On sums of element orders in finite groups

Patrizia LONGOBARDI

UNIVERSITÀ DEGLI STUDI DI SALERNO

Group Theory and Computational Methods

ICTS International Centre for Theoretical Sciences

Tata Institute of Fundamental Research

Discussion Meeting

November 11-14, 2016

Main Problem

Obtain information about the structure of G by looking at the orders of its elements.

3 x 3

Definition

$$\omega(G) := \{ o(x) \mid x \in G \}.$$

Problem

What can be said about the structure of G by looking at the set $\omega(G)$?

Definition

$$\omega(G) := \{ o(x) \mid x \in G \}.$$

Problem

What can be said about the structure of G by looking at the set $\omega(G)$?

3) - S

Definition

$$\omega(G) := \{ o(x) \mid x \in G \}.$$

Problem

What can be said about the structure of G by looking at the set $\omega(G)$?

3

▲ 国 ▶ | ▲ 国 ▶ | |

Remark

$\omega(G) = \{1, 2\}$ if and only if G is an elementary abelian 2-group.

F. Levi, B.L. van der Waerden, 1932 If $\omega(G) = \{1, 3\}$, then G is nilpotent of class ≤ 3 .

B.H. Neumann, 1937

If $\omega(G) = \{1, 2, 3\}$, then G is (elementary abelian)-by-(prime order).

▲ 国 ▶ | ▲ 国 ▶ | |

Remark

$\omega(G) = \{1, 2\}$ if and only if G is an elementary abelian 2-group.

F. Levi, B.L. van der Waerden, 1932

If $\omega(G) = \{1, 3\}$, then G is nilpotent of class ≤ 3 .

B.H. Neumann, 1937

If $\omega(G) = \{1, 2, 3\}$, then G is (elementary abelian)-by-(prime order).

Remark

$\omega(G) = \{1, 2\}$ if and only if G is an elementary abelian 2-group.

F. Levi, B.L. van der Waerden, 1932

If $\omega(G) = \{1, 3\}$, then G is nilpotent of class ≤ 3 .

B.H. Neumann, 1937

If $\omega(G) = \{1, 2, 3\}$, then G is (elementary abelian)-by-(prime order).

(周) (日) (日) (日)

Question

Does $\omega(G)$ finite imply G locally finite?

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

(日) (國) (문) (문) (문)

Question (Bounded Burnside Problem)

Does $\omega(G)$ finite imply G locally finite?

Answered negatively by Novikov and Adjan, 1968.

э

글 🕨 🔺 글 🕨 👘

Question (Bounded Burnside Problem)

Does $\omega(G)$ finite imply G locally finite?

Answered negatively by Novikov and Adjan, 1968.

□ + * E + * E + E - のへで

I. N. Sanov, 1940

If $\omega(G) \subseteq \{1, 2, 3, 4\}$, then G is locally finite.

D.V. Lytkina, 2007

If $\omega(G) = \{1, 2, 3, 4\}$, then either

- *G* is an extension of an (elementary abelian 3-group) by (a cyclic or a quaternion group), or
- *G* is an extension of a (nilpotent of class 2 2-group) by (a subgroup of S_3).

I. N. Sanov, 1940

If $\omega(G) \subseteq \{1, 2, 3, 4\}$, then G is locally finite.

D.V. Lytkina, 2007

If $\omega(G) = \{1, 2, 3, 4\}$, then either

- *G* is an extension of an (elementary abelian 3-group) by (a cyclic or a quaternion group), or
- G is an extension of a (nilpotent of class 2 2-group) by (a subgroup of S_3).

(B) < B) < B</p>

N.D. Gupta, V.D. Mazurov, A.K. Zhurtov, E. Jabara, 2004

If $\omega(G) \subseteq \{1, 2, 3, 4, 5\}, \omega(G) \neq \{1, 5\}$, then G is locally finite.

E. Jabara, D. V. Lytkina, V. D. Mazurov, A. S. Mamontov, 2014

If $\omega(G) \subseteq \{1, 2, 3, 4, 5, 6\}, \omega(G) \neq \{1, 5\}$, then G is locally finite.

N.D. Gupta, V.D. Mazurov, A.K. Zhurtov, E. Jabara, 2004

If $\omega(G) \subseteq \{1, 2, 3, 4, 5\}, \omega(G) \neq \{1, 5\}$, then G is locally finite.

E. Jabara, D. V. Lytkina, V. D. Mazurov, A. S. Mamontov, 2014

If $\omega(G) \subseteq \{1, 2, 3, 4, 5, 6\}, \omega(G) \neq \{1, 5\}$, then G is locally finite.

Question

Does
$$\omega(G) = \{1, 5\}$$
 imply G locally finite?

Still open!

M. C. Xu, W.J. Shi , 2003 A. V. Vasil'ev, M. A. Grechkoseeva, V.D. Mazurov, 2009

If G is a finite simple group, G_1 a finite group,

 $|G| = |G_1|$ and $\omega(G) = \omega(G_1)$,

then $G \simeq G_1$.

Question

Does
$$\omega(G) = \{1, 5\}$$
 imply G locally finite?

Still open!

M. C. Xu, W.J. Shi , 2003 A. V. Vasil'ev, M. A. Grechkoseeva, V.D. Mazurov, 2009

If G is a finite simple group, G_1 a finite group,

 $|G| = |G_1|$ and $\omega(G) = \omega(G_1)$,

then $G \simeq G_1$.

э

Question

Does
$$\omega(G) = \{1, 5\}$$
 imply G locally finite?

Still open!

M. C. Xu, W.J. Shi , 2003 A. V. Vasil'ev, M. A. Grechkoseeva, V.D. Mazurov, 2009

If G is a finite simple group, G_1 a finite group,

 $|G| = |G_1|$ and $\omega(G) = \omega(G_1)$,

then $G \simeq G_1$.

< ∃⇒

э

Question

Does
$$\omega(G) = \{1, 5\}$$
 imply G locally finite?

Still open!

M. C. Xu, W.J. Shi , 2003 A. V. Vasil'ev, M. A. Grechkoseeva, V.D. Mazurov, 2009

If G is a finite simple group, G_1 a finite group,

$$|G| = |G_1|$$
 and $\omega(G) = \omega(G_1)$,

then $G \simeq G_1$.

▲ 글 ▶ - 글

Let G be a finite group and let e be a divisor of the order of G.

Definition

$$L_e(G) := \{ x \in G \mid x^e = 1 \}.$$

Problem

Obtain information about the structure of G by looking at the orders of the sets $L_e(G)$.

Let G be a finite group and let e be a divisor of the order of G.

Definition

$$L_e(G) := \{x \in G \mid x^e = 1\}.$$

Problem

Obtain information about the structure of G by looking at the orders of the sets $L_e(G)$.

3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Let G be a finite group and let e be a divisor of the order of G.

Definition

$$L_e(G) := \{ x \in G \mid x^e = 1 \}.$$

Problem

Obtain information about the structure of G by looking at the orders of the sets $L_e(G)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

G. Frobenius, 1895

 $|L_e(G)|$ divides |G|, for every *e* dividing |G|.

Remark

 $|L_e(G)| = e$, for every *e* dividing |G|, if and only if *G* is cyclic.

N. liyori, H. Yamaki, 1991

If $|L_e(G)| = e$, then $L_e(G)$ is a subgroup of G.

・ 同 ト ・ ヨ ト ・ ヨ ト

The sets L_e

G. Frobenius, 1895

$|L_e(G)|$ divides |G|, for every *e* dividing |G|.

Remark

 $|L_e(G)| = e$, for every *e* dividing |G|, if and only if *G* is cyclic.

N. liyori, H. Yamaki, 1991

If $|L_e(G)| = e$, then $L_e(G)$ is a subgroup of G.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The sets L_e

G. Frobenius, 1895

$|L_e(G)|$ divides |G|, for every *e* dividing |G|.

Remark

$|L_e(G)| = e$, for every e dividing |G|, if and only if G is cyclic.

N. liyori, H. Yamaki, 1991

If $|L_e(G)| = e$, then $L_e(G)$ is a subgroup of G.

(周) (日) (日) 日

G. Frobenius, 1895

$|L_e(G)|$ divides |G|, for every *e* dividing |G|.

Remark

 $|L_e(G)| = e$, for every e dividing |G|, if and only if G is cyclic.

N. liyori, H. Yamaki, 1991

If
$$|L_e(G)| = e$$
, then $L_e(G)$ is a subgroup of G.

