On the character degree graphs of finite groups

Silvio Dolfi

Dipartimento di Matematica e Informatica
Università di Firenze

ICTS Bangalore, 13 November 2016

General notation

In this talk, the word "group" will always mean "finite group". Given a group G, we denote by $\operatorname{Irr}(G)$ the set of irreducible complex $\operatorname{cd}(G)=\{\chi(1): \quad \chi \in \operatorname{Irr}(G)\}$
(b) What are the possible sets $\operatorname{cd}(G)$?

General notation

In this talk, the word "group" will always mean "finite group". Given a group G, we denote by $\operatorname{Irr}(G)$ the set of irreducible complex characters of G,

$$
\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}
$$

(a) What information is encoded in $\operatorname{cd}(G)$(b) What are the possible sets $\operatorname{cd}(G)$

General notation

In this talk, the word "group" will always mean "finite group". Given a group G, we denote by $\operatorname{Irr}(G)$ the set of irreducible complex characters of G, and by

$$
\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}
$$

the set of their degrees.
(a) What information is encoded in c
(b) What are the possible sets $\operatorname{cd}(G)$

General notation

In this talk, the word "group" will always mean "finite group".
Given a group G, we denote by $\operatorname{Irr}(G)$ the set of irreducible complex characters of G, and by

$$
\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}
$$

the set of their degrees.

Question

(a) What information is encoded in $\operatorname{cd}(G)$?

General notation

In this talk, the word "group" will always mean "finite group".
Given a group G, we denote by $\operatorname{Irr}(G)$ the set of irreducible complex characters of G, and by

$$
\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}
$$

the set of their degrees.

Question

(a) What information is encoded in $\operatorname{cd}(G)$?
(b) What are the possible sets $\operatorname{cd}(G)$?

Character Degrees

Theorem (Isaacs, Passman; 1968)
Assume $\operatorname{cd} G=\{1, m\}$, with $1<m \in \mathbb{N}$. Then :
(a)
(a1) If m is no prime power, or
(a2) if $m=p^{a}, p$ prime and G has abelian Sylow p-subgroups, then $\bar{G}=G / \mathbf{Z}(G)=\bar{K} \rtimes \bar{H}$ is a Frobenius group, with $|\bar{H}|=m$ and both K and H abelian.
(b) If $m=p^{a}$, p prime, and $P \in \operatorname{Syl}_{p}(G)$ is non-abelian, then either $G=A \times P$ with A abelian or $a=1$ and G has a normal abelian subgroup of index p.

Character Degrees

Theorem (Isaacs, Passman; 1968)

Assume $\operatorname{cd} G=\{1, m\}$, with $1<m \in \mathbb{N}$. Then :
(a)
(a1) If m is no prime power, or
(a2) if $m=p^{a}, p$ prime and G has abelian Sylow p-subgroups, then $\bar{G}=G / \mathbf{Z}(G)=\bar{K} \rtimes \bar{H}$ is a Frobenius group, with $|\bar{H}|=m$ and both K and H abelian.
(b) If $m=p^{a}$, p prime, and $P \in \operatorname{Syl}_{p}(G)$ is non-abelian, then either $G=A \times P$ with A abelian or $a=1$ and G has a normal abelian subgroup of index p.

Theorem (Isaacs,Passman)

- If $|\operatorname{cd} G|=2$, then G is solvable and $\operatorname{dl}(G)=2$.
- If $|\operatorname{cd} G|=3$, then G is solvable and $\mathrm{dl}(G) \leq 3$.

$\operatorname{cd}(G) \mid$ and derived length

Theorem (Taketa; 1930)
If G is monomial, then G is solvable and $\mathrm{dl}(G) \leq|\operatorname{cd} G|$.

$\operatorname{cd}(G) \mid$ and derived length

Theorem (Taketa; 1930)
If G is monomial, then G is solvable and $\operatorname{dl}(G) \leq|\operatorname{cd} G|$.

Theorem (Berger; 1976)
If G has odd order, then $\operatorname{dl}(G) \leq|\operatorname{cd} G|$.

$\operatorname{cd}(G) \mid$ and derived length

Theorem (Taketa; 1930)
If G is monomial, then G is solvable and $\operatorname{dl}(G) \leq|\operatorname{cd} G|$.

Theorem (Berger; 1976)
If G has odd order, then $\operatorname{dl}(G) \leq|\operatorname{cd} G|$.

