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Breadth of a p-group

Let G be a finite p-group and x ∈ G.

b(x) = logp
∣∣xG∣∣ ,

b(G) = max
x∈G
{b(x)}.

k(G): number of conjugacy classes of G

k i(G): number of conjugacy classes of G of length pi (classes
of elements of breadth i).
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Isoclinism

We recall that (α, β) is an isoclinism between two groups G and
H if α : G/Z(G)→ H/Z(H) and β : G′ → H ′ are isomorphisms
making the following diagram commutative

G/Z(G)×G/Z(G)
α×α−−−−→ H/Z(H)×H/Z(H)

[·,·]
y y[·,·]

G′ −−−−→
β

H ′

Isoclinism is an equivalence relation among isomorphism types
of finite groups.
Groups S of minimal order in an isoclinism class are called
stem groups and are characterized by the property:

Z(S) ≤ S′

(P. Hall 1940).
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Central products

A group G is the central product of its subgroups H and K if
G =< H,K > and H and K centralize each other.

Equivalently, given the groups H and K, and an isomorphism φ
of a subgroup N of Z(H) onto a subgroup of Z(K), the central
product of H and K with respect to φ will be

H ×φ K =
H ×K

< (u, φ(u)−1)|u ∈ N >
.

As an example, every extraspecial p-group is the (iterated)
central product of non abelian p-groups of order p3.
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Breadth and isoclinism

Note that CG(g), [g,G] and b(g) do not depend on the choice of
g in a given coset gZ(G), so that we can define

bG(gZ(G)) := b(g).

If (α, β) is an isoclinism between G and H as above and
α(gZ(G)) = hZ(H) then clearly

α(CG(g)/Z(G)) = CH(h)/Z(H),

[h,H] = β[g,G],

bG(gZ(G)) = bH(hZ(H)).

In particular b(g) = b(h).
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P. Hall’s isoclinic invariants

As a consequence we have

pi k i(G) = |{x ∈ G | b(x) = i}|
= |Z(G)| ·

∣∣{gZ(G) | bG(gZ(G)) = i}
∣∣

so that
k i(G)

|G|
=

∣∣{gZ(G) | bG(gZ(G)) = i}
∣∣

pi · |G : Z(G)|
and (by adding up over i) the commutativity of G

k(G)

|G|

are invariant under isoclinism (P. Hall 1940).
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Commutativity

The commutativity has been extensively studied by many
authors, in very general settings. The "not Burnside’s" lemma
shows:

k(G) =
1

|G|
∑
g∈G
|CG(g)| = 1

|G|
|{(g, x) ∈ G×G|gx = xg}|

Then the commutativity

k(G)

|G|
=
|{(g, x) ∈ G×G|gx = xg}|

|G×G|
can be thought of as the probability that two randomly chosen
elements of G commute.
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Polynomials

The class-counting polynomial of G is defined as

kG(x) =

b(G)∑
i=0

ki(G)

|G|
xi.

We have easily

kG(1) =
k(G)

|G|
, (1)

kG(0) =
|Z(G)|
|G|

, (2)

kG(p) = 1. (3)
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Let N be a minimal normal subgroup of G, x ∈ G.
Bar-notation for Ḡ = G/N .
Say xG is a collapsing conjugacy class if |xG| > |x̄Ḡ|. In other
words xG consists of a union of cosets of N .
Otherwise xG is an invariant class.

k+
i (G,N): number of invariant G-conjugacy classes of breadth i
k−i (G,N): number of collapsing G-conjugacy classes of
breadth i.
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Clearly we have that

ki(Ḡ) =
k+
i (G,N)

p
+ k−i+1(G,N) (4)

Dividing by the order of Ḡ we obtain

ki(Ḡ)

|Ḡ|
=
k+
i (G,N)

|G|
+ p

k−i+1(G,N)

|G|
(5)

and adding up over i we easily get

k(Ḡ)

|Ḡ|
= p

k(G)

|G|
+ (1− p)k

+(G,N)

|G|
(6)
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This could be seen as a dual of the Burnside formula

k(M)

|M |
= p2k(G)

|G|
+ (1− p2)

s

|M |
(7)

which is more commonly written as

k(G) = sp+
k(M)− s

p
(8)

relating k(G) with k(M) and the number s of G-invariant
M -conjugacy classes of a maximal subgroup M .
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More polynomials

Let again N be a minimal normal subgroup of G.
Define the collapsing and the invariant class-counting
polynomials as follows:

k−G,N (x) =

b(G)∑
i=0

k−i (G,N)

|G|
xi =

b(G)∑
i=1

k−i (G,N)

|G|
xi

and

k+
G,N (x) =

b(G)∑
i=0

k+
i (G,N)

|G|
xi

All these polynomials are clearly invariant under isoclinism.
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Polynomials and central products

Here are some of their easy properties:

kG/N (x) = k+
G,N (x) +

p

x
k−G,N (x), (9)

kG×H(x) = kG(x)kH(x), (10)
kG×φH(x) = k+

G,N (x)k+
H,N (x) + k+

G,N (x)k−H,N (x) (11)

+ k−G,N (x)k+
H,N (x) +

p

x
k−G,N (x)k−H,N (x).

In principle these formulae allow us to focus on stem p-groups
which do not properly decompose as a central product, in our
search for the values of isoclinic invariants.
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Breadth and commutativity

In general if pn = |G| and b = b(G) then we have (N. Gavioli, A.
Mann, V.Monti, A. Previtali, CMS 1998)

pn−b + b(p− 1) ≤ k(G)

so that

1

pb
+ b

p− 1

|G|
≤ k(G)

|G|
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In general, for G of breadth b(G) > 0 , we have
|G| =

∑
χ∈Irr(G) χ(1)2 ≥ |G|

|G′| +
(
k(G)− |G|

|G′|

)
p2, so that

k(G)

|G|
≤ 1

p2
+
p2 − 1

p2|G′|
≤ 1

p2
+

1

pb
− 1

pb+2

where the inequality on the left is an equality iff the character
degrees of G are 1 and p.
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Well known (Isaacs’ book):

a non-abelian p-group G has only character degrees equal to 1
and p iff it has a maximal subgroup A of index p which is
abelian or |G : Z(G)| ≤ p3.

In the former case if x /∈ A then b(x) = b = b(G) and
G′ = [A, x] has order pb (P. Hall 1940). Clearly Z(G) = CA(x),
so that |G : Z(G)| = pb+1.

k(G)

|G|
=

1

p2
+

1

pb
− 1

pb+2
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General bounds

For a p-group of breadth b we have "invariant" bounds:

1

pb
<

k(G)

|G|
≤ 1

p2
+

1

pb
− 1

pb+2

Actually the lower bound is an inf over all possible values of
|G|, and the upper bound is attained when G has an abelian
subgroup of index p independently of the value of |G|.

Not all the values between the two bounds are actually taken by
k(G)/|G|, as we proved twenty years ago for groups of breadth
up to 3. Can we do better in pinpointing the values that are
actually taken?
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Commutativity and breadth

As an example, the commutativity of any p-group of breadth b
that has a maximal abelian subgroup has just been determined.

We can compute the commutativity and the class-counting
polynomials of stem p-groups with no proper central factors, in
order to use our techniques to compute the values of the same
invariants for other p-groups.

Still far from real possibility to compute...
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The case b(G) = 1

Known: |G′| = p (H. Knoche 1951, 1953).
Assume Z(G) = G′ (G stem).
In this case G is extraspecial of order pn, where n = 2m+ 1 ,
and G is the central product of m factors of order p3.
We obtain

k(G)

|G|
=

1

p
+

1

p2m
− 1

p2m+1

(maximum value for m = 1)
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b(G) = 2

(G. Parmeggiani, B. Stellmacher 1999; also GMMPS 1998)

Theorem
b(G) = 2 iff one of the following holds

1 |G′| = p3 and |G : Z(G)| = p3

2 |G′| = p2
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b(G) = 2, |G : Z(G)| = p3, |G′| = p3

Well known (Isaacs’ book):

a non-abelian p-group G has only character degrees equal to 1
and p iff it has a maximal subgroup A of index p which is
abelian or |G : Z(G)| ≤ p3.

We have then
|G| =

∑
χ∈Irr(G) χ(1)2 = |G|

|G′| +
(
k(G)− |G|

|G′|

)
p2 , so that

k(G)

|G|
=

1

p2
+
p2 − 1

p2|G′|
=

1

p2
+

1

p3
− 1

p5

We can also show that G does not have any elements of
breadth 1.
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b(G) = 2, |G′| = p2

We assume Z(G) ≤ G′ and |G| = pn.
1 G has class 2 and Z(G) = G′. We have infinitely many

possibilities. Lower bound occurs when all the elements
outside Z(G) have breadth 2, whereas the upper bound is
attained when G has an abelian maximal subgroup.

1

p2
+

1

pn−2
− 1

pn
≤ k(G)

|G|
≤ 2

p2
− 1

p4

The general pattern is

k(G)

|G|
=

1

p2
+ (p− 1)

p+1∑
i=1

1

pn+2−ki

where 2 ≤ ki ≤ n− 2 for i = 1, . . . , p+ 1.
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b(G) = 2, |G′| = p2

We assume Z(G) ≤ G′ and |G| = pn.
1 G has class 2 and Z(G) = G′ . . .
2 G has class 3 and |Z(G)| = p and |G′| = p2.

In this case we could bound |G|, assuming that G does not
have any proper central factor. We could explicitly compute
the possible commutativity values:

k(G)

|G|
=

2

p2
− 1

p4

k(G)

|G|
=

1

p2
+

1

p3
− 1

p5
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When the index of the center is bounded

Proposition

If G is a stem group and |G/Z(G)| ≤ pk then |G| ≤ p(
k+1
2 )

Proof.
We have that b(G) ≤ k − 1 so that a well known result
(Vaughan-Lee 1974) yields |G′| ≤ p(

k
2). Since G is stem, we

have Z(G) ≤ G′ so that the index of G′ is at most pk. Then
trivially |G| ≤ p(

k
2)pk = p(

k+1
2 ).

It follows that if the index of the center is bounded then there
are only finitely many values for k(G)/|G|. Note that equality
can hold in the statement, e.g. for G = F/γ3(F )F p where F is
the free group on k generators.



Breadth, isoclinism and central products Commutativity for small breadth

breadth 3

[GMMPS] and [PS]

Theorem
Let p be odd and let G be a finite p-group. Then G has breadth
3 if and only if one of the following holds:

1 |G′| = p3 and |G : Z(G)| ≥ p4,
2 |G′| ≥ p4 and |G : Z(G)| = p4,
3 |G′| = p4 and G has a quotient Ḡ = G/D with respect to a

central subgroup D of order p such that |Ḡ : Z(Ḡ)| = p3.

Assuming again that |G| has no proper central factors, can
bound |G| in cases 2 and 3, by the previous Proposition, a finite
list of values for the commutativity.
In case 1 we have the same difficulties already encountered in
case 1 for groups such that |G′| = p2. We can write some
patterns and give bounds, though.
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