W. Meng and J. Shi, in 2011, classified all finite groups G such that $|L_e(G)| \le 2e$, for every e dividing |G|.

H. Heineken and **F. Russo**, in 2015, studied groups G such that $|L_e(G)| \le e^2$, for every e dividing |G|.

W. Meng and J. Shi, in 2011, classified all finite groups G such that $|L_e(G)| \le 2e$, for every e dividing |G|.

H. Heineken and **F. Russo**, in 2015, studied groups G such that $|I_{c}(G)| \leq e^{2} \text{ for every } e \text{ dividing } |G|$

W. Meng and J. Shi, in 2011, classified all finite groups G such that $|L_e(G)| \le 2e$, for every e dividing |G|.

H. Heineken and F. Russo, in 2015, studied groups G such that $|L_e(G)| \le e^2$, for every e dividing |G|.

Problem (J.G. Thompson)

Let G be a finite soluble group, G_1 a finite group. Assume $|L_e(G)| = |L_e(G_1)|$, for any e dividing |G|. Is it true that G_1 is soluble?

Still open!

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

э

Problem (J.G. Thompson)

Let G be a finite soluble group, G_1 a finite group. Assume $|L_e(G)| = |L_e(G_1)|$, for any e dividing |G|. Is it true that G_1 is soluble?

Still open!

э

Problem (J.G. Thompson)

Let G be a finite soluble group, G_1 a finite group. Assume $|L_e(G)| = |L_e(G_1)|$, for any e dividing |G|. Is it true that G_1 is soluble?

Still open!

물 지수 물 지수 물

Marcel Herzog, P. L., Mercede Maj

An exact upper bound for sums of element orders in non-cyclic finite groups

submitted, arXiv:1610.03669 [math.GR] 12 October 2016.

Marcel Herzog, P. L., Mercede Maj

An exact upper bound for sums of element orders in non-cyclic finite groups

submitted, arXiv:1610.03669 [math.GR] 12 October 2016.

The function ψ

Let G be a finite group.

Definition

$$\psi(G):=\sum_{x\in G}o(x).$$

Problem

What can be said about the structure of G by looking at the value $\psi(G)$?

The function ψ

Let G be a finite group.

Definition

$$\psi(G) := \sum_{x \in G} o(x).$$

Problem

What can be said about the structure of G by looking at the value $\psi(G)$?

э

The function ψ

Let G be a finite group.

Definition

$$\psi(G) := \sum_{x \in G} o(x).$$

Problem

What can be said about the structure of G by looking at the value $\psi(G)$?

3

▲ 国 ▶ | ▲ 国 ▶ | |

The function ψ - some examples

Examples

 $\psi(\mathcal{S}_3) = 13.$ For, $\psi(\mathcal{S}_3) = 1 \cdot 1 + 3 \cdot 2 + 2 \cdot 3.$ $\psi(\mathcal{C}_6) = 21.$ For, $\psi(\mathcal{C}_6) = 1 \cdot 1 + 1 \cdot 2 + 2 \cdot 3 + 2 \cdot 6.$ $\psi(\mathcal{C}_5) = 21.$ For, $\psi(\mathcal{C}_5) = 1 \cdot 1 + 4 \cdot 5.$

where C_n is the cyclic group of order n and S_3 is the symmetric group of degree 3.

The function ψ - some remarks

Remark

$\psi(G) = \psi(G_1)$ does not imply $G \simeq G_1$.

Example

Let
$$A = C_8 \times C_2$$
,
 $B = C_2 \ltimes C_8$, where $C_2 = \langle a \rangle$, $C_8 = \langle b \rangle$, $b^a = b^5$.
Then
 $\psi(A) = \psi(B) = 87$.

Remark

$|{\sf G}|=|{\sf G}_1|$ and $\psi({\sf G})=\psi({\sf G}_1)$ do not imply ${\sf G}\simeq {\sf G}_1$

э

The function ψ - some remarks

Remark

$$\psi(G) = \psi(G_1)$$
 does not imply $G \simeq G_1$.

Example

Let
$$A = C_8 \times C_2$$
,
 $B = C_2 \ltimes C_8$, where $C_2 = \langle a \rangle$, $C_8 = \langle b \rangle$, $b^a = b^5$.
Then
 $\psi(A) = \psi(B) = 87$.

Remark

 $|{\sf G}|=|{\sf G}_1|$ and $\psi({\sf G})=\psi({\sf G}_1)$ do not imply ${\sf G}\simeq {\sf G}_1$

イロト イポト イヨト イヨト

3

The function ψ - some remarks

Remark

$$\psi(G) = \psi(G_1)$$
 does not imply $G \simeq G_1$.

Example

Let
$$A = C_8 \times C_2$$
,
 $B = C_2 \ltimes C_8$, where $C_2 = \langle a \rangle$, $C_8 = \langle b \rangle$, $b^a = b^5$.
Then
 $\psi(A) = \psi(B) = 87$.

Remark

$$|\mathcal{G}| = |\mathcal{G}_1|$$
 and $\psi(\mathcal{G}) = \psi(\mathcal{G}_1)$ do not imply $\mathcal{G} \simeq \mathcal{G}_1$.

æ

Remark

$$\psi(G) = \psi(S_3)$$
 implies $G \simeq S_3$.

Problem

Find information about the structure of a finite group G from some inequalities on $\psi(G)$.

글 🗼 🛛 글

Remark

$$\psi(G) = \psi(S_3)$$
 implies $G \simeq S_3$.

Problem

Find information about the structure of a finite group G from some inequalities on $\psi(G)$.

Proposition

If $G = G_1 \times G_2$, where $|G_1|$ and $|G_2|$ are coprime, then $\psi(G) = \psi(G_1)\psi(G_2).$

◆□ → ◆ 三 → ◆ 三 → ○ へ ()

Remark

$$\psi(\mathcal{C}_n)=\sum_{d\mid n}d\varphi(d),$$

where φ is the Euler's function.

Proposition

Let
$$p$$
 be a prime, $lpha \ge 0$. Then:
 $\psi(\mathcal{C}_{p^{lpha}}) = rac{p^{2lpha+1}+1}{p+1}.$

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

э

Remark

$$\psi(\mathcal{C}_n)=\sum_{d\mid n}d\varphi(d),$$

where φ is the Euler's function.

Proposition

Let
$$p$$
 be a prime, $\alpha \ge 0$. Then:
 $\psi(\mathcal{C}_{p^{\alpha}}) = rac{p^{2\alpha+1}+1}{p+1}.$

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

3

◆ 国 ▶ → 国 ▶ …

Sum of the orders of the elements in a cyclic group

Proposition

Let
$$p$$
 be a prime, $\alpha \geq 0$. Then: $\psi(\mathcal{C}_{p^{\alpha}}) = \frac{p^{2\alpha+1}+1}{p+1}$

Proof. $\psi(\mathcal{C}_{p^{\alpha}}) = 1 + p\varphi(p) + p^{2}\varphi(p^{2}) + \dots + p^{\alpha}(\varphi(p^{\alpha})) =$ $1 + p(p-1) + p^{2}(p^{2}-p) + \dots + p^{\alpha}(p^{\alpha}-p^{\alpha-1}) =$ $= 1 + p^{2} - p + p^{4} - p^{3} + \dots + p^{2\alpha} - p^{2\alpha-1} = \frac{p^{2\alpha+1}+1}{p+1}$, as required.//

Corollary

Let n > 1. Write $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, $p_i's$ different primes, $\alpha_i's > 0$. Then

$$\psi(\mathcal{C}_n) = \prod_{i \in \{1, \cdots, s\}} rac{p_i^{2lpha_i+1}+1}{p_i+1}.$$

< 3 > 3

Sum of the orders of the elements in a cyclic group

Proposition

Let p be a prime,
$$\alpha \geq 0$$
. Then: $\psi(\mathcal{C}_{p^{\alpha}}) = \frac{p^{2\alpha+1}+1}{p+1}$

0 1 1

Proof.
$$\psi(C_{p^{\alpha}}) = 1 + p\varphi(p) + p^{2}\varphi(p^{2}) + \dots + p^{\alpha}(\varphi(p^{\alpha})) =$$

 $1 + p(p-1) + p^{2}(p^{2}-p) + \dots + p^{\alpha}(p^{\alpha}-p^{\alpha-1}) =$
 $= 1 + p^{2} - p + p^{4} - p^{3} + \dots + p^{2\alpha} - p^{2\alpha-1} = \frac{p^{2\alpha+1}+1}{p+1}$, as required.//

Corollary

Let n > 1. Write $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, $p_i's$ different primes, $\alpha_i's > 0$. Then

$$\psi(\mathcal{C}_n) = \prod_{i \in \{1, \cdots, s\}} rac{p_i^{2lpha_i+1}+1}{p_i+1}.$$

Sum of the orders of the elements in a cyclic group

Proposition

Let p be a prime,
$$\alpha \geq 0$$
. Then: $\psi(\mathcal{C}_{p^{\alpha}}) = \frac{p^{2\alpha+1}+1}{p+1}$