Theorem (Gluck; 1985)
If G is solvable, then $\operatorname{dl}(G) \leq 2|\operatorname{cd} G|$.
$\operatorname{cd}(G) \mid$ and derived length
Theorem (Taketa; 1930)
If G is monomial, then G is solvable and $\operatorname{dl}(G) \leq|\operatorname{cd} G|$.

Theorem (Berger; 1976)
If G has odd order, then $\operatorname{dl}(G) \leq|\operatorname{cd} G|$.

Theorem (Gluck; 1985)
If G is solvable, then $\operatorname{dl}(G) \leq 2|\operatorname{cd} G|$.

Theorem (Keller; 2002)
If G is solvable, then $\mathrm{dl}(G / \mathbf{F}(G)) \leq 24 \log _{2}(|\operatorname{cd} G|)+364$.

Character degrees

Theorem (Isaacs, Passman)
If $\operatorname{cd}(G)=\left\{1, p_{1}, p_{2}, \ldots, p_{n}\right\}, p_{i}$ primes, then $n \leq 2$ and G is solvable.

Character degrees

Theorem (Isaacs, Passman)
If $\operatorname{cd}(G)=\left\{1, p_{1}, p_{2}, \ldots, p_{n}\right\}, p_{i}$ primes, then $n \leq 2$ and G is solvable. Also: the structure of G is described.

Character degrees

Theorem (Isaacs, Passman)

If $\operatorname{cd}(G)=\left\{1, p_{1}, p_{2}, \ldots, p_{n}\right\}$, p_{i} primes, then $n \leq 2$ and G is solvable. Also: the structure of G is described.

Theorem (Manz; 1985)
If $\operatorname{cd}(G)=\left\{1, p_{1}^{a_{1}}, p_{2}^{a_{2}}, \ldots, p_{t}^{a_{t}}\right\}, p_{i}$ primes, $a_{i}>0$, then
(1) G is solvable if and only if $\left|\left\{p_{i} \mid 1 \leq i \leq t\right\}\right| \leq 2$ and

$$
2 \leq d l(G) \leq 5
$$

(2) G non-solvable if and only if $G \cong S \times A$ with $S \cong \operatorname{PSL}(2,4)$ or $\operatorname{PSL}(2,8)$ and A is abelian.

Character degrees

Theorem (Isaacs, Passman)

If $\operatorname{cd}(G)=\left\{1, p_{1}, p_{2}, \ldots, p_{n}\right\}$, p_{i} primes, then $n \leq 2$ and G is solvable. Also: the structure of G is described.

Theorem (Manz; 1985)
If $\operatorname{cd}(G)=\left\{1, p_{1}^{a_{1}}, p_{2}^{a_{2}}, \ldots, p_{t}^{a_{t}}\right\}, p_{i}$ primes, $a_{i}>0$, then
(1) G is solvable if and only if $\left|\left\{p_{i} \mid 1 \leq i \leq t\right\}\right| \leq 2$ and

$$
2 \leq d l(G) \leq 5
$$

(2) G non-solvable if and only if $G \cong S \times A$ with $S \cong \operatorname{PSL}(2,4)$ or $\operatorname{PSL}(2,8)$ and A is abelian.
$\operatorname{cd}(\operatorname{PSL}(2,4))=\left\{1,2^{2}, 3,5\right\}$
$\operatorname{cd}(\operatorname{PSL}(2,8))=\left\{1,2^{3}, 3^{2}, 7\right\}$

Prime divisors of character degrees

There is some interplay between the "arithmetical structure" of $\operatorname{cd}(G)$ and the group structure of G.

Prime divisors of character degrees

There is some interplay between the "arithmetical structure" of $\operatorname{cd}(G)$ and the group structure of G. Two celebrated instances:

Theorem (Ito 1951; Michler 1986)
Let p be prime number.
p does not divide $\chi(1)$ for all $\chi \in \operatorname{Irr} G \Leftrightarrow$ if G has a normal abelian Sylow p-subgroup.

Prime divisors of character degrees

There is some interplay between the "arithmetical structure" of $\operatorname{cd}(G)$ and the group structure of G. Two celebrated instances:

Theorem (Ito 1951; Michler 1986)
Let p be prime number.
p does not divide $\chi(1)$ for all $\chi \in \operatorname{Irr} G \Leftrightarrow$ if G has a normal abelian Sylow p-subgroup.

Theorem (Thompson; 1970)
Let G be a group and p a prime. If every element in $\operatorname{cd}(G) \backslash\{1\}$ is divisible by p, then G has a normal p-complement.

