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General notation

In this talk, the word “group” will always mean “finite group”.

Given a group G, we denote by Irr(G) the set of irreducible complex
characters of G, and by

cd(G) = {χ(1) : χ ∈ Irr(G)}

the set of their degrees.

Question

(a) What information is encoded in cd(G) ?

(b) What are the possible sets cd(G) ?
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Character Degrees

Theorem (Isaacs, Passman; 1968)

Assume cdG = {1,m}, with 1 < m ∈ N. Then :

(a) (a1) If m is no prime power, or
(a2) if m = pa, p prime and G has abelian Sylow

p-subgroups,
then Ḡ = G/Z(G) = K̄ o H̄ is a Frobenius group, with
|H̄| = m and both K and H abelian.

(b) If m = pa, p prime, and P ∈ Sylp(G) is non-abelian, then
either G = A× P with A abelian or a = 1 and G has a
normal abelian subgroup of index p.

Theorem (Isaacs,Passman)

If | cdG| = 2, then G is solvable and dl(G) = 2.

If | cdG| = 3, then G is solvable and dl(G) ≤ 3.
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| cd(G) | and derived length

Theorem (Taketa; 1930)

If G is monomial, then G is solvable and dl(G) ≤ | cdG|.

Theorem (Berger; 1976)

If G has odd order, then dl(G) ≤ | cdG|.

Theorem (Gluck; 1985)

If G is solvable, then dl(G) ≤ 2| cdG|.

Theorem (Keller; 2002)

If G is solvable, then dl(G/F(G)) ≤ 24 log2(| cdG|) + 364.
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Character degrees

Theorem (Isaacs, Passman)

If cd(G) = {1, p1, p2, . . . , pn}, pi primes, then n ≤ 2 and G is solvable.
Also: the structure of G is described.

Theorem (Manz; 1985)

If cd(G) = {1, pa11 , p
a2
2 , . . . , p

at
t }, pi primes, ai > 0, then

(1) G is solvable if and only if |{pi|1 ≤ i ≤ t}| ≤ 2 and
2 ≤ dl(G) ≤ 5;

(2) G non-solvable if and only if G ∼= S ×A with
S ∼= PSL(2, 4) or PSL(2, 8) and A is abelian.

cd(PSL(2, 4)) = {1, 22, 3, 5}
cd(PSL(2, 8)) = {1, 23, 32, 7}
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Prime divisors of character degrees

There is some interplay between the “arithmetical structure” of cd(G)
and the group structure of G. Two celebrated instances:

Theorem (Ito 1951; Michler 1986)

Let p be prime number.
p does not divide χ(1) for all χ ∈ IrrG ⇔ if G has a normal abelian
Sylow p-subgroup.

Theorem (Thompson; 1970)

Let G be a group and p a prime. If every element in cd(G) \ {1} is
divisible by p, then G has a normal p-complement.
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The prime graph
One of the methods that have been devised in order to approach the
degree-set is to introduce the prime graph.

Let X be a finite nonempty subset of N. The prime graph on X is the
simple undirected graph ∆(X) whose vertices are the primes that
divide some number in X, and two (distinct) vertices p, q are adjacent
if and only if there exists x ∈ X such that pq | x.
Some significant sets of positive integers associated with a group G:

o(G) = {o(g) : g ∈ G}.
cd(G) = {χ(1) : χ ∈ Irr(G)}.
cs(G) = {|gG| : g ∈ G}.

The prime graph can be attached to each of those sets.

Question

To what extent the group structure of G is reflected on and influenced
by the structure of the relevant graph ?
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Character Degrees and Class Sizes: a connection

Theorem (Casolo, D.; 2009)

∆(cd(G)) is a subgraph of ∆(cs(G)).
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The character degree graph

We write, for short, ∆(G) instead of ∆(cd(G)).

Example: ∆(M11)
2

3

5

11

cdM11 = {1, 10, 11, 16, 44, 45, 55}
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∆(G)

Theorem (Ito-Michler)

p prime, P ∈ Sylp(G):
p 6∈ V(∆(G)) ⇔ P abelian and P / G

Theorem (Pense; Zhang; 1996)

Assume G solvable. If p, q ∈ V(∆(G)) are not adjacent in ∆(G) then
lp(G) ≤ 2 and lq(G) ≤ 2.
If lp(G) + lq(G) = 4, then G has a normal section isomorphic to
(C3 × C3) o GL(2, 3).
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Number of Connected Components

Theorem (Manz, Staszewski, Willems; 1988)

n(∆(G)) ≤ 3

n(∆(G)) ≤ 2 if G is solvable

The groups G with disconnected graph ∆(G) have been classified

G solvable: (Zhang; 2000/Palfy; 2001/Lewis; 2001).

any G: (Lewis, White; 2003).
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Diameter of ∆(G)

Theorem (Manz, Willems, Wolf; 1989/ Lewis, White; 2007)

For any G, diam(∆(G)) ≤ 3.

Example: ∆(J1)
3

5

2

7

19

11
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The character degree graph for solvable groups

In the context of solvable groups, the following properties of the
character degree graph have been proved.

Let p, q and r be three vertices of ∆(G). Then two of them are
adjacent in ∆(G) (Pálfy; 1998).

∆(G) has at most two connected components (Manz; 1985).

If ∆(G) is disconnected, then each connected component induces a
complete subgraph (Pálfy; 1998).

The diameter of ∆(G) is at most 3 (Manz, Willems, Wolf; 1989).
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The character degree graph for solvable groups

A significant property of ∆(G) in the disconnected case:

Theorem (Pálfy; 2001)

Let G be a solvable group such that ∆(G) is disconnected. If n1 and n2

are the sizes of the two connected components, then, assuming n1 ≥ n2,
we have n1 ≥ 2n2 − 1.
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Diameter of ∆(G), G solvable

Essentially, one example of a solvable group G such that ∆(G) is
connected of diameter three is known (Lewis; 2002).
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Lewis’ example

|G| = 245 · (215 − 1) · 15

cd(G) = {1, 3, 5, 3 · 5, 7 · 31 · 151, 212 · 31 · 151,

2a · 7 · 31 · 151 (a ∈ 7, 12, 13),

2b · 3 · 31 · 151 (b ∈ 12, 15)}
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Some questions by Lewis

|G| = 245 · (215 − 1) · 15

(a) Is this example
“minimal”?

(b) Let G be a solvable
group such that ∆(G) is
connected with diameter
three. What can we say
about the structure of G?
For instance, what about
h(G)?
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Some questions by Lewis

(c) For G as above, is it true
that there exists a
normal subgroup N of G
with

Vert(∆(G/N)) = Vert(∆(G))

and with ∆(G/N)
disconnected?

Can Vert(∆(G)) be
partitioned into two
subsets π1 and π2, both
inducing complete
subgraphs of ∆(G), such
that |π1| ≥ 2|π2| ?

(In Lewis’ example:)
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If ∆(G) is connected with diameter three then...
[Casolo, D., Pacifici, Sanus; Sass (2016)]

(a) There exists a prime p
such that G = PH, with
P a normal nonabelian
Sylow p-subgroup of G
and H a p-complement.

(b) F(G) = P ×A, where
A = CH(P ) ≤ Z(G),
H/A is not nilpotent and
has cyclic Sylow
subgroups.

(c)
h(G) = 3
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If ∆(G) is connected with diameter three then...

(c) M1 = [P,G]/P ′ and
Mi = γi(P )/γi+1(P ), for
2 ≤ i ≤ c (where c is the
nilpotency class of P ) are
chief factors of G of the
same order pn, with n
divisible by at least two
odd primes. G/CG(Mj)
embeds in Γ(pn) as an
irreducible subgroup.

Γ(pn) = {x 7→ axσ | a, x ∈ K, a 6= 0, σ ∈ Gal(K)} with K = GF(pn)
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If ∆(G) is connected with diameter three then...

|π1| ≥ 2|π2| − 1

⇒ |π1 ∪ {p}| ≥ 2|π2|
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If ∆(G) is connected with diameter three then...

Finally, setting d = |H/X|,
we have that |X/A| is
divisible by
(pn − 1)/(pn/d − 1). Since c
must be at least 3, we get

|G| ≥ p3n · p
n − 1

pn/d − 1
· d ≥

≥ 245 · (215 − 1) · 15.
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The complement graph

Let ∆ be a graph. The complement of ∆ is the graph ∆ whose vertices
are those of ∆, and two vertices are adjacent in ∆ if and only if they
are non-adjacent in ∆.
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An extension of Pálfy’s Theorem

Pálfy’s “Three Vertex Theorem” can be rephrased as follows:

Theorem (Pálfy; 1998)

Let G be a solvable group. Then the graph ∆(G) does not contain any
cycle of length 3.

Recently, we obtained the following extension:

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici)

Let G be a solvable group. Then the graph ∆(G) does not contain any
cycle of odd length.
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Some consequences

But the graphs containing no cycles of odd length are precisely the
bipartite graphs. Therefore the previous theorem asserts that, for any
solvable group G, the graph ∆(G) is bipartite. As an immediate
consequence:

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici)

Let G be a solvable group. Then the set V(G) of the vertices of ∆(G) is
covered by two subsets, each inducing a complete subgraph in ∆(G).
In particular, for every subset S of V(G), at least half the vertices in S
are pairwise adjacent in ∆(G).
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Huppert’s ρ-σ Conjecture

Another remark:

Corollary

Let G be a solvable group. If n is the maximum size of a complete
subgraph of ∆(G), then ∆(G) has at most 2n vertices.

Conjecture

(B. Huppert) Any solvable group G has an irreducible character whose
degree is divisible by at least half the primes in V(G).

The corollary above provides some more evidence for this conjecture.
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