1.1

Proof.
$$\psi(C_{p^{\alpha}}) = 1 + p\varphi(p) + p^{2}\varphi(p^{2}) + \dots + p^{\alpha}(\varphi(p^{\alpha})) =$$

 $1 + p(p-1) + p^{2}(p^{2}-p) + \dots + p^{\alpha}(p^{\alpha}-p^{\alpha-1}) =$
 $= 1 + p^{2} - p + p^{4} - p^{3} + \dots + p^{2\alpha} - p^{2\alpha-1} = \frac{p^{2\alpha+1}+1}{p+1}$, as required.//

Corollary

Let n > 1. Write $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, $p_i's$ different primes, $\alpha_i's > 0$. Then

$$\psi(\mathcal{C}_n) = \prod_{i\in\{1,\cdots,s\}} rac{p_i^{2lpha_i+1}+1}{p_i+1}.$$

Remarks

Let
$$p$$
 be a prime, $\alpha \ge 0$. Then
 $\psi(\mathcal{C}_{p^{\alpha}}) = \frac{p^{2\alpha+1}+1}{p+1} = \frac{p|\mathcal{C}_{p^{\alpha}}|^2+1}{p+1} > \frac{p}{p+1}|\mathcal{C}_{p^{\alpha}}|^2.$

Let n > 1. Write $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, $p'_i s$ different primes, α_i 's > 0, and let p be the largest prime divisor of n. Then

$$\psi(\mathcal{C}_n) = \prod_{i \in \{1, \cdots, s\}} \frac{p_i^{2\alpha_i + 1} + 1}{p_i + 1} > \frac{2}{p + 1} n^2.$$

э

Remarks

Let
$$p$$
 be a prime, $\alpha \ge 0$. Then
 $\psi(\mathcal{C}_{p^{\alpha}}) = \frac{p^{2\alpha+1}+1}{p+1} = \frac{p|\mathcal{C}_{p^{\alpha}}|^2+1}{p+1} > \frac{p}{p+1}|\mathcal{C}_{p^{\alpha}}|^2.$

Let n > 1. Write $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, $p'_i s$ different primes, α_i 's > 0, and let p be the largest prime divisor of n. Then

$$\psi(\mathcal{C}_n) = \prod_{i \in \{1, \cdots, s\}} \frac{p_i^{2\alpha_i + 1} + 1}{p_i + 1} > \frac{2}{p + 1} n^2$$

э

The function ψ - a recent result

Theorem [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, Comm. Algebra 2009]

Let G be a finite group, |G| = n. Then $\psi(G) \le \psi(C_n)$. Moreover $\psi(G) = \psi(C_n)$ if and only if $G \sim C_n$

Theorem [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, Comm. Algebra 2009]

Let G be a finite group, |G| = n. Then $\psi(G) \leq \psi(\mathcal{C}_n)$. Moreover

 $\psi(\mathsf{G})=\psi(\mathcal{C}_n)$ if and only if $\mathsf{G}\simeq\mathcal{C}_n.$

Theorem [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, Comm. Algebra 2009]

Let G be a finite group, |G| = n. Then $\psi(G) \leq \psi(\mathcal{C}_n)$.

Moreover

 $\psi(G) = \psi(\mathcal{C}_n)$ if and only if $G \simeq \mathcal{C}_n$.

Theorem [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, Comm. Algebra 2009]

Let G be a finite group, |G| = n. Then $\psi(G) \leq \psi(\mathcal{C}_n)$.

Moreover

 $\psi(G) = \psi(C_n)$ if and only if $G \simeq C_n$.

Theorem [M. Herzog, P. L., M. Maj

Let G be a non-cyclic finite group, |G| = n. Then $\psi(G) \leq \frac{7}{11}\psi(\mathcal{C}_n)$.

Remark

This upper bound is the best possible: for each n = 4k, k odd, there exists a group G of order n satisfying $\psi(G) = \frac{7}{11}\psi(C_n)$.

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G| = n. Then $\psi(G) \leq \frac{7}{11}\psi(C_n)$.

Remark

This upper bound is the best possible: for each n = 4k, k odd, there exists a group G of order n satisfying $\psi(G) = \frac{7}{11}\psi(C_n)$.

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G| = n. Then $\psi(G) \leq \frac{7}{11}\psi(\mathcal{C}_n).$

Remark

This upper bound is the best possible: for each n = 4k, k odd, there exists a group G of order n satisfying $\psi(G) = \frac{7}{11}\psi(\mathcal{C}_n).$

3

▲ 国 ▶ | ▲ 国 ▶ | |

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G| = n. Then $\psi(G) \leq \frac{7}{11}\psi(\mathcal{C}_n).$

Remark

This upper bound is the best possible: for each n = 4k, k odd, there exists a group G of order n satisfying $\psi(G) = \frac{7}{11}\psi(C_n)$.

3

▲ 国 ▶ | ▲ 国 ▶ | |

Proposition

Let k be an odd integer and let
$$n = 4k$$
. Then
 $\psi(\mathcal{C}_{2k} \times \mathcal{C}_2) = \frac{7}{11}\psi(\mathcal{C}_n).$

Proof. We have

$$\psi(\mathcal{C}_n) = \psi(\mathcal{C}_{4k}) = \psi(\mathcal{C}_4)\psi(\mathcal{C}_k) = \frac{32+1}{2+1}\psi(\mathcal{C}_k) = 11\psi(\mathcal{C}_k).$$

and

$$\psi(\mathcal{C}_{2k} \times \mathcal{C}_2) = \psi(\mathcal{C}_k \times \mathcal{C}_2 \times \mathcal{C}_2) = \psi(\mathcal{C}_k)\psi(\mathcal{C}_2 \times \mathcal{C}_2) = 7\psi(\mathcal{C}_k). //$$

But for instance

$$\psi(\mathcal{S}_3) = 13 = \frac{13}{21}21 = \frac{13}{21}\psi(\mathcal{C}_6) < \frac{7}{11}\psi(\mathcal{C}_6).$$

Proposition

Let k be an odd integer and let
$$n = 4k$$
. Then
 $\psi(\mathcal{C}_{2k} \times \mathcal{C}_2) = \frac{7}{11}\psi(\mathcal{C}_n).$

Proof. We have

$$\psi(\mathcal{C}_n) = \psi(\mathcal{C}_{4k}) = \psi(\mathcal{C}_4)\psi(\mathcal{C}_k) = \frac{32+1}{2+1}\psi(\mathcal{C}_k) = 11\psi(\mathcal{C}_k).$$

and

$$\psi(\mathcal{C}_{2k} \times \mathcal{C}_2) = \psi(\mathcal{C}_k \times \mathcal{C}_2 \times \mathcal{C}_2) = \psi(\mathcal{C}_k)\psi(\mathcal{C}_2 \times \mathcal{C}_2) = 7\psi(\mathcal{C}_k). //$$

But for instance

$$\psi(\mathcal{S}_3) = 13 = \frac{13}{21}21 = \frac{13}{21}\psi(\mathcal{C}_6) < \frac{7}{11}\psi(\mathcal{C}_6).$$

Proposition

Let k be an odd integer and let
$$n = 4k$$
. Then
 $\psi(\mathcal{C}_{2k} \times \mathcal{C}_2) = \frac{7}{11}\psi(\mathcal{C}_n).$

Proof. We have

$$\psi(\mathcal{C}_n) = \psi(\mathcal{C}_{4k}) = \psi(\mathcal{C}_4)\psi(\mathcal{C}_k) = \frac{32+1}{2+1}\psi(\mathcal{C}_k) = 11\psi(\mathcal{C}_k).$$

 and

$$\psi(\mathcal{C}_{2k} \times \mathcal{C}_2) = \psi(\mathcal{C}_k \times \mathcal{C}_2 \times \mathcal{C}_2) = \psi(\mathcal{C}_k)\psi(\mathcal{C}_2 \times \mathcal{C}_2) = 7\psi(\mathcal{C}_k). //$$

But for instance

$$\psi(S_3) = 13 = \frac{13}{21}21 = \frac{13}{21}\psi(C_6) < \frac{7}{11}\psi(C_6).$$

Proposition

Let k be an odd integer and let
$$n = 4k$$
. Then
 $\psi(\mathcal{C}_{2k} \times \mathcal{C}_2) = \frac{7}{11}\psi(\mathcal{C}_n).$

Proof. We have

$$\psi(\mathcal{C}_n) = \psi(\mathcal{C}_{4k}) = \psi(\mathcal{C}_4)\psi(\mathcal{C}_k) = \frac{32+1}{2+1}\psi(\mathcal{C}_k) = 11\psi(\mathcal{C}_k).$$

 and

$$\psi(\mathcal{C}_{2k} \times \mathcal{C}_2) = \psi(\mathcal{C}_k \times \mathcal{C}_2 \times \mathcal{C}_2) = \psi(\mathcal{C}_k)\psi(\mathcal{C}_2 \times \mathcal{C}_2) = 7\psi(\mathcal{C}_k). //$$

But for instance

$$\psi(S_3) = 13 = \frac{13}{21}21 = \frac{13}{21}\psi(C_6) < \frac{7}{11}\psi(C_6).$$

Theorem **[M. Herzog, P. L., M. Maj**]

Let G be a non-cyclic finite group, |G| = n and let q be the smallest prime divisor of n.