The prime graph

One of the methods that have been devised in order to approach the degree-set is to introduce the prime graph.

Let X be a finite nonempty subset of \mathbb{N}. The prime graph on X is the simple undirected graph $\Delta(X)$ whose vertices are the primes that divide some number in X, and two (distinct) vertices p, q are adjacent if and only if there exists $x \in X$ such that $p q \mid x$.

The prime graph

One of the methods that have been devised in order to approach the degree-set is to introduce the prime graph.

Let X be a finite nonempty subset of \mathbb{N}. The prime graph on X is the simple undirected graph $\Delta(X)$ whose vertices are the primes that divide some number in X, and two (distinct) vertices p, q are adjacent if and only if there exists $x \in X$ such that $p q \mid x$. Some significant sets of positive integers associated with a group G :

- $\mathrm{o}(G)=\{o(g): g \in G\}$.

The prime graph

One of the methods that have been devised in order to approach the degree-set is to introduce the prime graph.

Let X be a finite nonempty subset of \mathbb{N}. The prime graph on X is the simple undirected graph $\Delta(X)$ whose vertices are the primes that divide some number in X, and two (distinct) vertices p, q are adjacent if and only if there exists $x \in X$ such that $p q \mid x$. Some significant sets of positive integers associated with a group G :

- $\mathrm{o}(G)=\{o(g): g \in G\}$.
- $\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}$.

The prime graph

One of the methods that have been devised in order to approach the degree-set is to introduce the prime graph.

Let X be a finite nonempty subset of \mathbb{N}. The prime graph on X is the simple undirected graph $\Delta(X)$ whose vertices are the primes that divide some number in X, and two (distinct) vertices p, q are adjacent if and only if there exists $x \in X$ such that $p q \mid x$. Some significant sets of positive integers associated with a group G :

- $\mathrm{o}(G)=\{o(g): g \in G\}$.
- $\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}$.
- $\operatorname{cs}(G)=\left\{\left|g^{G}\right|: g \in G\right\}$.

The prime graph

One of the methods that have been devised in order to approach the degree-set is to introduce the prime graph.

Let X be a finite nonempty subset of \mathbb{N}. The prime graph on X is the simple undirected graph $\Delta(X)$ whose vertices are the primes that divide some number in X, and two (distinct) vertices p, q are adjacent if and only if there exists $x \in X$ such that $p q \mid x$. Some significant sets of positive integers associated with a group G :

- $\mathrm{o}(G)=\{o(g): g \in G\}$.
- $\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}$.
- $\operatorname{cs}(G)=\left\{\left|g^{G}\right|: g \in G\right\}$.

The prime graph can be attached to each of those sets.

Question

To what extent the group structure of G is reflected on and influenced by the structure of the relevant graph?

Character Degrees and Class Sizes: a connection

Theorem (Casolo, D.; 2009)
$\Delta(\operatorname{cd}(G))$ is a subgraph of $\Delta(\operatorname{cs}(G))$.

The character degree graph

We write, for short, $\Delta(G)$ instead of $\Delta(\operatorname{cd}(G))$.

The character degree graph

We write, for short, $\Delta(G)$ instead of $\Delta(\operatorname{cd}(G))$.

Example: $\Delta\left(M_{11}\right)$

$$
\operatorname{cd} M_{11}=\{1,10,11,16,44,45,55\}
$$

$\Delta(G)$

```
Theorem (Ito-Michler)
\(p\) prime, \(P \in \operatorname{Syl}_{p}(G)\) :
\(p \notin \mathrm{~V}(\Delta(G)) \Leftrightarrow P\) abelian and \(P \triangleleft G\)
```


$\Delta(G)$

Theorem (Ito-Michler)
p prime, $P \in \operatorname{Syl}_{p}(G)$:
$p \notin \mathrm{~V}(\Delta(G)) \Leftrightarrow P$ abelian and $P \triangleleft G$

Theorem (Pense; Zhang; 1996)
Assume G solvable. If $p, q \in \mathrm{~V}(\Delta(G))$ are not adjacent in $\Delta(G)$ then $l_{p}(G) \leq 2$ and $l_{q}(G) \leq 2$.
If $l_{p}(G)+l_{q}(G)=4$, then G has a normal section isomorphic to $\left(C_{3} \times C_{3}\right) \rtimes \mathrm{GL}(2,3)$.

