order, for G < GL.(Z).
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PCCS polycyclic generat[ng set — data structu re for
solvable group that combines bases for different

vector space layers into object that can get
coefficients.




Multiple Primes
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.gap> LoadPackage(“matgrp”); # available for GAP 4.8.3

e

iéé?> g:=SL(3,Integers mod 1040);
I8E(3,271040%)
Cgap> et —FlttlngFreeLlftSetup(g),,

~gap> Size(q);

©849852961151281790976000

{gap> Collected(RelativeOrders(ff.pcgs));
B2 2 3, 1] ]
:gap> m: —Max1malSubgroupClassReps(g),,tlme,
124631 #24 seconds .
;gap> LlSt(m S >Slze( )/Slze(x))r

o, o, 183, 183, 938119, MEEiESd4 3752476,

Y 03708, 123708, 31, 31, 300, 3875, 4000 |
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Arithmetic Groups

Roughly. Discrete subgroup of Lie Group, defined by
arithmetic properties on matrix entries(e.g. det=1, preserve
form).

Definition: G linear algebraic group, over number field K An
arithmetic group is [ <G, such that for integers (?< K the

intersection ' G(@) has finite index in both intersectants.

Prototype: Subgroups of SL.(7), Sp2,(Z) of finite index.

Applications: Number Theory (Automorphic Forms),
Topology, Expander Graphs, String theory, ..

Theoretical algorithms for problems, such as conjugacy,
known, but infeasible in practice.
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Subgroups Of SL,(Z), Span(Z)

Take subgroup G < SLA(Z) (or Span) given by finite
set of generators. G is arithmetic if it has finite index.

2 Can we determine whether G has finite index?
2If G has finite index, can we determine it?

Here: Only SL case.

| _ DETINKO,
Joint work with ALLA DETINKO, FLANNERY,

DANE FLANNERY A,
Math.Comp.

(St. Andrews / NUI Galway). To appear




Proving Finite Index
Consider SLn(Z) as finitely presented group.

Generators: Elementary matrices.

Relators (obvious ones: orders of products,
commutators of generators) are known.

Write generators of G as words in these generators
(Gaussian Elimination. Often better: Words in images
mod m for sufficiently large m).

Enumerate cosets (Todd-Coxeter). If the index is finite
this process will terminate, and give the correct index.



Proving Finite Index
Consider SLn(Z) as finitely presented group.

Generators: Elementary matrices.

Relators (obvious ones: orders of products,

Caveat: Coset enumeration is a method,
not an algorithm: run-time cannot be
'/ bounded. If index is infinite the process

“does not terminate.

Enumerate cosets (Todd-Coxeter). If the index is finite
this process will terminate, and give the correct index.



Second Caveat

The obstacles of coset enumeration are inherent to
the problem.

SLn(Z) contains free subgroups if n=3, and it is thus

impossible to have an decision algorithm that is
guaranteed to answer whether elements generate a
subgroup of finite index.

Thus assume an oracle promises finite index (or
hope to be lucky).



Second Caveat

The obstacles of coset enumelGUELL:SUERILE
equivalent computer.

the problem. Entscheidungsproblem

SLA(Z) contains frec-ee®Broups if n=3, and it is thus
impossible to have an decision algorithm that is
guaranteed to answer whether elements generate a
subgroup of finite index.

Thus assume an oracle promises finite index (or
hope to be lucky).



Easy Example LONG,
Let SL3(Z) =zBr= REID

(GG

then [SL3(Z): B-21=3670016.  (Barely) doable.

But [SL3(Z): B7]1=24193282798937316960
=25345.71019 . 347821 ~ 264, Hopeless.




Congruence Subgroups
The m-th congruence subgroup ', <SLA(Z) is the

kernel of the reduction @, modulo m. Image is SLA(Zm).

If G < SLn(7) has finite index, there exists integer / such
that I/ < G. The smallest such /is called the level of G.

Then [SLA(7):G J=ISLa(Z)) : @i (G)].

Calculate this second index from generators MENNICKE
1965
of G modulo /

Thus sufficient to find level to get index.



Strategy

Consider congruence images O m(G)<SLA(Zm) for
increasing values of m to find level / of G.

2 Find the primes dividing /
B Find the prime powers dividing /

2 Criterion on whether |,=[SLn(Zm) : ©m (G )]
INCreases.



Same Index
SLA(Z)

Let G < SLA(Z) and C(m)=ker m c

If for a given m and prime p we have that
| =l mp but . then (modulo mp?) G
contains a supplement to C(mp).

mp)

We show such supplements do not exist, C(inpz)

thus a stable index remains stable. =1



Kernel Supplements

Let p be prime, a = 2, m=p? and H=SL(n,Z) for n = 2
(or H=Sp(2n, Zm) for n = 1). Let C(K)<H kernel mod k.
Theorem: C(p?*t") has no proper supplement in
cp?).