Then

 $\psi(G) < \frac{1}{q-1}\psi(\mathcal{C}_n).$

Hence

|G| = n, q the smallest prime divisor of n. Then: $\psi(G) \ge \frac{1}{q-1}\psi(C_n)$ implies G cyclic.

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G| = n and let q be the smallest prime divisor of n.

Then

 $\psi(G) < \frac{1}{q-1}\psi(\mathcal{C}_n).$

Hence

|G| = n, q the smallest prime divisor of n. Then: $\psi(G) \ge \frac{1}{q-1}\psi(C_n)$ implies G cyclic.

э

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G| = n and let q be the smallest prime divisor of n.

Then

 $\psi(G) < \frac{1}{q-1}\psi(\mathcal{C}_n).$

Hence

|G| = n, q the smallest prime divisor of n. Then: $\psi(G) \ge \frac{1}{q-1}\psi(C_n)$ implies G cyclic.

Corollary

Let G be a non-cyclic finite group of odd order n. Then $\psi(G) < \frac{1}{2}\psi(C_n).$

Remark In the Theorem it is not possible to substitute q-1 by q. For: $\psi(\mathcal{S}_3)=13\geq rac{1}{2}\psi(\mathcal{C}_6)=rac{21}{2}.$

э

Corollary

Let G be a non-cyclic finite group of odd order n. Then $\psi(G) < \frac{1}{2}\psi(C_n).$

Remark

In the Theorem it is not possible to substitute q-1 by q. For: $\psi(\mathcal{S}_3) = 13 \ge \frac{1}{2}\psi(\mathcal{C}_6) = \frac{21}{2}.$

Problem

What can be said if $\psi(G) \geq \frac{1}{q}\psi(\mathcal{C}_n)$?

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, |G| = n and let q and p be the smallest and the largest prime divisors of n.

If
$$\psi(G) \geq \frac{1}{2(q-1)}\psi(\mathcal{C}_n)$$
,

then G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are cyclic.

Problem

What can be said if
$$\psi(G) \geq \frac{1}{q}\psi(\mathcal{C}_n)$$
?

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, |G| = n and let q and p be the smallest and the largest prime divisors of n.

If
$$\psi(G) \geq \frac{1}{2(q-1)}\psi(\mathcal{C}_n)$$
,

then G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are cyclic.

Problem

What can be said if
$$\psi(G) \geq \frac{1}{q}\psi(\mathcal{C}_n)$$
?

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, |G| = n and let q and p be the smallest and the largest prime divisors of n.

If
$$\psi(G) \geq \frac{1}{2(q-1)}\psi(\mathcal{C}_n)$$
,

then G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are cyclic.

$$\psi(G) \geq \frac{1}{2(q-1)}\psi(\mathcal{C}_n)$$

Remark

The Theorem applies if $\psi(G) \ge \frac{1}{q}\psi(C_n)$ and if *n* is odd and $\psi(G) \ge \frac{1}{q+1}\psi(C_n)$.

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

伺い イヨン イヨン

æ

The function ψ - some new results

$$\psi(G) \geq \frac{1}{2(q-1)}\psi(\mathcal{C}_n)$$

Remark

The Theorem applies if $\psi(G) \ge \frac{1}{q}\psi(\mathcal{C}_n)$ and if *n* is odd and $\psi(G) \ge \frac{1}{q+1}\psi(\mathcal{C}_n)$

< @ > < 注 > < 注 > □ 注

$$\psi(G) \geq \frac{1}{2(q-1)}\psi(\mathcal{C}_n)$$

Remark

The Theorem applies if $\psi(G) \ge \frac{1}{q}\psi(C_n)$ and if *n* is odd and $\psi(G) \ge \frac{1}{q+1}\psi(C_n)$.

★ 課 → ★ 注 → ★ 注 → … 注

Let G be a finite group, |G| = n. If $\psi(G) \ge \frac{3}{5}n\varphi(n)$, then G is soluble and $G'' \le Z(G)$.

Remark

Notice that

 $\psi(\mathcal{C}_2 imes \mathcal{C}_2 imes \mathcal{C}_2) = 15 < rac{3}{5} \cdot 8 \cdot 4 = rac{3}{5}n\varphi(n)$ and that $\psi(\mathcal{A}_5) = 211 > 192 = rac{1}{5}n\varphi(n).$

Let G be a finite group, |G| = n. If $\psi(G) \ge \frac{3}{5}n\varphi(n)$, then G is soluble and $G'' \le Z(G)$.

Remark

Notice that

 $\psi(\mathcal{C}_2 imes \mathcal{C}_2 imes \mathcal{C}_2) = 15 < rac{3}{5} \cdot 8 \cdot 4 = rac{3}{5}n\varphi(n)$ and that $\psi(\mathcal{A}_5) = 211 > 192 = rac{1}{5}n\varphi(n).$

Let G be a finite group, |G| = n. If $\psi(G) \ge \frac{3}{5}n\varphi(n)$, then G is soluble and $G'' \le Z(G)$.

Remark

Notice that $\psi(\mathcal{C}_2 \times \mathcal{C}_2 \times \mathcal{C}_2) = 15 < \frac{3}{5} \cdot 8 \cdot 4 = \frac{3}{5}n\varphi(n)$ and that $\psi(\mathcal{A}_5) = 211 > 192 = \frac{1}{5}n\varphi(n).$

イロト イポト イヨト イヨト

Let G be a finite group, |G| = n. If $\psi(G) \ge \frac{3}{5}n\varphi(n)$, then G is soluble and $G'' \le Z(G)$.

Remark

Notice that $\psi(\mathcal{C}_2 \times \mathcal{C}_2 \times \mathcal{C}_2) = 15 < \frac{3}{5} \cdot 8 \cdot 4 = \frac{3}{5}n\varphi(n)$ and that $\psi(\mathcal{A}_5) = 211 > 192 = \frac{1}{5}n\varphi(n).$

The function ψ - a useful result

Theorem [Ramanujan, 1913-1914]

Let $q_1, q_2, \dots, q_s, \dots$ be the sequence of all primes: $q_1 < q_2 < \dots < q_s < \dots$. Then $\prod_{i=1}^{\infty} \frac{q_i^2 + 1}{a^2 - 1} = \frac{5}{2}.$

.emma

Let p_2, p_3, \dots, p_s be primes satisfying $p_2 < p_3 < \dots < p_s$. If $p_2 > 3$ then $\prod_{i=2}^s \frac{p_i^2 - 1}{p_i^2 + 1} > \frac{5}{6}.$

The function ψ - a useful result

Theorem [Ramanujan, 1913-1914]

Let $q_1, q_2, \dots, q_s, \dots$ be the sequence of all primes: $q_1 < q_2 < \dots < q_s < \dots$. Then $\prod_{i=1}^{\infty} \frac{q_i^2 + 1}{q_i^2 - 1} = \frac{5}{2}.$

.emma

Let p_2, p_3, \dots, p_s be primes satisfying $p_2 < p_3 < \dots < p_s$. If $p_2 > 3$ then $\prod_{i=2}^s \frac{p_i^2 - 1}{p_i^2 + 1} > \frac{5}{6}.$

The function ψ - a useful result

Theorem [Ramanujan, 1913-1914]

Let $q_1, q_2, \dots, q_s, \dots$ be the sequence of all primes: $q_1 < q_2 < \dots < q_s < \dots$. Then $\prod_{i=1}^{\infty} \frac{q_i^2 + 1}{a^2 - 1} = \frac{5}{2}.$

Lemma

Let p_2, p_3, \dots, p_s be primes satisfying $p_2 < p_3 < \dots < p_s$. If $p_2 > 3$ then $\prod_{i=2}^{s} \frac{p_i^2 - 1}{p_i^2 + 1} > \frac{5}{6}.$

Lemma 1 [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, 2009]

Let G be a finite group, p a prime, P a cyclic normal Sylow p-subgroup of G. Then:

 $\psi(G) \leq \psi(G/P)\psi(P).$

Moreover $\psi(G) = \psi(G/P)\psi(P)$ if and only if $P \leq Z(G)$.

Lemma 1 [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, 2009]

Let G be a finite group, p a prime, P a cyclic normal Sylow p-subgroup of G. Then:

 $\psi(G) \leq \psi(G/P)\psi(P).$

Moreover

 $\psi(G) = \psi(G/P)\psi(P)$ if and only if $P \leq Z(G)$.