Number of Connected Components

Theorem (Manz, Staszewski, Willems; 1988)

- $\mathrm{n}(\Delta(G)) \leq 3$
- $\mathrm{n}(\Delta(G)) \leq 2$ if G is solvable

Number of Connected Components

Theorem (Manz, Staszewski, Willems; 1988)

- $\mathrm{n}(\Delta(G)) \leq 3$
- $\mathrm{n}(\Delta(G)) \leq 2$ if G is solvable

The groups G with disconnected graph $\Delta(G)$ have been classified

- G solvable: (Zhang; 2000/Palfy; 2001/Lewis; 2001).
- any G: (Lewis, White; 2003).

Diameter of $\Delta(G)$

Theorem (Manz, Willems, Wolf; 1989/ Lewis, White; 2007)
For any G, $\operatorname{diam}(\Delta(G)) \leq 3$.

Diameter of $\Delta(G)$

Theorem (Manz, Willems, Wolf; 1989/ Lewis, White; 2007)
For any G, $\operatorname{diam}(\Delta(G)) \leq 3$.

Example: $\Delta\left(J_{1}\right)$

The character degree graph for solvable groups

In the context of solvable groups, the following properties of the character degree graph have been proved.
\square

The character degree graph for solvable groups

In the context of solvable groups, the following properties of the character degree graph have been proved.

- Let p, q and r be three vertices of $\Delta(G)$. Then two of them are adjacent in $\Delta(G)$ (Pálfy; 1998).

The character degree graph for solvable groups

In the context of solvable groups, the following properties of the character degree graph have been proved.

- Let p, q and r be three vertices of $\Delta(G)$. Then two of them are adjacent in $\Delta(G)$ (Pálfy; 1998).
- $\Delta(G)$ has at most two connected components (Manz; 1985).

The character degree graph for solvable groups

In the context of solvable groups, the following properties of the character degree graph have been proved.

- Let p, q and r be three vertices of $\Delta(G)$. Then two of them are adjacent in $\Delta(G)$ (Pálfy; 1998).
- $\Delta(G)$ has at most two connected components (Manz; 1985).
- If $\Delta(G)$ is disconnected, then each connected component induces a complete subgraph (Pálfy; 1998).

The character degree graph for solvable groups

In the context of solvable groups, the following properties of the character degree graph have been proved.

- Let p, q and r be three vertices of $\Delta(G)$. Then two of them are adjacent in $\Delta(G)$ (Pálfy; 1998).
- $\Delta(G)$ has at most two connected components (Manz; 1985).
- If $\Delta(G)$ is disconnected, then each connected component induces a complete subgraph (Pálfy; 1998).
- The diameter of $\Delta(G)$ is at most 3 (Manz, Willems, Wolf; 1989).

The character degree graph for solvable groups

A significant property of $\Delta(G)$ in the disconnected case:

Theorem (Pálfy; 2001)
Let G be a solvable group such that $\Delta(G)$ is disconnected. If n_{1} and n_{2} are the sizes of the two connected components, then, assuming $n_{1} \geq n_{2}$, we have $n_{1} \geq 2^{n_{2}}-1$.

Diameter of $\Delta(G), G$ solvable

Diameter of $\Delta(G), G$ solvable

Essentially, one example of a solvable group G such that $\Delta(G)$ is connected of diameter three is known (Lewis; 2002).

Diameter of $\Delta(G), G$ solvable

Essentially, one example of a solvable group G such that $\Delta(G)$ is connected of diameter three is known (Lewis; 2002).

$$
\begin{aligned}
& c d(G)=\left\{1,3,5,3 \cdot 5,7 \cdot 31 \cdot 151,2^{12} \cdot 31 \cdot 151,\right. \\
& \\
& \quad \begin{array}{l}
2^{a} \cdot 7 \cdot 31 \cdot 151 \quad(a \in 7,12,13) \\
\\
\left.\quad 2^{b} \cdot 3 \cdot 31 \cdot 151 \quad(b \in 12,15)\right\}
\end{array}
\end{aligned}
$$

Some questions by Lewis

Some questions by Lewis

(a) Is this example "minimal"?
(b) Let G be a solvable group such that $\Delta(G)$ is connected with diameter three. What can we say about the structure of G ? For instance, what about $\mathrm{h}(G)$?

Some questions by Lewis

(c) For G as above, is it true that there exists a normal subgroup N of G with
$\operatorname{Vert}(\Delta(G / N))=\operatorname{Vert}(\Delta(G))$
and with $\Delta(G / N)$
disconnected?