Theorem:

Let a=2. C(p) has a supplement in H if and only if

(@) H=5L(2,Z4), SL(2,Z0), SL(3,Z4), or SL(4,Z4).

(b) H=Sp(2,24), Sp(2,Z).

Proof: Small cases/counterexample by explicit calculation.
Use nice elements to show supplement contains kernel.




Index Algorithm

Assume that G has (unknown) finite index and level
[ Assume we know the set &?of primes dividing |

1. Set m=lcm@ ] ).
2. While for any p € %’we have

[SLA(Zm): m(Q)I<ISLA(Zpm): @ pm(G)], set m=pm.
3. Repeat until index is stable, level divides m.

Show that one can work prime-by-prime.



Index Algorithm

Assume that G has (unknown) finite index and level
[ Assume we know the set &?of primes dividing |

1. Set m=lcm@,[] 7).

2. While for any p € %’we have
[SLa(Zm):@m(QI<ISLn(Zpm):@pm(Q)], set m=pm.

3. Repeat until index is stable, level divides m.

Show that one can worl sEe =S e g i ik



Index Algorithm

Assume that G has (unknown) finite index and level
[ Assume we know the set &?of primes dividing |

1. Set m=lcm@ ] ).

2. While for any p € %’we have
A(Q)], set m=pm.

3. |\C|J\ AL UTILIT TTIUCUA 10 OLANVIL, |Cve| dIVIdeS m.

Show that one can work prime-by-prime.



Strong Approximation

Theorem: Let G < SLx(2). If there is a prime p > 2

such that G mod p=SLx(p), then this holds for
almost all primes. Such a group is called Zariski -

dense (Which agrees with the usL r
MATTHEWS,

Caveat: There are dense subgrol VASERSTEN, 77 WEIGEL
WEISFEILER 1996

do not have finite index. (They ¢ 1984 [h
goes back to the impossibility of
determines whether G has finite index.
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Theorem: Let G < SLx(2). If there is a prime p > 2

such that G mod p=SLx(p), then this holds for
almost all primes. Such a group is called Zariski -

dense (Which agrees with the usual definition).

Caveat: There are dense subgroups of SL,(Z) that

do not have finite index. (They are called thin) This
goes back to the impossibility of an algorithm that
determines whether G has finite index.



Finding The Set Of Primes

Theorem: Let n>=3 and suppose G has finite index.
The set Z?of primes dividing the level / consists of

those primes p for which

1. p>2 and G mod p #SLn(p), or
2. p=2 and G mod 4 #SLx(Z4)

Proof: If other primes divided the level, there would
be a supplement modulo p? (or 8).




Irreducible modulo Prime

Let p:G—GLA(Z) a representation that is absolutely
irreducible modulo one prime.

The Z-lattice L < Zr*n spanned by Ge has rank 2.

Ge is absolutely irreducible modulo each prime that
does not divide discriminant of L (i.e. almost all).

To find these primes: Approximate L with (random)
elements of Ge until full rank.



Transvections

Arithmeticity implies the existence of transvections,
elements t e G with rk (t1)=1.

For such an element let N= <{ ¢ be the normal
closure.

Let p be reduction modulo prime p with Ge=SL,(p). If

t,—1 * O, then tr is transvection and Np is absolutely
irreducible. For odd n this implies it is SL.

Let L be the Z-lattice spanned by (elements of) N.

Then &2 (primes with G mod p # SLx(p) ) consists of
primes dividing lcm(disc.L, gcd of entries of t-1).



.

o gap> g:=BetaT(7);

a '<matrix group with 3 generators>

@ gap> ke blbeta(g), ¥ tran=vection from Long/Reld paper

o [— e 16807, 344 —2401 ], [2401,-49 3447 ]
. gap> RankMat (t-t”0);

."§ép> PrlmesForDense(g, s L) itime;

of [ 7, 1021 ] |

» 60

o éap> MaxPCSPrlmes(g [H 102i]) time;
ATy 7 7 o

3Try 49 7

o' Try 343 7

; [ieydsd3ii.02 1

o Try 50203 1021

o: [350203, 24193282798937316960 ] #Proven Index in SL
291395 # about 5 mlnutes

: - I S TE At @ P = Nt @ B ia TETE > O G & = ) J
A P p- F . Er—— p- A . = - - = = )
e e e o @ ¢ ¢ ¢ o o o o e e ¢ ¢ o : b



General Case

If we have no transvections but know index is finite:
Use other representations to identify primes.

Note: Representations of SLx(p) are given by
polynomials on matrix entries, come from SLn(Z)




Identify Subgroups

Take a set 92 of polynomial representations of
SLn(Z), such that:

1. For every aed?the reduction &p: SLa(p)—=Zp,mx m
modulo p is a well-defined representation.

2. For prime p sufficiently large (i.e. p>const(n) ),
X, is absolutely irreducible.

3. For every maximal M<SLx(p), there exists xe ¥,
such that o, is not abs. irreducible on M.

Existence: Steinberg representation.
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Take a set 92 of polynomial representations of
SLn(Z), such that:

1. For every aed?the reduction &p: SLa(p)—=Zp,mx m
modulo p is a well-defined representation.

2. For prime p sufficiently large (i.e. p>const’-?
X, is absolutely irreducible. ——

3. For every maximal M< SL(p), there exis| A=K
such that o is not abs. irreducible on M. 2001

Existence: Steinberg representation.



Small n

Let &7 be

1. Actions on homogeneous poly.s of degree <4
2. Antisymmetric square of natural representation.

3. For n=3 (for 3.As) a 15-dimensional constituent
of the symmetric square of polynomials deg.2.

Then the conjecture holds for n=11 if p>4. BRAY,

HoLT,

Proof by inspection of lists of maximals. RONEY-
DOUGAL

2013
T—



Algorithm For Primes

For each polynomial representation pe 2 :

» Form (random) elements of Ge, span lattice L of
full rank deg(p)2.

+ Find primes dividing disc(L).



o
8;9ap> g:=Group([[778,2679,665],[323,797,665],
ol [6674504920,-1557328,34062304949]1,

o> [[-274290687,140904793,1960070592 ],[853,4560,294],
3;> B T w4

» gap> InterestingPrimes(g); # about 12 hours
afirrelevant prime 11

o 012 T 531

efi=3 Pol3

.il 4 repl5 ->[ 19 ]

W, S oy, 53

3L el it

3 gap> MaxPCSPrlmes(g [2,3,5,19,53]);

o= Try 1 2y Iry 2 2, Try 2 3, Try 6 3, iy 6 5, Try 30 O
)_Try 30 19 TLY 570 19, Try 570538 Try 30210 513

o Index is 5860826241898530299904 [« F 2. 1.3 ], [ 2, 41
.i [ MR, [ 31,1 1, [EEESEEEPT 1 ] ]
o [ 30210, 5860826241898530299904 F

.

-

. : . < A | e B i [e—=) /
e - = - = A—h @ P = AT = Sl & B - = = 3 = .
e e e o o ¢ ¢ o & o o e 6 e ¢ o o : -



Thin Groups

A dense subgroup that is not arithmetic is called
thin. It will have infinite index.

For such subgroups our algorithm determines the
arithmetic closure (smallest arithmetic overgroup).



Example

Class of monodromy groups In SP4(Z), associated
to Calabi-Yau threefolds. Seven are arithmetic.

1 1 1
O 1 0O 0
G~< d d 1 0 0
0 -k -1 1 0

Question: Indices of arithmetic closure C So far
known: One arithmetic group A containing G.




Example

0s In SP4(7), associated
to Calabi-Yau thretheg GQ‘/'o,? en are arithmetic.

Class of monodgy
/‘Q/_)S

O O O HOFMAN

SINGH
VENKATA- 1 0 1| ==AN
RAMANA o STRAATEN
O 0 1 2015
T———

Question: Indices of arithmetic closure C. So far
known: One arithmetic group A containing G.



Arithmetic

(dk) ' M | Index C | Time| Index A
3T 2 6 5.8 1
12 | 2 10 54 {
23) | 23 263.5 7. 35
(3,4) 2232 293552 | 126 24 5
(44) | 26 | 220325 | 101 | 26325
(6,5) | 2332| 2103652 | 156 | 243.52
(96) | 2.35| 2831452 | 192 | 27345
(5,5) | 2.53| 28335813 | 119 | 27 3213
24) | 24 | 21325 | 73 325
(14) | 22 2°5 58 {
(16,8) | 210 | 240325 | 20.1 | 216325
(12,7) | 2°32| 2173252 | 25 | 28 3. 52
(86) | 27 | 224325 | 123 | 28325
45 | 25 | 21335 | 99 243 5
Correct Prior




Open Questions, Directions

2 Good set 92 of representations (small degree, easy
construction)?

2 Analog result for Sp or other classical groups.

2 ASCHBACHER theorem, Better tools!
2 Better arithmetic for matrices over Zm

2 Algorithm finds arithmetic closure for dense
subgroups. Prove finite index in certain cases
more efficiently than coset enumeration?



Thank You |