Lemma 1 [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, 2009]

Let G be a finite group, p a prime, P a cyclic normal Sylow p-subgroup of G. Then:

 $\psi(G) \leq \psi(G/P)\psi(P).$

Moreover $\psi(G) = \psi(G/P)\psi(P)$ if and only if $P \leq Z(G)$.

Lemma 2

Let *n* be a positive integer > 1, with the largest prime divisor *p* and the smallest prime divisor *q*. Then:

$$arphi({\it n}) \geq rac{q-1}{p}{\it n}$$
 .

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

Lemma 2

Let *n* be a positive integer > 1, with the largest prime divisor *p* and the smallest prime divisor *q*. Then:

 $\varphi(n) \geq \frac{q-1}{p}n$.

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

3

医子子 医子子

A proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G| = n and let q be the smallest prime divisor of n. Then $\psi(G) < \frac{1}{q-1}\psi(C_n).$

Assume |G| = n and $\psi(G) \ge \frac{1}{q-1}\psi(C_n)$. We show that G is cyclic. Obviously

 $\psi(\mathcal{C}_n) > n\varphi(n)$

and, by the previous Lemma,

$$\varphi(n)\geq \frac{q-1}{p}n,$$

where p denotes the largest prime divisor of n. Then

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

A proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G| = n and let q be the smallest prime divisor of n. Then $\psi(G) < \frac{1}{q-1}\psi(C_n).$

Assume |G| = n and $\psi(G) \ge \frac{1}{q-1}\psi(\mathcal{C}_n)$. We show that G is cyclic. Obviously

 $\psi(\mathcal{C}_n) > n\varphi(n)$

and, by the previous Lemma,

$$\varphi(n)\geq \frac{q-1}{p}n,$$

A proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G| = n and let q be the smallest prime divisor of n. Then $\psi(G) < \frac{1}{q-1}\psi(C_n).$

Assume |G| = n and $\psi(G) \ge \frac{1}{q-1}\psi(\mathcal{C}_n)$. We show that G is cyclic. Obviously

 $\psi(\mathcal{C}_n) > n\varphi(n)$

and, by the previous Lemma,

$$\varphi(n)\geq \frac{q-1}{p}n,$$

Let G be a non-cyclic finite group, |G| = n and let q be the smallest prime divisor of n. Then $\psi(G) < \frac{1}{q-1}\psi(C_n).$

Assume |G| = n and $\psi(G) \ge \frac{1}{q-1}\psi(\mathcal{C}_n)$. We show that G is cyclic. Obviously

 $\psi(\mathcal{C}_n) > n\varphi(n)$

and, by the previous Lemma,

$$\varphi(n)\geq \frac{q-1}{p}n,$$

Let G be a non-cyclic finite group, |G| = n and let q be the smallest prime divisor of n. Then $\psi(G) < \frac{1}{q-1}\psi(C_n).$

Assume |G| = n and $\psi(G) \ge \frac{1}{q-1}\psi(C_n)$. We show that G is cyclic. Obviously

 $\psi(\mathcal{C}_n) > n\varphi(n)$

and, by the previous Lemma,

$$\varphi(n) \geq \frac{q-1}{p}n$$

$$\psi(G) \geq \frac{1}{q-1}\psi(\mathcal{C}_n) > \frac{n}{q-1}\varphi(n) \geq \frac{n^2}{p}$$

Hence

$$\psi(G) > \frac{n^2}{p}$$

which implies that there exists $x \in G$ with o(x) > n/p. Thus $[G : \langle x \rangle] < p$ and $\langle x \rangle$ contains a Sylow *p*-subgroup *P* of *G*. Since $\langle x \rangle \leq N_G(P)$, it follows that *P* is a cyclic normal subgroup of *G* and Lemma 1 implies that

$$\psi(P)\psi(G/P) \ge \psi(G) \ge rac{1}{q-1}\psi(\mathcal{C}_{p^r})\psi(\mathcal{C}_{n/p^r}),$$

where $p^r = |P|$. Since $P \cong C_{p^r}$, cancellation yields

$$\psi(G/P) \geq \frac{1}{q-1}\psi(\mathcal{C}_{n/p^r}).$$

Hence

$$\psi(G) > \frac{n^2}{p}$$

which implies that there exists $x \in G$ with o(x) > n/p.

Thus $[G : \langle x \rangle] < p$ and $\langle x \rangle$ contains a Sylow *p*-subgroup *P* of *G*. Since $\langle x \rangle \leq N_G(P)$, it follows that *P* is a cyclic normal subgroup of *G* and Lemma 1 implies that

$$\psi(P)\psi(G/P) \ge \psi(G) \ge \frac{1}{q-1}\psi(\mathcal{C}_{p^r})\psi(\mathcal{C}_{n/p^r}),$$

where $p^r = |P|$. Since $P \cong C_{p^r}$, cancellation yields

$$\psi(G/P) \geq \frac{1}{q-1}\psi(\mathcal{C}_{n/p^r}).$$

Hence

$$\psi(G) > \frac{n^2}{p}$$

which implies that there exists $x \in G$ with o(x) > n/p. Thus $[G : \langle x \rangle] < p$ and $\langle x \rangle$ contains a Sylow *p*-subgroup *P* of *G*. Since $\langle x \rangle \leq N_G(P)$, it follows that *P* is a cyclic normal subgroup of *G* and Lemma 1 implies that

$$\psi(P)\psi(G/P) \ge \psi(G) \ge rac{1}{q-1}\psi(\mathcal{C}_{p^r})\psi(\mathcal{C}_{n/p^r}),$$

where $p^r = |P|$. Since $P \cong C_{p^r}$, cancellation yields

$$\psi(G/P) \geq \frac{1}{q-1}\psi(\mathcal{C}_{n/p^r}).$$

Hence

$$\psi(G) > \frac{n^2}{p}$$

which implies that there exists $x \in G$ with o(x) > n/p. Thus $[G : \langle x \rangle] < p$ and $\langle x \rangle$ contains a Sylow *p*-subgroup *P* of *G*. Since $\langle x \rangle \leq N_G(P)$, it follows that *P* is a cyclic normal subgroup of *G* and Lemma 1 implies that

$$\psi(P)\psi(G/P) \ge \psi(G) \ge rac{1}{q-1}\psi(\mathcal{C}_{p^r})\psi(\mathcal{C}_{n/p^r}),$$

where $p^r = |P|$. Since $P \cong C_{p^r}$, cancellation yields

$$\psi(G/P) \geq \frac{1}{q-1}\psi(\mathcal{C}_{n/p^r}).$$

くほう くほう

Hence

$$\psi(G) > \frac{n^2}{p}$$

which implies that there exists $x \in G$ with o(x) > n/p. Thus $[G : \langle x \rangle] < p$ and $\langle x \rangle$ contains a Sylow *p*-subgroup *P* of *G*. Since $\langle x \rangle \leq N_G(P)$, it follows that *P* is a cyclic normal subgroup of *G* and Lemma 1 implies that

$$\psi(\mathsf{P})\psi(\mathsf{G}/\mathsf{P}) \geq \psi(\mathsf{G}) \geq rac{1}{q-1}\psi(\mathcal{C}_{\mathsf{P}^r})\psi(\mathcal{C}_{\mathsf{n}/\mathsf{P}^r}),$$

where $p^r = |P|$. Since $P \cong C_{p^r}$, cancellation yields

$$\psi(G/P) \geq \frac{1}{q-1}\psi(\mathcal{C}_{n/p^r}).$$

Hence

$$\psi(G) > \frac{n^2}{p}$$

which implies that there exists $x \in G$ with o(x) > n/p. Thus $[G : \langle x \rangle] < p$ and $\langle x \rangle$ contains a Sylow *p*-subgroup *P* of *G*. Since $\langle x \rangle \leq N_G(P)$, it follows that *P* is a cyclic normal subgroup of *G* and Lemma 1 implies that

$$\psi(\mathsf{P})\psi(\mathsf{G}/\mathsf{P}) \geq \psi(\mathsf{G}) \geq rac{1}{q-1}\psi(\mathcal{C}_{\mathsf{P}^r})\psi(\mathcal{C}_{\mathsf{n}/\mathsf{P}^r}),$$

where $p^r = |P|$. Since $P \cong C_{p^r}$, cancellation yields

$$\psi(G/P) \geq \frac{1}{q-1}\psi(\mathcal{C}_{n/p^r}).$$

So we may assume that *n* is divisible by exactly *k* different primes with k > 1. Apply induction with respect to *k*.

Then G/P is cyclic and $G = P \rtimes F$, with $F \cong G/P$ and $F \neq 1$. Notice that n = |P||F|, P and F are both cyclic and (|P|, |F|) = 1Hence $\psi(C_{-}) = \psi(P)\psi(F)$.

If $C_F(P) = F$, then $G = P \times F$ and G is cyclic, as required.

So it suffices to prove that if $C_F(P) =: Z < F$, then $\psi(G) < \frac{1}{q-1}\psi(C_n)$, contrary to our assumptions.

So we may assume that *n* is divisible by exactly *k* different primes with k > 1. Apply induction with respect to *k*.

Then G/P is cyclic and $G = P \rtimes F$, with $F \cong G/P$ and $F \neq 1$. Notice that n = |P||F|, P and F are both cyclic and (|P|, |F|) = 1. Hence $\psi(C_n) = \psi(P)\psi(F)$.

If $C_F(P) = F$, then $G = P \times F$ and G is cyclic, as required.

So it suffices to prove that if $C_F(P) =: Z < F$, then $\psi(G) < \frac{1}{q-1}\psi(\mathcal{C}_n)$, contrary to our assumptions.

不是我 不是我……

So we may assume that *n* is divisible by exactly *k* different primes with k > 1. Apply induction with respect to *k*.

Then G/P is cyclic and $G = P \rtimes F$, with $F \cong G/P$ and $F \neq 1$. Notice that n = |P||F|, P and F are both cyclic and (|P|, |F|) = 3

Hence $\psi(\mathcal{C}_n) = \psi(\mathcal{P})\psi(\mathcal{F})$.

If $C_F(P) = F$, then $G = P \times F$ and G is cyclic, as required.

So it suffices to prove that if $C_F(P) =: Z < F$, then $\psi(G) < \frac{1}{q-1}\psi(C_n)$, contrary to our assumptions.

So we may assume that *n* is divisible by exactly *k* different primes with k > 1. Apply induction with respect to *k*. Then G/P is cyclic and $G = P \rtimes F$, with $F \cong G/P$ and $F \neq 1$. Notice that n = |P||F|, *P* and *F* are both cyclic and (|P|, |F|) = 1. Hence $\psi(C_n) = \psi(P)\psi(F)$.

If $C_F(P) = F$, then $G = P \times F$ and G is cyclic, as required.

So it suffices to prove that if $C_F(P) =: Z < F$, then $\psi(G) < \frac{1}{q-1}\psi(\mathcal{C}_n)$, contrary to our assumptions.

So we may assume that *n* is divisible by exactly *k* different primes with k > 1. Apply induction with respect to *k*. Then G/P is cyclic and $G = P \rtimes F$, with $F \cong G/P$ and $F \neq 1$. Notice that n = |P||F|, *P* and *F* are both cyclic and (|P|, |F|) = 1. Hence $\psi(C_n) = \psi(P)\psi(F)$.

If $C_F(P) = F$, then $G = P \times F$ and G is cyclic, as required.

So it suffices to prove that if $C_F(P) =: Z < F$, then $\psi(G) < \frac{1}{q-1}\psi(\mathcal{C}_n)$, contrary to our assumptions.

So we may assume that *n* is divisible by exactly *k* different primes with k > 1. Apply induction with respect to *k*. Then G/P is cyclic and $G = P \rtimes F$, with $F \cong G/P$ and $F \neq 1$. Notice that n = |P||F|, *P* and *F* are both cyclic and (|P|, |F|) = 1. Hence $\psi(C_n) = \psi(P)\psi(F)$.

If $C_F(P) = F$, then $G = P \times F$ and G is cyclic, as required.

So it suffices to prove that if $C_F(P) =: Z < F$, then $\psi(G) < \frac{1}{q-1}\psi(C_n)$, contrary to our assumptions.

We get that

$\psi(G) = \psi(P)\psi(Z) + |P|\psi(F \setminus Z) < \psi(P)\psi(Z) + |P|\psi(F).$

Hence

$$\psi(G) < \psi(P)\psi(F)(\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)}) = \psi(\mathcal{C}_n)(\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)}).$$

Then we show that

$$\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)} < \frac{1}{q-1},$$

and we get the required contradiction.

4 3 b

We get that

 $\psi(G) = \psi(P)\psi(Z) + |P|\psi(F \setminus Z) < \psi(P)\psi(Z) + |P|\psi(F).$

Hence

$$\psi(G) < \psi(P)\psi(F)(\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)}) = \psi(\mathcal{C}_n)(\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)}).$$

Then we show that

$$\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)} < \frac{1}{q-1},$$

and we get the required contradiction.

4 3 b

We get that

$$\psi(G) = \psi(P)\psi(Z) + |P|\psi(F \setminus Z) < \psi(P)\psi(Z) + |P|\psi(F).$$

Hence

$$\psi(G) < \psi(P)\psi(F)(\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)}) = \psi(\mathcal{C}_n)(\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)}).$$

Then we show that

$$\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)} < \frac{1}{q-1},$$

and we get the required contradiction.

э

< ∃ >

Let G be a finite group, |G| = n and let q and p be the smallest and the largest prime divisors of n. If $\psi(G) \ge \frac{1}{2(q-1)}\psi(C_n)$,

then G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are cyclic.

Since $\psi(\mathcal{C}_n) > n\varphi(n)$ and by Lemma 2 $\varphi(n) \ge \frac{(q-1)n}{p}$, it follows by our assumptions that $\psi(G) > \frac{n^2}{2p}$. Hence there exists $x \in G$ such that $o(x) > \frac{n}{2p}$ and

글 눈 옷 글 눈 드 글

Let G be a finite group, |G| = n and let q and p be the smallest and the largest prime divisors of n. If $\psi(G) \ge \frac{1}{2(q-1)}\psi(C_n)$,

then G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are cyclic.

Since $\psi(\mathcal{C}_n) > n\varphi(n)$ and by Lemma 2 $\varphi(n) \ge \frac{(q-1)n}{p}$, it follows by our assumptions that $\psi(G) > \frac{n^2}{2p}$. Hence there exists $x \in G$ such that $o(x) > \frac{n}{2p}$ and $[G: \langle x \rangle] < 2p$.

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, |G| = n and let q and p be the smallest and the largest prime divisors of n. If $\psi(G) \ge \frac{1}{2(q-1)}\psi(C_n)$,

then G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are cyclic.

Since $\psi(\mathcal{C}_n) > n\varphi(n)$ and by Lemma 2 $\varphi(n) \ge \frac{(q-1)n}{p}$, it follows by our assumptions that $\psi(G) > \frac{n^2}{2p}$. Hence there exists $x \in G$ such that $o(x) > \frac{n}{2p}$ and $[G : \langle x \rangle] < 2p$.

Lemma 3 Let G be a finite group and suppose that there exists $x \in G$ such that

 $|G:\langle x\rangle|<2p,$

where p is the maximal prime divisor of |G|. Then one of the following holds:

- G has a normal cyclic Sylow p-subgroup,
- $\langle x \rangle$ is a maximal subgroup of G, and G is soluble.

Definition

Let *n* be a positive integer. Put $\mathcal{T}_n := \{\psi(H) \mid |H| = n\}$

Recall that $\psi(\mathcal{C}_n)$ is the **maximum** of \mathcal{T}_n .

Problem

What is the structure of G if $\psi(G)$ is the minimum of \mathcal{T}_n ?

3

▲ 国 ▶ | ▲ 国 ▶ | |

Definition

Let *n* be a positive integer. Put $\mathcal{T}_n := \{\psi(H) \mid |H| = n\}$

Recall that $\psi(\mathcal{C}_n)$ is the **maximum** of \mathcal{T}_n .

Problem

What is the structure of G if $\psi(G)$ is the minimum of \mathcal{T}_n ?

3

▲ 国 ▶ | ▲ 国 ▶ | |

Definition

Let *n* be a positive integer. Put $\mathcal{T}_n := \{ \psi(H) \mid |H| = n \}$

Recall that $\psi(\mathcal{C}_n)$ is the **maximum** of \mathcal{T}_n .

Problem

What is the structure of G if $\psi(G)$ is the minimum of \mathcal{T}_n ?

· 프 · · · 프 · · · 프

If $n = p^{\alpha}$ for some prime p and some $\alpha > 0$ and $|G| = p^{\alpha}$, then obviously $\psi(G)$ is minimum if and only if expG = p. If p = 2 and $\psi(G)$ is minimum, then G is the elementary abelian group of order 2^{α} .

But there are non-isomorphic groups G and G₁ of order $p^{\alpha} > p^2$ (p > 2) with $\psi(G) = \psi(G_1)$ minimum.

For instance, the two groups of exponent 3 and order 3^3 .

If $n = p^{\alpha}$ for some prime p and some $\alpha > 0$ and $|G| = p^{\alpha}$, then obviously $\psi(G)$ is minimum if and only if expG = p. If p = 2 and $\psi(G)$ is minimum, then G is the elementary abelian group of order 2^{α} . It there are non-isomorphic groups G and G_1 of order $p^{\alpha} > p^2$ (p > 2) with $\psi(G) = \psi(G_1)$ minimum. For instance, the two groups of exponent 3 and order 3^3 . If $n = p^{\alpha}$ for some prime p and some $\alpha > 0$ and $|G| = p^{\alpha}$, then obviously $\psi(G)$ is minimum if and only if expG = p. If p = 2 and $\psi(G)$ is minimum, then G is the elementary abelian group of order 2^{α} . But there are non-isomorphic groups G and G_1 of order $p^{\alpha} > p^2$ (p > 2) with $\psi(G) = \psi(G_1)$ minimum. If $n = p^{\alpha}$ for some prime p and some $\alpha > 0$ and $|G| = p^{\alpha}$, then obviously $\psi(G)$ is minimum if and only if expG = p. If p = 2 and $\psi(G)$ is minimum, then G is the elementary abelian group of order 2^{α} . But there are non-isomorphic groups G and G_1 of order $p^{\alpha} > p^2$ (p > 2) with $\psi(G) = \psi(G_1)$ minimum. For instance, the two groups of exponent 3 and order 3^3 .

Problem

What happens in the general case?

What happens for non-abelian simple groups?

Theorem [H. Amiri, S.M. Jafarian Amiri, 2011]

Let *G* be a finite nilpotent group.

Then there exists a non-nilpotent group K with |K| = |G| such that $\psi(K) < \psi(G)$.

Problem

What happens in the general case? What happens for non-abelian simple groups?

Theorem [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite nilpotent group.

Then there exists a non-nilpotent group K with |K| = |G| such that $\psi(K) < \psi(G)$.

Problem

What happens in the general case? What happens for non-abelian simple groups?

Theorem [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite nilpotent group.

Then there exists a non-nilpotent group K with |K| = |G| such that $\psi(K) < \psi(G)$.

Sum of the orders of the elements - minimum

Question

If S is a simple group of order n, is $\psi(S)$ the minimum of \mathcal{T}_n ?

NO! There are non-isomorphic simple groups S and S_1 such that $|S| = |S_1|$ and $\psi(S) \neq \psi(S_1)$. For instance, the groups \mathcal{A}_8 and $\mathcal{PSL}(3, 4)$ are such that $|\mathcal{A}_8| = 20160 = |\mathcal{PSL}(3, 4)|$ and $\psi(\mathcal{A}_8) = 137047 > 103111 = \psi(\mathcal{PSL}(3, 4)).$

If S is a simple group of order n, is $\psi(S)$ the minimum of \mathcal{T}_n ?

NO! There are non-isomorphic simple groups S and S_1 such that $|S| = |S_1|$ and $\psi(S) \neq \psi(S_1)$. For instance, the groups \mathcal{A}_8 and $\mathcal{PSL}(3, 4)$ are such that $|\mathcal{A}_8| = 20160 = |\mathcal{PSL}(3, 4)|$ and $\psi(\mathcal{A}_8) = 137047 > 103111 = \psi(\mathcal{PSL}(3, 4)).$

If S is a simple group of order n, is $\psi(S)$ the minimum of \mathcal{T}_n ?

NO!

There are non-isomorphic simple groups S and S₁ such that $|S| = |S_1|$ and $\psi(S) \neq \psi(S_1)$.

For instance, the groups \mathcal{A}_8 and $\mathcal{PSL}(3,4)$ are such that $|\mathcal{A}_8| = 20160 = |\mathcal{PSL}(3,4)|$ and $\psi(\mathcal{A}_8) = 137047 > 103111 = \psi(\mathcal{PSL}(3,4)).$

If S is a simple group of order n, is $\psi(S)$ the minimum of \mathcal{T}_n ?

NO!

There are non-isomorphic simple groups S and S₁ such that $|S| = |S_1|$ and $\psi(S) \neq \psi(S_1)$.

For instance, the groups \mathcal{A}_8 and $\mathcal{PSL}(3,4)$ are such that $|\mathcal{A}_8| = 20160 = |\mathcal{PSL}(3,4)|$ and $\psi(\mathcal{A}_8) = 137047 > 103111 = \psi(\mathcal{PSL}(3,4)).$

If S is a simple group of order n, is $\psi(S)$ the minimum of \mathcal{T}_n ?

NO!

There are non-isomorphic simple groups S and S₁ such that $|S| = |S_1|$ and $\psi(S) \neq \psi(S_1)$.

For instance, the groups \mathcal{A}_8 and $\mathcal{PSL}(3,4)$ are such that $|\mathcal{A}_8| = 20160 = |\mathcal{PSL}(3,4)|$ and $\psi(\mathcal{A}_8) = 137047 > 103111 = \psi(\mathcal{PSL}(3,4)).$ Conjecture [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite non-simple group, S a finite simple group, |G| = |S|. Then $\psi(S) < \psi(G)$.

Theorem [S.M. Jafarian Amiri, 2013]

Let G be a finite non-simple group. If |G| = 60, then $\psi(A_5) < \psi(G)$. If |G| = 168, then $\psi(\mathcal{PSL}(2,7)) < \psi(G)$.

Conjecture [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite non-simple group, S a finite simple group, |G| = |S|. Then $\psi(S) < \psi(G)$.

Theorem [S.M. Jafarian Amiri, 2013]

Let G be a finite non-simple group. If |G| = 60, then $\psi(A_5) < \psi(G)$. If |G| = 168, then $\psi(\mathcal{PSL}(2,7)) < \psi(G)$.

Conjecture [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite non-simple group, S a finite simple group, |G| = |S|. Then $\psi(S) < \psi(G)$.

Theorem [S.M. Jafarian Amiri, 2013]

Let G be a finite non-simple group. If |G| = 60, then $\psi(A_5) < \psi(G)$. If |G| = 168, then $\psi(\mathcal{PSL}(2,7)) < \psi(G)$.

글 눈 옷 글 눈 드 글

Assume G is a finite non-simple group. Using **GAP** it is possible to see that: If |G| = 360, then $\psi(\mathcal{A}_6) < \psi(G)$. If |G| = 504, then $\psi(\mathcal{PSL}(2, 8)) < \psi(G)$. If |G| = 660, then $\psi(\mathcal{PSL}(2, 11)) < \psi(G)$. If |G| = 1092, then $\psi(\mathcal{PSL}(2, 13)) < \psi(G)$.

Sum of the orders of the elements - minimum

But the conjecture is **not** true.

Theorem [Y. Marefat, A. Iranmanesh, A. Tehranian, 2013] Let $S = \mathcal{PSL}(2, 64)$ and $G = 3^2 \times \mathcal{Sz}(8)$. Then |G| = |S| and $\psi(G) \le \psi(S)$.

Conjecture

Let G be a finite soluble group, S a simple group, |G| = |S|. Then

Sum of the orders of the elements - minimum

But the conjecture is not true.

Theorem [Y. Marefat, A. Iranmanesh, A. Tehranian, 2013]

Let
$$S = \mathcal{PSL}(2, 64)$$
 and $G = 3^2 \times \mathcal{Sz}(8)$.

Then
$$|G| = |S|$$
 and $\psi(G) \le \psi(S)$.

Conjecture

Let G be a finite soluble group, S a simple group, |G| = |S|. Then

 $\psi(S) < \psi(G).$

But the conjecture is **not** true.

Theorem [Y. Marefat, A. Iranmanesh, A. Tehranian, 2013]

Let
$$S = \mathcal{PSL}(2, 64)$$
 and $G = 3^2 \times \mathcal{SZ}(8)$.

Then |G| = |S| and $\psi(G) \le \psi(S)$.

Conjecture Let G be a finite soluble group, S a simple group, |G| = |S|. Then $\psi(S) < \psi(G)$.

Let G be a finite group.

Let G be a finite group.

Definition

$$\mathcal{P}(G) := \prod_{x \in G} o(x).$$

Theorem [M. Garonzi, M. Patassini, 2015]

Let G be a finite group, |G| = n. Then

 $\mathcal{P}(G) \leq \mathcal{P}(\mathcal{C}_n).$

Moreover

 $\mathcal{P}(G) = \mathcal{P}(\mathcal{C}_n)$ if and only if $G \simeq \mathcal{C}_n$.

イロト イポト イヨト イヨト

Let G be a finite group.

Definition

$$\mathcal{P}(G) := \prod_{x \in G} o(x).$$

Theorem [M. Garonzi, M. Patassini, 2015]

Let G be a finite group, |G| = n. Then

 $\mathcal{P}(G) \leq \mathcal{P}(\mathcal{C}_n).$

Moreover

 $\mathcal{P}(G) = \mathcal{P}(\mathcal{C}_n)$ if and only if $G \simeq \mathcal{C}_n$.

Let G be a finite group.

Definition

$$\mathcal{P}(G) := \prod_{x \in G} o(x).$$

Theorem [M. Garonzi, M. Patassini, 2015]

Let G be a finite group, |G| = n. Then

 $\mathcal{P}(G) \leq \mathcal{P}(\mathcal{C}_n).$

Moreover

 $\mathcal{P}(G) = \mathcal{P}(\mathcal{C}_n)$ if and only if $G \simeq \mathcal{C}_n$.

Let G be a finite group, r, s real numbers.

Definition

$$\mathcal{R}_G(r,s) := \sum_{x \in G} \frac{o(x)^s}{\varphi(o(x))^r}.$$

$$\mathcal{R}_G(r) := \mathcal{R}_G(r, r).$$

Remark

$$\mathcal{R}_G(0,1)=\psi(G).$$

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

æ

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let G be a finite group, r, s real numbers.

Definition

$$\mathcal{R}_G(r,s) := \sum_{x \in G} \frac{o(x)^s}{\varphi(o(x))^r}.$$

$$\mathcal{R}_G(r) := \mathcal{R}_G(r, r).$$

Remark

$$\mathcal{R}_{G}(0,1)=\psi(G).$$

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

(日) (國) (臣) (臣) (臣)

Theorem [M. Garonzi, M. Patassini, 2015] Let G be a finite group, |G| = n, r < 0. Then $\mathcal{R}_G(r) \ge \mathcal{R}_{\mathcal{C}_n}(r)$. Moreover $\mathcal{R}_G(r) = \mathcal{R}_{\mathcal{C}_n}(r)$ if and only if G is nilpotent.

Problem

Let G be a finite group, |G| = n, and r, s real numbers. Does $\mathcal{R}_G(s, r) = \mathcal{R}_{C_n}(s, r)$ imply G soluble?

Theorem [M. Garonzi, M. Patassini, 2015] Let G be a finite group, |G| = n, r < 0. Then $\mathcal{R}_G(r) \ge \mathcal{R}_{\mathcal{C}_n}(r)$. Moreover $\mathcal{R}_G(r) = \mathcal{R}_{\mathcal{C}_n}(r)$ if and only if G is nilpotent.

Problem

Let G be a finite group, |G| = n, and r, s real numbers. Does $\mathcal{R}_G(s, r) = \mathcal{R}_{C_n}(s, r)$ imply G soluble?

Theorem [T. De Medts, M. Tārnāuceanu, 2008]

Let G be a finite group, |G| = n.

If G is nilpotent, then $\mathcal{R}_G(1) = \mathcal{R}_{\mathcal{C}_n}(1)$.

Problem

Let G be a finite group, |G| = n. Does $\mathcal{R}_G(1) = \mathcal{R}_{\mathcal{C}_n}(1)$ imply G nilpotent?

Problem

Let G be a finite group, |G|=n.Does $\mathcal{R}_G(1)\leq \mathcal{R}_{\mathcal{C}_n}(1)?$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem [T. De Medts, M. Tārnāuceanu, 2008]

Let G be a finite group, |G| = n.

If G is nilpotent, then $\mathcal{R}_G(1) = \mathcal{R}_{\mathcal{C}_n}(1)$.

Problem

Let G be a finite group, |G| = n.

Does $\mathcal{R}_G(1) = \mathcal{R}_{\mathcal{C}_n}(1)$ imply G nilpotent?

Problem

Let G be a finite group, |G|=n.Does $\mathcal{R}_G(1)\leq \mathcal{R}_{\mathcal{C}_n}(1)?$

Theorem [T. De Medts, M. Tārnāuceanu, 2008]

Let G be a finite group, |G| = n.

If G is nilpotent, then $\mathcal{R}_G(1) = \mathcal{R}_{\mathcal{C}_n}(1)$.

Problem

Let G be a finite group, |G| = n.

Does $\mathcal{R}_G(1) = \mathcal{R}_{\mathcal{C}_n}(1)$ imply G nilpotent?

Problem

Let G be a finite group, |G| = n. Does $\mathcal{R}_G(1) \leq \mathcal{R}_{\mathcal{C}_n}(1)$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Thank you for the attention !

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups

3

P. Longobardi Dipartimento di Matematica Università di Salerno via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy E-mail address : plongobardi@unisa.it

- H. Amiri, S.M. Jafarian Amiri, I.M. Isaacs, Sums of element orders in finite groups, *Comm. Algebra* **37** (2009), 2978-2980.
- H. Amiri, S.M. Jafarian Amiri, Sum of element orders on finite groups of the same order, *J. Algebra Appl.* **10** no. 2 (2011), 187-190.
- H. Amiri, S.M. Jafarian Amiri, Sum of element orders on maximal subgroups of the symmetric group, *Comm. Algebra* 40 no. 2 (2012), 770-778.
- G. Frobenius, Verallgemeinerung des Sylowschen Satzes, *Berliner Sitz.* (1895), 981-993.
- M. Garonzi, M. Patassini, Inequalities detecting structural proprieties of a finite group, *arXiv:1503.00355v2* [math.GR] 26 december 2015.
- N.D. Gupta, V.D. Mazurov, On groups with small orders of elements, *Bull. Austral. Math. Soc.* **60** (1999), 197-205.

3

- M. Hall, Solution of the Burnside problem for exponent six, *Illinois J. Math.* **2** (1958), 764-786.
- J. Harrington, L. Jones, A. Lamarche, Characterizing Finite Groups Using the Sum of the Orders of the Elements, *Int. J. Comb.*, Volume 2014, Article ID 835125, 8 pages.
- M. Herzog, P. Longobardi, M. Maj, An exact upper bound for sums of element orders in non-cyclic finite groups, *submitted*, arXiv:1610.03669 [math.GR] 12 October 2016.
- N. liyori, H. Yamaki, On a conjecture of Frobenius. *Bull. Amer. Math. Soc.* **25** 25, (1991), 413-416.
- E. Jabara, Fixed point free actions of groups of exponent 5, *J. Austral. Math. Soc.*, **77** (2004), 297-304.
- E. Jabara, D.V. Lytkina, V.D. Mazurov, A.S. Mamontov, Groups whose element order do not exceed 6, Algebra and Logic, 53 (2014), 365-376.

- S.M. Jafarian Amiri, Characterization of A₅ and PSL(2,7) by sum of elements orders, Int. J. Group Theory 2 (2013), 35-39.
- S.M. Jafarian Amiri and M. Amiri, Second maximum sum of element orders on finite groups, J. Pure Appl. Algebra 218 no. 3 (2014), 531-539.
- 📄 F. Levi, B.L. van der Waerden, Über eine besondere Klasse von Gruppen, Abh. Math. Sem. Hamburg Univ., 9 (1932), 154-158.

- 🛸 F. Le Lionnais. Les nombres remarquables, Hermann, Paris, 1983.
- D.V. Lytkina. The structure of a group with elements of order at most 4, Siberian Math. J. 48 (2007), 283-287.
- D.V. Lytkina, V.D. Mazurov, Groups with Given Element Orders, J. Siberian Federal University Math. 7 no. 2 (2014), 191-203.

- Y. Marefat, A. Iranmanesh, A. Tehranian, On the sum of elements of finite simple groups, *J. Algebra Appl.* **12** no. 7 (2013), DOI: 10.1142/S0219498813500266.
- V.D. Mazurov, Groups of exponent 60 with prescribed orders of elements, *Algebra i Logika* **39** (2000), 329-346; English translation: *Algebra and Logic* **39** (2000), 189-198.
- B.H. Neumann, Groups whose elements have bounded orders, *J. London Math. Soc.* **12** (1937), 195-198.
- I. N. Sanov, Solution of Burnside's problem for exponent 4, *Leningrad Univ. Ann. Math. Ser.* **10** (1940), 166-170.
- R. Shen, G. Chen and C. Wu, On Groups with the Second Largest Value of the Sum of Element Orders, *Comm. Algebra* 43 no. 6 (2015), 2618-2631.

A B > A B >

- A.V. Vasil'ev, M.A. Grechkoseeva, V.D. Mazurov, On finite groups isospectral to simple symplectic and orthogonal groups, *Siberian Math. J.* 50 no. 6 (2009), 965-981.
- A.V. Vasil'ev, M.A. Grechkoseeva, V.D. Mazurov, Characterization of the finite simple groups by spectrum and order, *Algebra and Logic* **48** no. 6 (2009), 385-409.
- M.C. Xu, W.J. Shi, Pure quantitative characterization of finite simple groups ²D_n(q) and D_l(q) (l odd), Algebra Colloquium 10 no. 3 (2003), 427-443.
- A.K. Zhurtov, V.D. Mazurov, A recognition of simple groups L₂(2^m) in the class of all groups, *Sibirsk. Math. Zh.* 40 (1999), 75-78; English translation: *Siberian Math. J.* 40 (1999), 62-64.

化压力 化压力