Some questions by Lewis

(c) For G as above, is it true that there exists a normal subgroup N of G with
(In Lewis' example:)
$\operatorname{Vert}(\Delta(G / N))=\operatorname{Vert}(\Delta(G))$
$\Delta(G)$
and with $\Delta(G / N)$
disconnected?

Some questions by Lewis

(c) For G as above, is it true that there exists a normal subgroup N of G with

> (In Lewis' example:)
$\operatorname{Vert}(\Delta(G / N))=\operatorname{Vert}(\Delta(G))$
and with $\Delta(G / N)$
disconnected?

Some questions by Lewis

(c) For G as above, is it true that there exists a normal subgroup N of G with
(In Lewis' example:)
$\operatorname{Vert}(\Delta(G / N))=\operatorname{Vert}(\Delta(G))$
and with $\Delta(G / N)$
disconnected?
Can $\operatorname{Vert}(\Delta(G))$ be partitioned into two subsets π_{1} and π_{2}, both inducing complete
$\Delta\left(G / \gamma_{3}(P)\right)$

subgraphs of $\Delta(G)$, such that $\left|\pi_{1}\right| \geq 2^{\left|\pi_{2}\right|}$?

If $\Delta(G)$ is connected with diameter three then... [Casolo, D., Pacifici, Sanus; Sass (2016)]

If $\Delta(G)$ is connected with diameter three then... [Casolo, D., Pacifici, Sanus; Sass (2016)]

(a) There exists a prime p such that $G=P H$, with P a normal nonabelian Sylow p-subgroup of G and H a p-complement.
(b) $\mathbf{F}(G)=P \times A$, where
$A=\mathbf{C}_{H}(P) \leq \mathbf{Z}(G)$,
H / A is not nilpotent and has cyclic Sylow subgroups.

If $\Delta(G)$ is connected with diameter three then... [Casolo, D., Pacifici, Sanus; Sass (2016)]

(a) There exists a prime p such that $G=P H$, with P a normal nonabelian Sylow p-subgroup of G and H a p-complement.
(b) $\mathbf{F}(G)=P \times A$, where
$A=\mathbf{C}_{H}(P) \leq \mathbf{Z}(G)$,
H / A is not nilpotent and has cyclic Sylow subgroups.
(c)

$$
h(G)=3
$$

If $\Delta(G)$ is connected with diameter three then...

(c) $M_{1}=[P, G] / P^{\prime}$ and $M_{i}=\gamma_{i}(P) / \gamma_{i+1}(P)$, for $2 \leq i \leq c$ (where c is the nilpotency class of P) are chief factors of G of the same order p^{n}, with n divisible by at least two odd primes. $G / \mathbf{C}_{G}\left(M_{j}\right)$ embeds in $\Gamma\left(p^{n}\right)$ as an irreducible subgroup.

If $\Delta(G)$ is connected with diameter three then...

(c) $M_{1}=[P, G] / P^{\prime}$ and $M_{i}=\gamma_{i}(P) / \gamma_{i+1}(P)$, for $2 \leq i \leq c$ (where c is the nilpotency class of P) are chief factors of G of the same order p^{n}, with n divisible by at least two odd primes. $G / \mathbf{C}_{G}\left(M_{j}\right)$ embeds in $\Gamma\left(p^{n}\right)$ as an irreducible subgroup.
$\Gamma\left(p^{n}\right)=\left\{x \mapsto a x^{\sigma} \mid a, x \in \mathbb{K}, a \neq 0, \sigma \in \operatorname{Gal}(\mathbb{K})\right\}$ with $\mathbb{K}=\operatorname{GF}\left(p^{n}\right)$

If $\Delta(G)$ is connected with diameter three then...

If $\Delta(G)$ is connected with diameter three then...

$$
\left|\pi_{1}\right| \geq 2^{\left|\pi_{2}\right|}-1
$$

If $\Delta(G)$ is connected with diameter three then...

$$
\begin{gathered}
\left|\pi_{1}\right| \geq 2^{\left|\pi_{2}\right|}-1 \\
\Rightarrow\left|\pi_{1} \cup\{p\}\right| \geq 2^{\left|\pi_{2}\right|}
\end{gathered}
$$

If $\Delta(G)$ is connected with diameter three then...

$$
\begin{gathered}
\left|\pi_{1}\right| \geq 2^{\left|\pi_{2}\right|}-1 \\
\Rightarrow\left|\pi_{1} \cup\{p\}\right| \geq 2^{\left|\pi_{2}\right|}
\end{gathered}
$$

If $\Delta(G)$ is connected with diameter three then...

Finally, setting $d=|H / X|$, we have that $|X / A|$ is divisible by
$\left(p^{n}-1\right) /\left(p^{n / d}-1\right)$. Since c
must be at least 3 , we get

$$
\begin{aligned}
|G| & \geq p^{3 n} \cdot \frac{p^{n}-1}{p^{n / d}-1} \cdot d \geq \\
& \geq 2^{45} \cdot\left(2^{15}-1\right) \cdot 15
\end{aligned}
$$

The complement graph

Let Δ be a graph. The complement of Δ is the graph $\bar{\Delta}$ whose vertices are those of Δ, and two vertices are adjacent in $\bar{\Delta}$ if and only if they are non-adjacent in Δ.

The complement graph

Let Δ be a graph. The complement of Δ is the graph $\bar{\Delta}$ whose vertices are those of Δ, and two vertices are adjacent in $\bar{\Delta}$ if and only if they are non-adjacent in Δ.

The complement graph

Let Δ be a graph. The complement of Δ is the graph $\bar{\Delta}$ whose vertices are those of Δ, and two vertices are adjacent in $\bar{\Delta}$ if and only if they are non-adjacent in Δ.

Δ

$\bar{\Delta}$

An extension of Pálfy's Theorem

Pálfy's "Three Vertex Theorem" can be rephrased as follows:

Recently, we obtained the following extension:

An extension of Pálfy's Theorem

Pálfy's "Three Vertex Theorem" can be rephrased as follows:

Theorem (Pálfy; 1998)
Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of length 3 .

[^0]
An extension of Pálfy's Theorem

Pálfy's "Three Vertex Theorem" can be rephrased as follows:
Theorem (Pálfy; 1998)
Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of length 3 .

Recently, we obtained the following extension:

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici)
Let G be a solvable group. Then the graph $\overline{\Delta(G)}$ does not contain any cycle of odd length.

Some consequences

But the graphs containing no cycles of odd length are precisely the bipartite graphs. Therefore the previous theorem asserts that, for any solvable group G, the graph $\overline{\Delta(G)}$ is bipartite.

Some consequences

But the graphs containing no cycles of odd length are precisely the bipartite graphs. Therefore the previous theorem asserts that, for any solvable group G, the graph $\overline{\Delta(G)}$ is bipartite. As an immediate consequence:

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici)
Let G be a solvable group. Then the set $\mathrm{V}(G)$ of the vertices of $\Delta(G)$ is covered by two subsets, each inducing a complete subgraph in $\Delta(G)$.

Some consequences

But the graphs containing no cycles of odd length are precisely the bipartite graphs. Therefore the previous theorem asserts that, for any solvable group G, the graph $\overline{\Delta(G)}$ is bipartite. As an immediate consequence:

Theorem (Akhlaghi, Casolo, D., Khedri, Pacifici)
Let G be a solvable group. Then the set $\mathrm{V}(G)$ of the vertices of $\Delta(G)$ is covered by two subsets, each inducing a complete subgraph in $\Delta(G)$. In particular, for every subset \mathcal{S} of $\mathrm{V}(G)$, at least half the vertices in \mathcal{S} are pairwise adjacent in $\Delta(G)$.

Huppert's $\rho-\sigma$ Conjecture

Another remark:

Corollary

Let G be a solvable group. If n is the maximum size of a complete subgraph of $\Delta(G)$, then $\Delta(G)$ has at most $2 n$ vertices.

Huppert's $\rho-\sigma$ Conjecture

Another remark:

Corollary

Let G be a solvable group. If n is the maximum size of a complete subgraph of $\Delta(G)$, then $\Delta(G)$ has at most $2 n$ vertices.

Conjecture

(B. Huppert) Any solvable group G has an irreducible character whose degree is divisible by at least half the primes in $\mathrm{V}(G)$.

Huppert's $\rho-\sigma$ Conjecture

Another remark:

Corollary

Let G be a solvable group. If n is the maximum size of a complete subgraph of $\Delta(G)$, then $\Delta(G)$ has at most $2 n$ vertices.

Conjecture

(B. Huppert) Any solvable group G has an irreducible character whose degree is divisible by at least half the primes in $\mathrm{V}(G)$.

The corollary above provides some more evidence for this conjecture.

[^0]: Recently, we obtained the following extension:

