On sums of element orders in finite groups

Patrizia LONGOBARDI

UNIVERSITÀ DEGLI STUDI DI SALERNO

Group Theory and Computational Methods

ICTS International Centre for Theoretical Sciences
Tata Institute of Fundamental Research
Discussion Meeting
November 11-14, 2016

Basic Problem

Let G be a periodic group.

Main Problem

Obtain information about the structure of G by looking at the orders of its elements.

The function ω

Let G be a periodic group.

Definition

Problem

$$
\begin{aligned}
& \text { What can be said about the structure of } G \\
& \text { by looking at the set } \omega(G) \text { ? }
\end{aligned}
$$

The function ω

Let G be a periodic group.
Definition

$$
\omega(G):=\{o(x) \mid x \in G\} .
$$

Problem

$$
\begin{aligned}
& \text { What can be said about the structure of } G \\
& \text { by looking at the set } \omega(G) \text { ? }
\end{aligned}
$$

The function ω

Let G be a periodic group.

Definition

$$
\omega(G):=\{o(x) \mid x \in G\} .
$$

Problem

What can be said about the structure of G by looking at the set $\omega(G)$?

The function ω

Remark
$\omega(G)=\{1,2\}$ if and only if G is an elementary abelian 2-group.

F. Levi, B.L. van der Waerden, 1932

If $\omega(G)=\{1,3\}$, then G is nilnotent of class $\leqslant 3$
B.H. Neumann, 1937

If $\omega(G)=\{1.2 .3\}$, then G is (elementary abelian)-by-(prime

The function ω

Remark
$\omega(G)=\{1,2\}$ if and only if G is an elementary abelian 2-group.
F. Levi, B.L. van der Waerden, 1932

If $\omega(G)=\{1,3\}$, then G is nilpotent of class $\leqslant 3$.
B.H. Neumann, 1937

If $\omega(G)=\{1.2 .3\}$, then G is (elementary abelian)-by-(prime

The function ω

Remark

$\omega(G)=\{1,2\}$ if and only if G is an elementary abelian 2-group.
F. Levi, B.L. van der Waerden, 1932

If $\omega(G)=\{1,3\}$, then G is nilpotent of class $\leqslant 3$.
B.H. Neumann, 1937

If $\omega(G)=\{1,2,3\}$, then G is (elementary abelian)-by-(prime order).

The function ω

Question

Does $\omega(G)$ finite imply G locally finite?

The function ω

Question (Bounded Burnside Problem)

Does $\omega(G)$ finite imply G locally finite?

$$
\text { Answered negatively by Novikov and Adjan, } 1968 .
$$

The function ω

Question (Bounded Burnside Problem)

Does $\omega(G)$ finite imply G locally finite?

Answered negatively by Novikov and Adjan, 1968.

The function ω

I. N. Sanov, 1940

If $\omega(G) \subseteq\{1,2,3,4\}$, then G is locally finite.
D.V. Lytkina, 2007

If $\omega(G)=\{1,2,3,4\}$, then either

- G is an extension of an (elementary abelian 3-group) by (a cyclic or a quaternion group), or
- G is an extension of a (nilpotent of class 2 2-group) by (a subgroup of \mathcal{S}_{3})

The function ω

I. N. Sanov, 1940

If $\omega(G) \subseteq\{1,2,3,4\}$, then G is locally finite.

D.V. Lytkina, 2007

If $\omega(G)=\{1,2,3,4\}$, then either

- G is an extension of an (elementary abelian 3-group) by (a cyclic or a quaternion group), or
- G is an extension of a (nilpotent of class 2 2-group) by (a subgroup of \mathcal{S}_{3}).

The function ω

N.D. Gupta, V.D. Mazurov, A.K. Zhurtov, E. Jabara, 2004

If $\omega(G) \subseteq\{1,2,3,4,5\}, \omega(G) \neq\{1,5\}$, then G is locally finite.

E. Jabara, D. V. Lytkina, V. D. Mazurov, A. S. Mamontov, 2014
 If $\omega(G) \subseteq\{1,2,3,4,5,6\}, W^{\prime}(G) \neq\{1,5\}$, then G is locally

finite.

The function ω

N.D. Gupta, V.D. Mazurov, A.K. Zhurtov, E. Jabara, 2004

If $\omega(G) \subseteq\{1,2,3,4,5\}, \omega(G) \neq\{1,5\}$, then G is locally finite.
E. Jabara, D. V. Lytkina, V. D. Mazurov, A. S. Mamontov, 2014

If $\omega(G) \subseteq\{1,2,3,4,5,6\}, \omega(G) \neq\{1,5\}$, then G is locally finite.

The function ω

Question

Does $\omega(G)=\{1,5\}$ imply G locally finite?

Still open!

M. C. Xu, W.J. Shi , 2003
A. V. Vasil'ev, M. A. Grechko eeva, V.D. Mazurov, 2009
If G is a finite simple group, G_{1} a finite group,

$$
|G|=\left|G_{1}\right| \text { and } \omega(G)=\omega\left(G_{1}\right),
$$

then $G \simeq G_{1}$.

The function ω

Question

$$
\text { Does } \omega(G)=\{1,5\} \text { imply } G \text { locally finite? }
$$

Still open!

M. C. Xu, W.J. Shi , 2003 A. V. Vasil'ev, M. A. Grechko eeva, V.D. Mazurov, 2009
 If G is a finite simple group, G_{1} a finite group,
 $$
|G|=\left|G_{1}\right| \text { and } \omega(G)=\omega\left(G_{1}\right),
$$

then $G \simeq G_{1}$

The function ω

Question

$$
\text { Does } \omega(G)=\{1,5\} \text { imply } G \text { locally finite? }
$$

Still open!

```
M. C. Xu, W.J. Shi , 2003
A. V. Vasil'ev, M. A. Grechkgseeva, V.D. Mazurov, 2009
If G}\mathrm{ is a finite simple group, G}\mp@subsup{G}{1}{}\mathrm{ a finite group,
|}|=|\mp@subsup{G}{1}{}|\mathrm{ and }\omega(G)=\omega(\mp@subsup{G}{1}{})
```

then $G \simeq G_{1}$

The function ω

Question

$$
\text { Does } \omega(G)=\{1,5\} \text { imply } G \text { locally finite? }
$$

Still open!

M. C. Xu, W.J. Shi , 2003

A. V. Vasil'ev, M. A. Grechkoseeva, V.D. Mazurov, 2009

If G is a finite simple group, G_{1} a finite group,

$$
|G|=\left|G_{1}\right| \text { and } \omega(G)=\omega\left(G_{1}\right)
$$

then $G \simeq G_{1}$.

The sets L_{e}

Let G be a finite group and let e be a divisor of the order of G.

Definition

$$
L_{e}(G):=\left\{x \in G \mid x^{e}=1\right\}
$$

Problem

Obtain information about the structure of G by looking at the orders of the sets $L_{e}(G)$.

The sets L_{e}

Let G be a finite group and let e be a divisor of the order of G.

Definition

$$
L_{e}(G):=\left\{x \in G \mid x^{e}=1\right\} .
$$

Problem

> Obtain information about the structure of G by looking at the orders of the sets $L_{e}(G)$.

The sets L_{e}

Let G be a finite group and let e be a divisor of the order of G.

Definition

$$
L_{e}(G):=\left\{x \in G \mid x^{e}=1\right\} .
$$

Problem

Obtain information about the structure of G by looking at the orders of the sets $L_{e}(G)$.

The sets L_{e}

G. Frobenius, 1895

'Le(G)' divides |G', for every e dividing $|G|$

Remark

$\left|L_{e}(G)\right|=e$, for every e dividing $|G|$, if and only if G is cyclic.
N. liyori, H. Yamaki, 1991

If $\left|L_{e}(G)\right|=e$, then $L_{e}(G)$ is a subgroup of G

Patrizia Longobardi - University of Salerno

The sets L_{e}

G. Frobenius, 1895

$\left|L_{e}(G)\right|$ divides $|G|$, for every e dividing $|G|$.

Remark

$\left|L_{e}(G)\right|=e$, for every e dividing $|G|$, if and only if G is cyclic.
N. liyori, H. Yamaki, 1991

If $\left|L_{e}(G)\right|=e$, then $L_{e}(G)$ is a subgroup of G

The sets L_{e}

G. Frobenius, 1895

$\left|L_{e}(G)\right|$ divides $|G|$, for every e dividing $|G|$.

Remark

$\left|L_{e}(G)\right|=e$, for every e dividing $|G|$, if and only if G is cyclic.

N. liyori, H. Yamaki, 1991
 If $\left|L_{e}(G)\right|=e$, then $L_{e}(G)$ is a subgroup of G

The sets L_{e}

G. Frobenius, 1895

$\left|L_{e}(G)\right|$ divides $|G|$, for every e dividing $|G|$.

Remark

$\left|L_{e}(G)\right|=e$, for every e dividing $|G|$, if and only if G is cyclic.

N. liyori, H. Yamaki, 1991

If $\left|L_{e}(G)\right|=e$, then $L_{e}(G)$ is a subgroup of G.

The sets L_{e}

W. Meng and J. Shi, in 2011, classified all finite groups G such that

$$
L_{e}(G) \mid \leq 2 e, \text { for every e dividing }|G| \text {. }
$$

H. Heineken and F. Russo, in 2015, studied groups G such that

$$
\left|L_{e}(G)\right| \leq e^{2} \text {, for every e dividing }|G|
$$

The sets L_{e}

W. Meng and J. Shi, in 2011, classified all finite groups G such that

$$
\left|L_{e}(G)\right| \leq 2 e, \text { for every e dividing }|G| \text {. }
$$

H. Heineken and F. Russo, in 2015, studied groups G such that

$$
' L_{e}(G) \mid \leq e^{2} \text {, for every e dividing }|G|
$$

The sets L_{e}

W. Meng and J. Shi, in 2011, classified all finite groups G such that

$$
\left|L_{e}(G)\right| \leq 2 e, \text { for every e dividing }|G| \text {. }
$$

H. Heineken and F. Russo, in 2015, studied groups G such that

$$
\left|L_{e}(G)\right| \leq e^{2}, \text { for every e dividing }|G|
$$

The sets L_{e}

Problem (J.G. Thompson)

> Let G be a finite soluble group, G_{1} a finite group. Assume $\left|L_{e}(G)\right|=\left|L_{e}\left(G_{1}\right)\right|$, for any e dividing $|G|$. Is it true that G_{1} is soluble?

> Still open!

The sets L_{e}

Problem (J.G. Thompson)

Let G be a finite soluble group, G_{1} a finite group. Assume $\left|L_{e}(G)\right|=\left|L_{e}\left(G_{1}\right)\right|$, for any e dividing $|G|$. Is it true that G_{1} is soluble?

The sets L_{e}

Problem (J.G. Thompson)

Let G be a finite soluble group, G_{1} a finite group. Assume $\left|L_{e}(G)\right|=\left|L_{e}\left(G_{1}\right)\right|$, for any e dividing $|G|$. Is it true that G_{1} is soluble?

Still open!

Paper

Marcel Herzog, P. L., Mercede Maj

 An exact upper bound for sums of element orders in non-cyclic finite grouns
submitted,

arXiv:1610.03669 [math.GR] 12 October 2016.

Paper

Marcel Herzog, P. L., Mercede Maj

An exact upper bound for sums of element orders in non-cyclic finite groups

submitted,
arXiv:1610.03669 [math.GR] 12 October 2016.

The function ψ

Let G be a finite group.

Definition

Problem

$$
\begin{aligned}
& \text { What can be said about the structure of } G \\
& \text { by looking at the value } \psi(G) \text { ? }
\end{aligned}
$$

The function ψ

Let G be a finite group.

Definition

$$
\psi(G):=\sum_{x \in G} o(x)
$$

Problem

$$
\begin{gathered}
\text { What can be said about the structure of } G \\
\text { by looking at the value } \psi(G) \text { ? }
\end{gathered}
$$

The function ψ

Let G be a finite group.

Definition

$$
\psi(G):=\sum_{x \in G} o(x)
$$

Problem

What can be said about the structure of G by looking at the value $\psi(G)$?

The function ψ - some examples

Examples

$$
\psi\left(\mathcal{S}_{3}\right)=13 .
$$

For, $\psi\left(\mathcal{S}_{3}\right)=1 \cdot 1+3 \cdot 2+2 \cdot 3$.

$$
\psi\left(\mathcal{C}_{6}\right)=21
$$

For, $\psi\left(\mathcal{C}_{6}\right)=1 \cdot 1+1 \cdot 2+2 \cdot 3+2 \cdot 6$.

$$
\psi\left(\mathcal{C}_{5}\right)=21
$$

For, $\psi\left(\mathcal{C}_{5}\right)=1 \cdot 1+4 \cdot 5$.
where \mathcal{C}_{n} is the cyclic group of order n and \mathcal{S}_{3} is the symmetric group of degree 3.

The function ψ - some remarks

Remark

$$
\psi(G)=\psi\left(G_{1}\right) \text { does not imply } G \simeq G_{1} .
$$

Example

Remark

The function ψ - some remarks

Remark

$$
\psi(G)=\psi\left(G_{1}\right) \text { does not imply } G \simeq G_{1} .
$$

Example

$$
\begin{gathered}
\text { Let } A=\mathcal{C}_{8} \times \mathcal{C}_{2}, \\
B=\mathcal{C}_{2} \ltimes \mathcal{C}_{8}, \text { where } \mathcal{C}_{2}=\langle a\rangle, \mathcal{C}_{8}=\langle b\rangle, b^{a}=b^{5} . \\
\text { Then } \\
\psi(A)=\psi(B)=87 .
\end{gathered}
$$

Remark

The function ψ - some remarks

Remark

$$
\psi(G)=\psi\left(G_{1}\right) \text { does not imply } G \simeq G_{1} .
$$

Example

$$
\begin{gathered}
\text { Let } A=\mathcal{C}_{8} \times \mathcal{C}_{2}, \\
B=\mathcal{C}_{2} \ltimes \mathcal{C}_{8}, \text { where } \mathcal{C}_{2}=\langle a\rangle, \mathcal{C}_{8}=\langle b\rangle, b^{a}=b^{5} . \\
\text { Then } \\
\psi(A)=\psi(B)=87 .
\end{gathered}
$$

Remark

$$
|G|=\left|G_{1}\right| \text { and } \psi(G)=\psi\left(G_{1}\right) \text { do not imply } G \simeq G_{1} \text {. }
$$

The function ψ - a problem

Remark

$$
\psi(G)=\psi\left(\mathcal{S}_{3}\right) \text { implies } G \simeq \mathcal{S}_{3} .
$$

Problem

> Find information about the structure of a finite group G from some inequalities on $\psi(G)$

The function ψ - a problem

Remark

$$
\psi(G)=\psi\left(\mathcal{S}_{3}\right) \text { implies } G \simeq \mathcal{S}_{3} .
$$

Problem

Find information about the structure of a finite group G from some inequalities on $\psi(G)$.

The function ψ - a property

Proposition

$$
\begin{aligned}
& \text { If } G=G_{1} \times G_{2} \text {, where }\left|G_{1}\right| \text { and }\left|G_{2}\right| \text { are coprime, then } \\
& \qquad \psi(G)=\psi\left(G_{1}\right) \psi\left(G_{2}\right)
\end{aligned}
$$

Sum of the orders of the elements in a cyclic group

Remark

$$
\psi\left(\mathcal{C}_{n}\right)=\sum_{d \mid n} d \varphi(d),
$$

where φ is the Euler's function.

Proposition

Let p be a prime, $\alpha \geq 0$. Then:

Sum of the orders of the elements in a cyclic group

Remark

$$
\psi\left(\mathcal{C}_{n}\right)=\sum_{d \mid n} d \varphi(d),
$$

where φ is the Euler's function.

Proposition
Let p be a prime, $\alpha \geq 0$. Then:

$$
\psi\left(\mathcal{C}_{p^{\alpha}}\right)=\frac{p^{2 \alpha+1}+1}{p+1}
$$

Sum of the orders of the elements in a cyclic group

Proposition

$$
\text { Let } p \text { be a prime, } \alpha \geq 0 \text {. Then: } \psi\left(\mathcal{C}_{p^{\alpha}}\right)=\frac{p^{2 \alpha+1}+1}{p+1} \text {. }
$$

Proof. $\psi\left(C_{p^{\alpha}}\right)=1+p \varphi(p)+p^{2} \varphi\left(p^{2}\right)+\cdots+p^{\alpha}\left(\varphi\left(p^{\alpha}\right)\right)=$

Corollary

Let $n>1$. Write $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}, p_{i}^{\prime} s$ different primes, $\alpha_{i} ' s>0$. Then

Sum of the orders of the elements in a cyclic group

Proposition

$$
\text { Let } p \text { be a prime, } \alpha \geq 0 \text {. Then: } \psi\left(\mathcal{C}_{p^{\alpha}}\right)=\frac{p^{2 \alpha+1}+1}{p+1} \text {. }
$$

Proof. $\psi\left(\mathcal{C}_{p^{\alpha}}\right)=1+p \varphi(p)+p^{2} \varphi\left(p^{2}\right)+\cdots+p^{\alpha}\left(\varphi\left(p^{\alpha}\right)\right)=$
$1+p(p-1)+p^{2}\left(p^{2}-p\right)+\cdots+p^{\alpha}\left(p^{\alpha}-p^{\alpha-1}\right)=$
$=1+p^{2}-p+p^{4}-p^{3}+\cdots+p^{2 \alpha}-p^{2 \alpha-1}=\frac{p^{2 \alpha+1}+1}{p+1}$, as required. $/ /$

Corollary

let $n>1$ Write $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}, p_{i}^{\prime} s$ different primes, $\alpha_{i}^{\prime} s>0$. Then

Sum of the orders of the elements in a cyclic group

Proposition

Let p be a prime, $\alpha \geq 0$. Then: $\psi\left(\mathcal{C}_{p^{\alpha}}\right)=\frac{p^{2 \alpha+1}+1}{p+1}$.
Proof. $\psi\left(\mathcal{C}_{p^{\alpha}}\right)=1+p \varphi(p)+p^{2} \varphi\left(p^{2}\right)+\cdots+p^{\alpha}\left(\varphi\left(p^{\alpha}\right)\right)=$
$1+p(p-1)+p^{2}\left(p^{2}-p\right)+\cdots+p^{\alpha}\left(p^{\alpha}-p^{\alpha-1}\right)=$
$=1+p^{2}-p+p^{4}-p^{3}+\cdots+p^{2 \alpha}-p^{2 \alpha-1}=\frac{p^{2 \alpha+1}+1}{p+1}$, as required. $/ /$

Corollary

Let $n>1$. Write $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}, p_{i}^{\prime} s$ different primes, α_{i} 's >0. Then

$$
\psi\left(\mathcal{C}_{n}\right)=\prod_{i \in\{1, \cdots, s\}} \frac{p_{i}^{2 \alpha_{i}+1}+1}{p_{i}+1}
$$

Sum of the orders of the elements in a cyclic group

Remarks

$$
\begin{gathered}
\text { Let } p \text { be a prime, } \alpha \geq 0 \text {. Then } \\
\psi\left(\mathcal{C}_{p^{\alpha}}\right)=\frac{p^{2 \alpha+1}+1}{p+1}=\frac{p\left|\mathcal{C}_{p^{\alpha}}\right|^{2}+1}{p+1}>\frac{p}{p+1}\left|\mathcal{C}_{p^{\alpha}}\right|^{2}
\end{gathered}
$$

Let $n>1$. Write $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}, p_{i}^{\prime} s$ different primes, $\alpha_{i}{ }^{\prime} s>0$, and let p be the largest prime divisor of n. Then

Sum of the orders of the elements in a cyclic group

Remarks

$$
\begin{gathered}
\text { Let } p \text { be a prime, } \alpha \geq 0 \text {. Then } \\
\psi\left(\mathcal{C}_{p^{\alpha}}\right)=\frac{p^{2 \alpha+1}+1}{p+1}=\frac{p\left|\mathcal{C}_{p^{\alpha}}\right|^{2}+1}{p+1}>\frac{p}{p+1}\left|\mathcal{C}_{p^{\alpha}}\right|^{2} .
\end{gathered}
$$

Let $n>1$. Write $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}, p_{i}^{\prime} s$ different primes, α_{i} 's >0, and let p be the largest prime divisor of n. Then

$$
\psi\left(\mathcal{C}_{n}\right)=\prod_{i \in\{1, \cdots, s\}} \frac{p_{i}^{2 \alpha_{i}+1}+1}{p_{i}+1}>\frac{2}{p+1} n^{2}
$$

The function ψ - a recent result

Theorem [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, Comm. Algebra 2009]

Let G be a finite group, $|G|=n$. Then

Moreover

Let G be a finite non-cyclic group, $|G|=n$ Then

The function ψ - a recent result

Theorem [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, Comm. Algebra 2009]

Let G be a finite group, $|G|=n$. Then

$$
\psi(G) \leq \psi\left(\mathcal{C}_{n}\right)
$$

Moreover

Let G be a finite non-cyclic group, $|G|=n$. Then

The function ψ - a recent result

Theorem [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, Comm. Algebra 2009]

Let G be a finite group, $|G|=n$. Then

$$
\psi(G) \leq \psi\left(\mathcal{C}_{n}\right)
$$

Moreover

$$
\psi(G)=\psi\left(\mathcal{C}_{n}\right) \text { if and only if } G \simeq \mathcal{C}_{n} .
$$

Let G be a finite non-cyclic group, $|G|=n$. Then

The function ψ - a recent result

Theorem [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, Comm. Algebra 2009]

Let G be a finite group, $|G|=n$. Then

$$
\psi(G) \leq \psi\left(\mathcal{C}_{n}\right)
$$

Moreover

$$
\psi(G)=\psi\left(\mathcal{C}_{n}\right) \text { if and only if } G \simeq \mathcal{C}_{n} .
$$

Let G be a finite non-cyclic group, $|G|=n$.
Then

$$
\psi(G)<\psi\left(\mathcal{C}_{n}\right)
$$

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, $|G|=n$.
 Then

Remark
This upper bound is the best possible: for each $n=4 k, k$ odd, there exists a group G of order n satisfying

$$
\psi(G)=\frac{7}{11} \psi\left(\mathcal{C}_{n}\right) .
$$

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]
Let G be a non-cyclic finite group, $|G|=n$.
Then

$$
\psi(G) \leq \frac{7}{11} \psi\left(\mathcal{C}_{n}\right)
$$

Remark

This upper bound is the best possible:

$$
\text { for each } n=4 k, k \text { odd, }
$$

there exists a group G of order n satisfying

$$
\psi(G)=\frac{7}{11} \psi\left(\mathcal{C}_{n}\right) .
$$

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, $|G|=n$.
Then

$$
\psi(G) \leq \frac{7}{11} \psi\left(\mathcal{C}_{n}\right)
$$

Remark

This upper bound is the best possible: there exists a group G of order n satisfying

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, $|G|=n$.
Then

$$
\psi(G) \leq \frac{7}{11} \psi\left(\mathcal{C}_{n}\right)
$$

Remark

This upper bound is the best possible: for each $n=4 k, k$ odd, there exists a group G of order n satisfying

$$
\psi(G)=\frac{7}{11} \psi\left(\mathcal{C}_{n}\right) .
$$

The function ψ - some new results

Proposition

Let k be an odd integer and let $n=4 k$. Then

$$
\psi\left(\mathcal{C}_{2 k} \times \mathcal{C}_{2}\right)=\frac{7}{11} \psi\left(\mathcal{C}_{n}\right) .
$$

Proof. We have

$$
\psi\left(\mathcal{C}_{n}\right)=\psi\left(\mathcal{C}_{4 k}\right)=\psi\left(\mathcal{C}_{4}\right) \psi\left(\mathcal{C}_{k}\right)=\frac{32+1}{2+1} \psi\left(\mathcal{C}_{k}\right)=11 \psi\left(\mathcal{C}_{k}\right)
$$

and

Remark

But for instance

$$
\psi\left(S_{3}\right)=13=\frac{13}{21} 21=\frac{13}{21} \imath,\left(C_{6}\right)<\frac{7}{11} \psi\left(C_{6}\right)
$$

The function ψ - some new results

Proposition

Let k be an odd integer and let $n=4 k$. Then

$$
\psi\left(\mathcal{C}_{2 k} \times \mathcal{C}_{2}\right)=\frac{7}{11} \psi\left(\mathcal{C}_{n}\right) .
$$

Proof. We have

$$
\psi\left(\mathcal{C}_{n}\right)=\psi\left(\mathcal{C}_{4 k}\right)=\psi\left(\mathcal{C}_{4}\right) \psi\left(\mathcal{C}_{k}\right)=\frac{32+1}{2+1} \psi\left(\mathcal{C}_{k}\right)=11 \psi\left(\mathcal{C}_{k}\right) .
$$

and

Remark

But for instance

The function ψ - some new results

Proposition

Let k be an odd integer and let $n=4 k$. Then

$$
\psi\left(\mathcal{C}_{2 k} \times \mathcal{C}_{2}\right)=\frac{7}{11} \psi\left(\mathcal{C}_{n}\right)
$$

Proof. We have

$$
\psi\left(\mathcal{C}_{n}\right)=\psi\left(\mathcal{C}_{4 k}\right)=\psi\left(\mathcal{C}_{4}\right) \psi\left(\mathcal{C}_{k}\right)=\frac{32+1}{2+1} \psi\left(\mathcal{C}_{k}\right)=11 \psi\left(\mathcal{C}_{k}\right)
$$

and

$$
\psi\left(\mathcal{C}_{2 k} \times \mathcal{C}_{2}\right)=\psi\left(\mathcal{C}_{k} \times \mathcal{C}_{2} \times \mathcal{C}_{2}\right)=\psi\left(\mathcal{C}_{k}\right) \psi\left(\mathcal{C}_{2} \times \mathcal{C}_{2}\right)=7 \psi\left(\mathcal{C}_{k}\right)
$$

Remark

But for instance

The function ψ - some new results

Proposition

Let k be an odd integer and let $n=4 k$. Then

$$
\psi\left(\mathcal{C}_{2 k} \times \mathcal{C}_{2}\right)=\frac{7}{11} \psi\left(\mathcal{C}_{n}\right)
$$

Proof. We have

$$
\psi\left(\mathcal{C}_{n}\right)=\psi\left(\mathcal{C}_{4 k}\right)=\psi\left(\mathcal{C}_{4}\right) \psi\left(\mathcal{C}_{k}\right)=\frac{32+1}{2+1} \psi\left(\mathcal{C}_{k}\right)=11 \psi\left(\mathcal{C}_{k}\right)
$$

and

$$
\psi\left(\mathcal{C}_{2 k} \times \mathcal{C}_{2}\right)=\psi\left(\mathcal{C}_{k} \times \mathcal{C}_{2} \times \mathcal{C}_{2}\right)=\psi\left(\mathcal{C}_{k}\right) \psi\left(\mathcal{C}_{2} \times \mathcal{C}_{2}\right)=7 \psi\left(\mathcal{C}_{k}\right)
$$

Remark

But for instance

$$
\psi\left(\mathcal{S}_{3}\right)=13=\frac{13}{21} 21=\frac{13}{21} \psi\left(\mathcal{C}_{6}\right)<\frac{7}{11} \psi\left(\mathcal{C}_{6}\right) .
$$

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, $|G|=n$ and let q be the smallest prime divisor of n.

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]
Let G be a non-cyclic finite group, $|G|=n$ and let q be the smallest prime divisor of n.

Then

$$
\psi(G)<\frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)
$$

Hence

$G \mid=n, q$ the smallest prime divisor of n. Then:

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, $|G|=n$ and let q be the smallest prime divisor of n.

Then

$$
\psi(G)<\frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)
$$

Hence
$|G|=n, q$ the smallest prime divisor of n. Then: $\psi(G) \geq \frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)$ implies G cyclic.

The function ψ - some new results

Corollary

Let G be a non-cyclic finite group of odd order n. Then

$$
\psi(G)<\frac{1}{2} \psi\left(\mathcal{C}_{n}\right)
$$

Remark

In the Theorem it is not possible to substitute $q-1$ by q. For

The function ψ - some new results

Corollary

Let G be a non-cyclic finite group of odd order n. Then

$$
\psi(G)<\frac{1}{2} \psi\left(\mathcal{C}_{n}\right)
$$

Remark

In the Theorem it is not possible to substitute $q-1$ by q. For:

$$
\psi\left(\mathcal{S}_{3}\right)=13 \geq \frac{1}{2} \psi\left(\mathcal{C}_{6}\right)=\frac{21}{2} .
$$

The function ψ - some new results

Problem

What can be said if $\psi(G) \geq \frac{1}{q} \psi\left(\mathcal{C}_{n}\right)$?

Theorem [M. Herzog, P. L., M. Maj]

$$
\begin{aligned}
& \text { Let } G \text { be a finite group, }|G|=n \text { and } \\
& \text { let } q \text { and } p \text { be the smallest and the largest prime divisors of } n \text {. } \\
& \qquad \begin{array}{l}
\text { If } \psi(G) \geq \frac{1}{2(q-1)} \psi\left(C_{n}\right), \\
\text { then } G \text { is soluble and either its Sylow p-subgroups or } \\
\text { its Sylow } q \text {-subgroups are cyclic. }
\end{array} .
\end{aligned}
$$

The function ψ - some new results

Problem

What can be said if $\psi(G) \geq \frac{1}{q} \psi\left(\mathcal{C}_{n}\right)$?

Theorem [M. Herzog, P. L., M. Maj]

$$
\begin{aligned}
& \text { Let } G \text { be a finite group, }|G|=n \text { and } \\
& \text { let } q \text { and } p \text { be the smallest and the largest prime divisors of } n \text {. } \\
& \text { then } G \text { is soluble and either its Sylow } p \text {-subgroups or } \\
& \text { its Sylow } q \text {-subgroups are cyclic. }
\end{aligned}
$$

The function ψ - some new results

Problem

What can be said if $\psi(G) \geq \frac{1}{q} \psi\left(\mathcal{C}_{n}\right)$?

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, $|G|=n$ and let q and p be the smallest and the largest prime divisors of n.

$$
\text { If } \psi(G) \geq \frac{1}{2(q-1)} \psi\left(\mathcal{C}_{n}\right)
$$

then G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are cyclic.

The function ψ - some new results

$$
\psi(G) \geq \frac{1}{2(q-1)} \psi\left(\mathcal{C}_{n}\right)
$$

Remark

$$
\begin{gathered}
\text { The Theorem applies } \\
\text { if } \psi(G) \geq \frac{1}{q} \psi\left(\mathcal{C}_{n}\right) \text { and } \\
\text { if } n \text { is odd and } \psi(G) \geq \frac{1}{q+1} \psi\left(\mathcal{C}_{n}\right) \text {. }
\end{gathered}
$$

The function ψ - some new results

$$
\psi(G) \geq \frac{1}{2(q-1)} \psi\left(\mathcal{C}_{n}\right)
$$

Remark

The Theorem applies
if $\psi(G) \geq \frac{1}{q} \psi\left(\mathcal{C}_{n}\right)$ and
if n is odd and $\psi(G) \geq \frac{1}{q+1} \psi\left(C_{n}\right)$.

The function ψ - some new results

$$
\psi(G) \geq \frac{1}{2(q-1)} \psi\left(\mathcal{C}_{n}\right)
$$

Remark

The Theorem applies
if $\psi(G) \geq \frac{1}{q} \psi\left(\mathcal{C}_{n}\right)$ and
if n is odd and $\psi(G) \geq \frac{1}{q+1} \psi\left(\mathcal{C}_{n}\right)$.

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

$$
\begin{aligned}
& \text { Let } G \text { be a finite group, }|G|=n \text {. } \\
& \qquad \text { If } \psi(G) \geq{ }_{5}^{3} n \varphi(n) \text {, then } \\
& G \text { is soluble and } G^{\prime \prime} \leq Z(G) .
\end{aligned}
$$

Remark

Notice that

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, $|G|=n$.
If $\psi(G) \geq \frac{3}{5} n \varphi(n)$, then
G is soluble and $G^{\prime \prime} \leq Z(G)$.

Remark

Notice that
and that

$$
\psi\left(\mathcal{A}_{5}\right)=211>192=\frac{1}{5} n \varphi(n)
$$

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, $|G|=n$. If $\psi(G) \geq \frac{3}{5} n \varphi(n)$, then
G is soluble and $G^{\prime \prime} \leq Z(G)$.

Remark
Notice that

$$
\psi\left(\mathcal{C}_{2} \times \mathcal{C}_{2} \times \mathcal{C}_{2}\right)=15<\frac{3}{5} \cdot 8 \cdot 4=\frac{3}{5} n \varphi(n)
$$

and that

The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, $|G|=n$.
If $\psi(G) \geq \frac{3}{5} n \varphi(n)$, then
G is soluble and $G^{\prime \prime} \leq Z(G)$.

Remark

Notice that

$$
\begin{gathered}
\psi\left(\mathcal{C}_{2} \times \mathcal{C}_{2} \times \mathcal{C}_{2}\right)=15<\frac{3}{5} \cdot 8 \cdot 4=\frac{3}{5} n \varphi(n) \\
\text { and that } \\
\psi\left(\mathcal{A}_{5}\right)=211>192=\frac{1}{5} n \varphi(n) .
\end{gathered}
$$

The function ψ - a useful result

Theorem [Ramanujan, 1913-1914]

Let $a_{1}, a_{2} \ldots, a_{s} \ldots$ be the sequence of all primes:

Lemma

Let $p_{2}, p_{3}, \ldots, p_{s}$ be primes satisfying p_{2}

The function ψ - a useful result

Theorem [Ramanujan, 1913-1914]

Let $q_{1}, q_{2}, \ldots, q_{s}, \ldots$ be the sequence of all primes:

$$
q_{1}<q_{2}<\cdots<q_{s}<\cdots .
$$

Then

$$
\prod_{i=1}^{\infty} \frac{q_{i}^{2}+1}{q_{i}^{2}-1}=\frac{5}{2} .
$$

Lemma

$$
\begin{array}{r}
\text { Let } p_{2}, p_{3}, \ldots, p_{s} \text { be primes satisfyin } \\
\qquad \text { |f } p_{2}>3 \text { then } \\
\prod_{i=2}^{s} \frac{p_{i}^{2}-1}{p_{2}^{2}+1}>\frac{5}{6}
\end{array}
$$

The function ψ - a useful result

Theorem [Ramanujan, 1913-1914]

Let $q_{1}, q_{2}, \ldots, q_{s}, \ldots$ be the sequence of all primes:

$$
q_{1}<q_{2}<\cdots<q_{s}<\cdots .
$$

Then

$$
\prod_{i=1}^{\infty} \frac{q_{i}^{2}+1}{q_{i}^{2}-1}=\frac{5}{2} .
$$

Lemma

Let $p_{2}, p_{3}, \ldots, p_{s}$ be primes satisfying $p_{2}<p_{3}<\cdots<p_{s}$.

$$
\begin{aligned}
& \text { If } p_{2}>3 \text { then } \\
& \prod_{i=2}^{s} \frac{p_{i}^{2}-1}{p_{i}^{2}+1}>\frac{5}{6} \text {. }
\end{aligned}
$$

The function ψ - key lemmas

Lemma 1 [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, 2009]

$$
\begin{gathered}
\text { Let } G \text { be a finite group, } p \text { a prime, } \\
P \text { a cyclic normal Sylow } p \text {-subgroup of } G \text {. } \\
\text { Then: } \\
\psi(G) \leq \psi(G / P) \psi(P) \\
\text { Moreover } \\
\psi(G)=\psi(G / P) \psi(P) \text { if and only if } P \leq Z(G)
\end{gathered}
$$

The function ψ - key lemmas

Lemma 1 [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, 2009]
Let G be a finite group, p a prime, P a cyclic normal Sylow p-subgroup of G. Then:

$$
\psi(G) \leq \psi(G / P) \psi(P)
$$

$\psi(G)=\psi(G / P) \psi(P)$ if and only if $P \leq Z(G)$

The function ψ - key lemmas

Lemma 1 [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, 2009]

Let G be a finite group, p a prime, P a cyclic normal Sylow p-subgroup of G. Then:

$$
\psi(G) \leq \psi(G / P) \psi(P)
$$

Moreover

$$
\psi(G)=\psi(G / P) \psi(P) \text { if and only if } P \leq Z(G)
$$

The function ψ - key lemmas

Lemma 2

$$
\begin{gathered}
\text { Let } n \text { be a positive integer }>1 \text {, } \\
\text { with the largest prime divisor } p \text { and } \\
\text { the smallest prime divisor } q \text {. } \\
\text { Then: }
\end{gathered}
$$

The function ψ - key lemmas

Lemma 2
Let n be a positive integer > 1, with the largest prime divisor p and the smallest prime divisor q.

Then:

$$
\varphi(n) \geq \frac{q-1}{p} n
$$

A proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, $|G|=n$ and let q be the smallest prime divisor of n. Then

$$
\psi(G)<\frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)
$$

Assume $|G|=n$ and $\psi(G) \geq \frac{1}{q-1} \psi\left(C_{n}\right)$. We show that G is cyclic.
Obviously
and, by the previous Lemma,
where p denotes the largest prime divisor of n. Then

A proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, $|G|=n$ and let q be the smallest prime divisor of n.

$$
\psi(G)<\frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)
$$

Assume $|G|=n$ and $\psi(G) \geq \frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)$. We show that G is cyclic.
Obviously
and, by the previous Lemma,
where p denotes the largest prime divisor of n. Then

A proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, $|G|=n$ and let q be the smallest prime divisor of n.

$$
\psi(G)<\frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right) .
$$

Assume $|G|=n$ and $\psi(G) \geq \frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)$. We show that G is cyclic. Obviously

$$
\psi\left(\mathcal{C}_{n}\right)>n \varphi(n)
$$

and, by the previous Lemma,

where p denotes the largest prime divisor of n. Then

A proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, $|G|=n$ and let q be the smallest prime divisor of n.

$$
\psi(G)<\frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right) .
$$

Assume $|G|=n$ and $\psi(G) \geq \frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)$. We show that G is cyclic. Obviously

$$
\psi\left(\mathcal{C}_{n}\right)>n \varphi(n)
$$

and, by the previous Lemma,

$$
\varphi(n) \geq \frac{q-1}{p} n,
$$

where p denotes the largest prime divisor of n. Then

A proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, $|G|=n$ and let q be the smallest prime divisor of n.

$$
\psi(G)<\frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)
$$

Assume $|G|=n$ and $\psi(G) \geq \frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)$. We show that G is cyclic. Obviously

$$
\psi\left(\mathcal{C}_{n}\right)>n \varphi(n)
$$

and, by the previous Lemma,

$$
\varphi(n) \geq \frac{q-1}{p} n,
$$

where p denotes the largest prime divisor of n. Then

$$
\psi(G) \geq \frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)>\frac{n}{q-1} \varphi(n) \geq \frac{n^{2}}{p}
$$

A proof sketch - continued

Hence

$$
\psi(G)>\frac{n^{2}}{p}
$$

which implies that there exists $x \in G$ with $o(x)>n / p$.
Thus $[G:\langle x\rangle]<p$ and $\langle x\rangle$ contains a Sylow p-subgroup P of G. Since $\langle x\rangle \leq N_{G}(P)$, it follows that P is a cyclic normal subgroup of G and Lemma 1 implies that

where $p^{r}=|P|$. Since $P \cong \mathcal{C}_{p^{r}}$, cancellation yields

A proof sketch - continued

Hence

$$
\psi(G)>\frac{n^{2}}{p}
$$

which implies that there exists $x \in G$ with $o(x)>n / p$.
Thus $[G:\langle x\rangle]<p$ and $\langle x\rangle$ contains a Sylow p-subgroup P of G. Since $\langle x\rangle \leq N_{G}(P)$, it follows that P is a cyclic normal subgroup of G and
Lemma 1 implies that
where $p^{r}=|P|$. Since $P \cong \mathcal{C}_{p^{r}}$, cancellation yields

A proof sketch - continued

Hence

$$
\psi(G)>\frac{n^{2}}{p}
$$

which implies that there exists $x \in G$ with $o(x)>n / p$.
Thus $[G:\langle x\rangle]<p$ and $\langle x\rangle$ contains a Sylow p-subgroup P of G. \qquad $\langle x\rangle \leq N_{G}(P)$, it follows that P is a cyclic normal subgroup of G and
Lemma 1 implies that
where $p^{r}=|P|$. Since $P \cong \mathcal{C}_{p^{r}}$, cancellation yields

A proof sketch - continued

Hence

$$
\psi(G)>\frac{n^{2}}{p}
$$

which implies that there exists $x \in G$ with $o(x)>n / p$.
Thus $[G:\langle x\rangle]<p$ and $\langle x\rangle$ contains a Sylow p-subgroup P of G. Since $\langle x\rangle \leq N_{G}(P)$, it follows that P is a cyclic normal subgroup of G
Lemma 1 implies that
where $p^{r}=|P|$. Since $P \cong \mathcal{C}_{p^{r}}$, cancellation yields

A proof sketch - continued

Hence

$$
\psi(G)>\frac{n^{2}}{p}
$$

which implies that there exists $x \in G$ with $o(x)>n / p$.
Thus $[G:\langle x\rangle]<p$ and $\langle x\rangle$ contains a Sylow p-subgroup P of G. Since $\langle x\rangle \leq N_{G}(P)$, it follows that P is a cyclic normal subgroup of G and Lemma 1 implies that

$$
\psi(P) \psi(G / P) \geq \psi(G) \geq \frac{1}{q-1} \psi\left(\mathcal{C}_{p^{r}}\right) \psi\left(\mathcal{C}_{n / p^{r}}\right)
$$

where $p^{r}=|P|$. Since $P \cong C_{p^{r}}$, cancellation yields

A proof sketch - continued

Hence

$$
\psi(G)>\frac{n^{2}}{p}
$$

which implies that there exists $x \in G$ with $o(x)>n / p$.
Thus $[G:\langle x\rangle]<p$ and $\langle x\rangle$ contains a Sylow p-subgroup P of G. Since $\langle x\rangle \leq N_{G}(P)$, it follows that P is a cyclic normal subgroup of G and Lemma 1 implies that

$$
\psi(P) \psi(G / P) \geq \psi(G) \geq \frac{1}{q-1} \psi\left(\mathcal{C}_{p^{r}}\right) \psi\left(\mathcal{C}_{n / p^{r}}\right)
$$

where $p^{r}=|P|$. Since $P \cong \mathcal{C}_{p^{r}}$, cancellation yields

$$
\psi(G / P) \geq \frac{1}{q-1} \psi\left(\mathcal{C}_{n / p^{r}}\right)
$$

A proof sketch - continued

If $n=p^{r}$, then from $o(x)>n / p$ it follows $o(x)=n$ and G is cyclic, as required.

So we may assume that n is divisible by exactly k different primes with $k>1$. Apply induction with respect to k.

Then G / P is cyclic and $G=P \rtimes F$, with $F \cong G / P$ and $F \neq 1$.
Notice that $n=|P||F|, P$ and F are both cyclic and $(|P|,|F|)=1$. Hence $\psi\left(\mathcal{C}_{n}\right)=\psi(P) \psi(F)$.

If $C_{F}(P)=F$, then $G=P \times F$ and G is cyclic, as required.
So it suffices to prove that if $C_{F}(P)=: Z<F$, then $\psi(G)<\frac{1}{q-1} \psi\left(C_{n}\right)$, contrary to our assumptions.

A proof sketch - continued

If $n=p^{r}$, then from $o(x)>n / p$ it follows $o(x)=n$ and G is cyclic, as required.

So we may assume that n is divisible by exactly k different primes with $k>1$. Apply induction with respect to k.
Then G / P is cyclic and $G=P \rtimes F$, with $F \cong G / P$ and $F \neq 1$.
Notice that $n=|P||F|, P$ and F are both cyclic and $(|P|,|F|)=1$.
Hence $\psi\left(\mathcal{C}_{n}\right)=\psi(P) \psi(F)$.
If $C_{F}(P)=F$, then $G=P \times F$ and G is cyclic, as required.
So it suffices to prove that if $C_{F}(P)=: Z<F$, then $\psi(G)<\frac{1}{q-1} \psi\left(C_{n}\right)$, contrary to our assumptions.

A proof sketch - continued

If $n=p^{r}$, then from $o(x)>n / p$ it follows $o(x)=n$ and G is cyclic, as required.

So we may assume that n is divisible by exactly k different primes with $k>1$. Apply induction with respect to k.
Then G / P is cyclic and $G=P \rtimes F$, with $F \cong G / P$ and $F \neq 1$.
Notice that $n=|P||F|, P$ and F are both cyclic and $(|P|,|F|)=1$.
Hence $\psi\left(\mathcal{C}_{n}\right)=\psi(P) \psi(F)$.
If $C_{F}(P)=F$, then $G=P \times F$ and G is cyclic, as required.
So it suffices to prove that if $C_{F}(P)=: Z<F$, then $\psi(G)<\frac{1}{q-1} \psi\left(C_{n}\right)$,
contrary to our assumptions.

A proof sketch - continued

If $n=p^{r}$, then from $o(x)>n / p$ it follows $o(x)=n$ and G is cyclic, as required.

So we may assume that n is divisible by exactly k different primes with $k>1$. Apply induction with respect to k.
Then G / P is cyclic and $G=P \rtimes F$, with $F \cong G / P$ and $F \neq 1$. Notice that $n=|P||F|, P$ and F are both cyclic and $(|P|,|F|)=1$. Hence $\psi\left(\mathcal{C}_{n}\right)=\psi(P) \psi(F)$.

If $C_{F}(P)=F$, then $G=P \times F$ and G is cyclic, as required.
So it suffices to prove that if $C_{F}(P)=: Z<F$, then $\psi(G)<\frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)$,
contrary to our assumptions.

A proof sketch - continued

If $n=p^{r}$, then from $o(x)>n / p$ it follows $o(x)=n$ and G is cyclic, as required.

So we may assume that n is divisible by exactly k different primes with $k>1$. Apply induction with respect to k.
Then G / P is cyclic and $G=P \rtimes F$, with $F \cong G / P$ and $F \neq 1$.
Notice that $n=|P||F|, P$ and F are both cyclic and $(|P|,|F|)=1$. Hence $\psi\left(\mathcal{C}_{n}\right)=\psi(P) \psi(F)$.

If $C_{F}(P)=F$, then $G=P \times F$ and G is cyclic, as required.
So it suffices to prove that if $C_{F}(P)=: Z<F$, then $\psi(G)$
contrary to our assumptions.

A proof sketch - continued

If $n=p^{r}$, then from $o(x)>n / p$ it follows $o(x)=n$ and G is cyclic, as required.

So we may assume that n is divisible by exactly k different primes with $k>1$. Apply induction with respect to k.
Then G / P is cyclic and $G=P \rtimes F$, with $F \cong G / P$ and $F \neq 1$.
Notice that $n=|P||F|, P$ and F are both cyclic and $(|P|,|F|)=1$. Hence $\psi\left(\mathcal{C}_{n}\right)=\psi(P) \psi(F)$.

If $C_{F}(P)=F$, then $G=P \times F$ and G is cyclic, as required.
So it suffices to prove that if $C_{F}(P)=: Z<F$, then $\psi(G)<\frac{1}{q-1} \psi\left(\mathcal{C}_{n}\right)$, contrary to our assumptions.

A proof sketch - continued

We get that

$$
\psi(G)=\psi(P) \psi(Z)+|P| \psi(F \backslash Z)<\psi(P) \psi(Z)+|P| \psi(F)
$$

Hence

Then we show that

and we get the required contradiction.

A proof sketch - continued

We get that

$$
\psi(G)=\psi(P) \psi(Z)+|P| \psi(F \backslash Z)<\psi(P) \psi(Z)+|P| \psi(F)
$$

Hence

$$
\psi(G)<\psi(P) \psi(F)\left(\frac{\psi(Z)}{\psi(F)}+\frac{|P|}{\psi(P)}\right)=\psi\left(\mathcal{C}_{n}\right)\left(\frac{\psi(Z)}{\psi(F)}+\frac{|P|}{\psi(P)}\right) .
$$

Then we show that

and we get the required contradiction.

A proof sketch - continued

We get that

$$
\psi(G)=\psi(P) \psi(Z)+|P| \psi(F \backslash Z)<\psi(P) \psi(Z)+|P| \psi(F)
$$

Hence

$$
\psi(G)<\psi(P) \psi(F)\left(\frac{\psi(Z)}{\psi(F)}+\frac{|P|}{\psi(P)}\right)=\psi\left(\mathcal{C}_{n}\right)\left(\frac{\psi(Z)}{\psi(F)}+\frac{|P|}{\psi(P)}\right)
$$

Then we show that

$$
\frac{\psi(Z)}{\psi(F)}+\frac{|P|}{\psi(P)}<\frac{1}{q-1},
$$

and we get the required contradiction.

Another proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, $|G|=n$ and
let q and p be the smallest and the largest prime divisors of n.

$$
\text { If } \psi(G) \geq \frac{1}{2(q-1)} \psi\left(\mathcal{C}_{n}\right) \text {, }
$$

then G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are cyclic.

Since $\psi\left(\mathcal{C}_{n}\right)>n \varphi(n)$ and by Lemma $2 \varphi(n) \geq \frac{(q-1) n}{p}$, it follows by our assumptions that $\psi(G)>\frac{n^{2}}{2 n}$. Hence there exists $x \in G$ such that

Another proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, $|G|=n$ and let q and p be the smallest and the largest prime divisors of n.

$$
\text { If } \psi(G) \geq \frac{1}{2(q-1)} \psi\left(\mathcal{C}_{n}\right)
$$

then G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are cyclic.

Since $\psi\left(\mathcal{C}_{n}\right)>n \varphi(n)$ and by Lemma $2 \varphi(n) \geq \frac{(q-1) n}{p}$, it follows by our assumptions that $\psi(G)>\frac{n^{2}}{2 p}$. Hence there exists $x \in G$ such that

Another proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, $|G|=n$ and let q and p be the smallest and the largest prime divisors of n.

$$
\text { If } \psi(G) \geq \frac{1}{2(q-1)} \psi\left(\mathcal{C}_{n}\right) \text {, }
$$

then G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are cyclic.

Since $\psi\left(\mathcal{C}_{n}\right)>n \varphi(n)$ and by Lemma $2 \varphi(n) \geq \frac{(q-1) n}{p}$, it follows by our assumptions that $\psi(G)>\frac{n^{2}}{2 p}$. Hence there exists $x \in G$ such that $o(x)>\frac{n}{2 p}$ and

$$
[G:\langle x\rangle]<2 p .
$$

A proof sketch - another lemma

Lemma 3

Let G be a finite group and suppose that there exists $x \in G$ such that

$$
|G:\langle x\rangle|<2 p
$$

where p is the maximal prime divisor of $|G|$.
Then one of the following holds:

- G has a normal cyclic Sylow p-subgroup,
- $\langle x\rangle$ is a maximal subgroup of G, and G is soluble.

Sum of the orders of the elements

Definition

Let n be a positive integer. Put

$$
\mathcal{T}_{n}:=\{\psi(H)| | H \mid=n\}
$$

Recall that

 $\psi\left(C_{n}\right)$ is the maximum of I_{n}.
Problem

What is the structure of G if $\psi(G)$ is the minimum of I_{n} ?

Sum of the orders of the elements

Definition

Let n be a positive integer. Put

$$
\mathcal{T}_{n}:=\{\psi(H)| | H \mid=n\}
$$

Recall that
$\psi\left(\mathcal{C}_{n}\right)$ is the maximum of \mathcal{T}_{n}.

Problem

What is the structure of G if $\psi(G)$ is the minimum of I_{n} ?

Sum of the orders of the elements

Definition

Let n be a positive integer. Put

$$
\mathcal{T}_{n}:=\{\psi(H)| | H \mid=n\}
$$

Recall that
$\psi\left(\mathcal{C}_{n}\right)$ is the maximum of \mathcal{T}_{n}.

Problem

What is the structure of G if $\psi(G)$ is the minimum of \mathcal{T}_{n} ?

Sum of the orders of the elements - minimum

If $n=p^{\alpha}$ for some prime p and some $\alpha>0$ and $|G|=p^{\alpha}$, then obviously
$\psi(G)$ is minimum if and only if $\exp G=p$.

> If $p=2$ and $\psi(G)$ is minimum,
> then G is the elementary abelian group of order 2^{α}.

But there are non-isomorphic groups G and G_{1} of order $p^{\alpha}>p^{2}(p>2)$ with $\psi(G)=\psi\left(G_{1}\right)$ minimum.
For instance, the two groups of exponent 3 and order 3^{3}.

Sum of the orders of the elements - minimum

If $n=p^{\alpha}$ for some prime p and some $\alpha>0$ and $|G|=p^{\alpha}$, then obviously
$\psi(G)$ is minimum if and only if $\exp G=p$.
If $p=2$ and $\psi(G)$ is minimum , then G is the elementary abelian group of order 2^{α}.

But there are non-isomorphic groups G and G_{1} of order $p^{\alpha}>p^{2}(p>2)$ with $\psi(G)=\psi\left(G_{1}\right)$ minimum.
For instance, the two groups of exponent 3 and order 3^{3}.

Sum of the orders of the elements - minimum

If $n=p^{\alpha}$ for some prime p and some $\alpha>0$ and $|G|=p^{\alpha}$, then obviously
$\psi(G)$ is minimum if and only if $\exp G=p$.
If $p=2$ and $\psi(G)$ is minimum , then G is the elementary abelian group of order 2^{α}.

But there are non-isomorphic groups G and G_{1} of order $p^{\alpha}>p^{2}(p>2)$ with $\psi(G)=\psi\left(G_{1}\right)$ minimum.
For instance, the two groups of exponent 3 and order 3^{3}.

Sum of the orders of the elements - minimum

If $n=p^{\alpha}$ for some prime p and some $\alpha>0$ and $|G|=p^{\alpha}$, then obviously
$\psi(G)$ is minimum if and only if $\exp G=p$.
If $p=2$ and $\psi(G)$ is minimum , then G is the elementary abelian group of order 2^{α}.

But there are non-isomorphic groups G and G_{1} of order $p^{\alpha}>p^{2}(p>2)$ with $\psi(G)=\psi\left(G_{1}\right)$ minimum.
For instance, the two groups of exponent 3 and order 3^{3}.

Sum of the orders of the elements - minimum

Problem

What happens in the general case?
 What happens for non-abelian simple groups?

Theorem [H. Amiri, S.M. Jafarian Amiri, 2011]

let G be a finite nilnotent groun.
Then there exists a non-nilpotent group K with $|K|=|G|$ such that

Sum of the orders of the elements - minimum

Problem

What happens in the general case?
 What happens for non-abelian simple groups?

Theorem [H. Amiri, S.M. Jafarian Amiri, 2011]
let G be a finite nilnotent groun
Then there exists a non-nilpotent group K with $|K|=|G|$ such that

Sum of the orders of the elements - minimum

Problem

What happens in the general case?
 What happens for non-abelian simple groups?

Theorem [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite nilpotent group.
Then there exists a non-nilpotent group K with $|K|=|G|$ such that

$$
\psi(K)<\psi(G)
$$

Sum of the orders of the elements - minimum

Question

If S is a simple group of order n, is $\psi(S)$ the minimum of \mathcal{T}_{n} ?

NO!

There are non-isomorphic simple groups S and S_{1} such that

$$
|S|=\left|S_{1}\right| \text { and } \psi(S) \neq \psi\left(S_{1}\right)
$$

For instance, the groups \mathcal{A}_{8} and $\mathcal{P S} \mathcal{L}(3,4)$ are such that

$$
\begin{gathered}
\left|\mathcal{A}_{8}\right|=20160=|\mathcal{P S} \mathcal{L}(3,4)| \text { and } \\
\psi\left(\mathcal{A}_{8}\right)=137047>103111=\psi(\mathcal{P S} \mathcal{L}(3,4))
\end{gathered}
$$

Sum of the orders of the elements - minimum

Question

If S is a simple group of order n, is $\psi(S)$ the minimum of \mathcal{T}_{n} ?

$$
\begin{aligned}
& \qquad \text { NO! } \\
& \text { There are non-isomorphic simple groups } S \text { and } S_{1} \text { such that } \\
& \qquad|S|=\left|S_{1}\right| \text { and } \psi(S) \neq \psi\left(S_{1}\right) \text {. } \\
& \text { For instance, the groups } \mathcal{A}_{8} \text { and } \mathcal{P S} \mathcal{L}(3,4) \text { are such that } \\
& \left|\mathcal{A}_{8}\right|=20160=|\mathcal{P} \mathcal{S} \mathcal{L}(3,4)| \text { and } \\
& \psi\left(\mathcal{A}_{8}\right)=137047>103111=\psi(\mathcal{P S} \mathcal{L}(3,4))
\end{aligned}
$$

Sum of the orders of the elements - minimum

Question

If S is a simple group of order n, is $\psi(S)$ the minimum of \mathcal{T}_{n} ?

NO!

> There are non-isomorphic simple groups S and S_{1} such that

> For instance, the groups \mathcal{A}_{8} and $\mathcal{P S \mathcal { L }}(3,4)$ are such that $\left|\mathcal{A}_{8}\right|=20160=|\mathcal{P S} \mathcal{L}(3,4)|$ and $\psi\left(\mathcal{A}_{8}\right)=137047>103111=\psi(\mathcal{P S} \mathcal{L}(3,4))$.

Sum of the orders of the elements - minimum

Question

If S is a simple group of order n, is $\psi(S)$ the minimum of \mathcal{T}_{n} ?

NO!

There are non-isomorphic simple groups S and S_{1} such that

$$
|S|=\left|S_{1}\right| \text { and } \psi(S) \neq \psi\left(S_{1}\right)
$$

For instance, the groups \mathcal{A}_{8} and $\mathcal{P S L}(3,4)$ are such that $\left|\mathcal{A}_{8}\right|=20160=|\mathcal{P S L}(3,4)|$ and

$$
\left(\mathcal{A}_{8}\right)=137047>103111=\psi(\mathcal{P S L}(3,4)
$$

Sum of the orders of the elements - minimum

Question

If S is a simple group of order n, is $\psi(S)$ the minimum of \mathcal{T}_{n} ?

NO!

There are non-isomorphic simple groups S and S_{1} such that

$$
|S|=\left|S_{1}\right| \text { and } \psi(S) \neq \psi\left(S_{1}\right)
$$

For instance, the groups \mathcal{A}_{8} and $\mathcal{P S} \mathcal{L}(3,4)$ are such that

$$
\begin{gathered}
\left|\mathcal{A}_{8}\right|=20160=|\mathcal{P S L}(3,4)| \text { and } \\
\psi\left(\mathcal{A}_{8}\right)=137047>103111=\psi(\mathcal{P S L}(3,4))
\end{gathered}
$$

Sum of the orders of the elements - minimum

Conjecture [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite non-simple group, S a finite simple group, $|G|=|S|$.
Then

Theorem [S.M. Jafarian Amiri, 2013]

Sum of the orders of the elements - minimum

Conjecture [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite non-simple group, S a finite simple group, $|G|=|S|$.
Then

$$
\psi(S)<\psi(G)
$$

Theorem [S.M. Jafarian Amiri, 2013]

Sum of the orders of the elements - minimum

Conjecture [H. Amiri, S.M. Jafarian Amiri, 2011]
Let G be a finite non-simple group, S a finite simple group, $|G|=|S|$.
Then

$$
\psi(S)<\psi(G)
$$

Theorem [S.M. Jafarian Amiri, 2013]

Let G be a finite non-simple group.
If $|G|=60$, then $\psi\left(\mathcal{A}_{5}\right)<\psi(G)$.
If $|G|=168$, then $\psi(\mathcal{P S} \mathcal{L}(2,7))<\psi(G)$.

Sum of the orders of the elements - minimum

Assume G is a finite non-simple group.

Using GAP it is possible to see that:

$$
\begin{gathered}
\text { If }|G|=360 \text {, then } \psi\left(\mathcal{A}_{6}\right)<\psi(G) \text {. } \\
\text { If }|G|=504 \text {, then } \psi(\mathcal{P S} \mathcal{L}(2,8))<\psi(G) \\
\text { If }|G|=660 \text {, then } \psi(\mathcal{P S} \mathcal{L}(2,11))<\psi(G) \\
\text { If }|G|=1092 \text {, then } \psi(\mathcal{P S} \mathcal{L}(2,13))<\psi(G)
\end{gathered}
$$

Sum of the orders of the elements - minimum

But the conjecture is not true.

Theorem [Y. Marefat, A. Iranmanesh, A. Tehranian, 2013]

$$
\begin{gathered}
\text { Let } S=\mathcal{P} \mathcal{S} \mathcal{L}(2,64) \text { and } G=3^{2} \times \mathcal{S} Z(8) . \\
\text { Then }|G|=|S| \text { and } \psi(G) \leq \psi(S)
\end{gathered}
$$

Conjecture

Let G be a finite soluble group, S a simple group, $|G|=|S|$. Then

Sum of the orders of the elements - minimum

But the conjecture is not true.

Theorem [Y. Marefat, A. Iranmanesh, A. Tehranian, 2013]

$$
\begin{gathered}
\text { Let } S=\mathcal{P} \mathcal{S} \mathcal{L}(2,64) \text { and } G=3^{2} \times \mathcal{S} z(8) \\
\text { Then }|G|=|S| \text { and } \psi(G) \leq \psi(S)
\end{gathered}
$$

Conjecture

Let G be a finite soluble group, S a simple group, $|G|=|S|$ Then

Sum of the orders of the elements - minimum

But the conjecture is not true.

Theorem [Y. Marefat, A. Iranmanesh, A. Tehranian, 2013]

$$
\begin{gathered}
\text { Let } S=\mathcal{P} \mathcal{S} \mathcal{L}(2,64) \text { and } G=3^{2} \times \mathcal{S} z(8) \\
\text { Then }|G|=|S| \text { and } \psi(G) \leq \psi(S)
\end{gathered}
$$

Conjecture

Let G be a finite soluble group, S a simple group, $|G|=|S|$. Then

$$
\psi(S)<\psi(G)
$$

Some other functions

Let G be a finite group.

Definition

Theorem [M. Garonzi, M. Patassini, 2015]

$$
\begin{gathered}
\text { Let } G \text { be a finite group, }|G|=n \text {. Then } \\
\mathcal{P}(G) \leq \mathcal{P}\left(C_{n}\right) \\
\text { Moreover } \\
\mathcal{P}(G)=\mathcal{P}\left(C_{n}\right) \text { if and only if } G \simeq C_{n} \text {. }
\end{gathered}
$$

Some other functions

Let G be a finite group.

Definition

$$
\mathcal{P}(G):=\prod_{x \in G} o(x)
$$

Theorem [M. Garonzi, M. Patassini, 2015]

$$
\begin{gathered}
\text { Let } G \text { be a finite group, }|G|=n \text {. Then } \\
\mathcal{P}(G) \leq \mathcal{P}\left(C_{n}\right) \\
\text { Moreover } \\
\mathcal{P}(G)=\mathcal{P}\left(C_{n}\right) \text { if and only if } G \simeq C_{n} \text {. }
\end{gathered}
$$

Some other functions

Let G be a finite group.

Definition

$$
\mathcal{P}(G):=\prod_{x \in G} o(x) .
$$

Theorem [M. Garonzi, M. Patassini, 2015]

Let G be a finite group, $|G|=n$. Then

$$
\mathcal{P}(G) \leq \mathcal{P}\left(\mathcal{C}_{n}\right)
$$

Moreover

Some other functions

Let G be a finite group.

Definition

$$
\mathcal{P}(G):=\prod_{x \in G} o(x) .
$$

Theorem [M. Garonzi, M. Patassini, 2015]

Let G be a finite group, $|G|=n$. Then

$$
\mathcal{P}(G) \leq \mathcal{P}\left(\mathcal{C}_{n}\right) .
$$

Moreover

$$
\mathcal{P}(G)=\mathcal{P}\left(\mathcal{C}_{n}\right) \text { if and only if } G \simeq \mathcal{C}_{n} .
$$

Some other functions

Let G be a finite group, r, s real numbers.

Definition

$$
\begin{gathered}
\mathcal{R}_{G}(r, s):=\sum_{x \in G} \frac{o(x)^{s}}{\varphi(o(x))^{r}} \\
\mathcal{R}_{G}(r):=\mathcal{R}_{G}(r, r)
\end{gathered}
$$

Remark

$$
\mathcal{R}_{G}(0,1)=\psi(G)
$$

Some other functions

Let G be a finite group, r, s real numbers.

Definition

$$
\begin{gathered}
\mathcal{R}_{G}(r, s):=\sum_{x \in G} \frac{o(x)^{s}}{\varphi(o(x))^{r}} . \\
\mathcal{R}_{G}(r):=\mathcal{R}_{G}(r, r)
\end{gathered}
$$

Remark

$$
\mathcal{R}_{G}(0,1)=\psi(G) .
$$

Some other functions

Theorem [M. Garonzi, M. Patassini, 2015]

Let G be a finite group, $|G|=n, r<0$.
Then $\mathcal{R}_{G}(r) \geq \mathcal{R}_{\mathcal{C}_{n}}(r)$.
Moreover
$\mathcal{R}_{G}(r)=\mathcal{R}_{\mathcal{C}_{n}}(r)$ if and only if G is nilpotent.

Problem

Let G be a finite group, $|G|=n$, and r,s real numbers.
Does $\mathcal{R}_{G}(s, r)=\mathcal{R}_{\mathcal{C}_{n}}(s, r)$ imply G soluble?

Some other functions

Theorem [M. Garonzi, M. Patassini, 2015]

Let G be a finite group, $|G|=n, r<0$.
Then $\mathcal{R}_{G}(r) \geq \mathcal{R}_{\mathcal{C}_{n}}(r)$.
Moreover
$\mathcal{R}_{G}(r)=\mathcal{R}_{\mathcal{C}_{n}}(r)$ if and only if G is nilpotent.

Problem

Let G be a finite group, $|G|=n$, and r, s real numbers.
Does $\mathcal{R}_{G}(s, r)=\mathcal{R}_{\mathcal{C}_{n}}(s, r)$ imply G soluble?

Some other functions

Theorem [T. De Medts, M. Tārnāuceanu, 2008]

Let G be a finite group, $|G|=n$.
If G is nilpotent, then $\mathcal{R}_{G}(1)=\mathcal{R}_{\mathcal{C}_{n}}(1)$.

Problem

$$
\begin{aligned}
& \text { Let } G \text { be a finite group, }|G|=n \text {. } \\
& \text { Does } \mathcal{R}_{G}(1)=\mathcal{R}_{\mathcal{C}_{n}}(1) \text { imply } G \text { nilpotent? }
\end{aligned}
$$

Problem

$$
\begin{aligned}
& \text { Let } G \text { be a finite group, }|G|=n \text {. } \\
& \text { Does } \mathcal{R}_{G}(1) \leq \mathcal{R}_{\mathcal{C}_{n}}(1) \text { ? }
\end{aligned}
$$

Some other functions

Theorem [T. De Medts, M. Tārnāuceanu, 2008]

Let G be a finite group, $|G|=n$.
If G is nilpotent, then $\mathcal{R}_{G}(1)=\mathcal{R}_{\mathcal{C}_{n}}(1)$.
Problem
Let G be a finite group, $|G|=n$.
Does $\mathcal{R}_{G}(1)=\mathcal{R}_{\mathcal{C}_{n}}(1)$ imply G nilpotent?
Problem

$$
\begin{aligned}
& \text { Let } G \text { be a finite group, }|G|=n \text {. } \\
& \text { Does } \mathcal{R}_{G}(1) \leq \mathcal{R}_{\mathcal{C}_{n}}(1) \text { ? }
\end{aligned}
$$

Some other functions

Theorem [T. De Medts, M. Tārnāuceanu, 2008]

Let G be a finite group, $|G|=n$.
If G is nilpotent, then $\mathcal{R}_{G}(1)=\mathcal{R}_{\mathcal{C}_{n}}(1)$.
Problem
Let G be a finite group, $|G|=n$.
Does $\mathcal{R}_{G}(1)=\mathcal{R}_{\mathcal{C}_{n}}(1)$ imply G nilpotent?
Problem
Let G be a finite group, $|G|=n$.

$$
\text { Does } \mathcal{R}_{G}(1) \leq \mathcal{R}_{\mathcal{C}_{n}}(1) ?
$$

Thank you for the attention!
P. Longobardi

Dipartimento di Matematica
Università di Salerno
via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
E-mail address : plongobardi@unisa.it

Bibliography

囯 H. Amiri, S.M. Jafarian Amiri, I.M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), 2978-2980.
R H. Amiri, S.M. Jafarian Amiri, Sum of element orders on finite groups of the same order, J. Algebra Appl. 10 no. 2 (2011), 187-190.
R. Amiri, S.M. Jafarian Amiri, Sum of element orders on maximal subgroups of the symmetric group, Comm. Algebra 40 no. 2 (2012), 770-778.
E. Frobenius, Verallgemeinerung des Sylowschen Satzes, Berliner Sitz. (1895), 981-993.
围 M. Garonzi, M. Patassini, Inequalities detecting structural proprieties of a finite group, arXiv:1503.00355v2 [math.GR] 26 december 2015.
N.D. Gupta, V.D. Mazurov, On groups with small orders of elements, Bull. Austral. Math. Soc. 60 (1999), 197-205.

Bibliography

（1）M．Hall，Solution of the Burnside problem for exponent six，Illinois J．Math． 2 （1958），764－786．
嗇 J．Harrington，L．Jones，A．Lamarche，Characterizing Finite Groups Using the Sum of the Orders of the Elements，Int．J．Comb．， Volume 2014，Article ID 835125， 8 pages．
围 M．Herzog，P．Longobardi，M．Maj，An exact upper bound for sums of element orders in non－cyclic finite groups，submitted， arXiv：1610．03669［math．GR］ 12 October 2016.
目 N．liyori，H．Yamaki，On a conjecture of Frobenius．Bull．Amer． Math．Soc． 25 25，（1991），413－416．
E．Jabara，Fixed point free actions of groups of exponent 5，J． Austral．Math．Soc．， 77 （2004），297－304．
圊 E．Jabara，D．V．Lytkina，V．D．Mazurov，A．S．Mamontov， Groups whose element order do not exceed 6，Algebra and Logic， 53 （2014），365－376．

Bibliography

R．M．Jafarian Amiri，Characterization of A_{5} and $\operatorname{PSL}(2,7)$ by sum of elements orders，Int．J．Group Theory 2 （2013），35－39．
國 S．M．Jafarian Amiri and M．Amiri，Second maximum sum of element orders on finite groups，J．Pure Appl．Algebra 218 no． 3 （2014），531－539．
囯 F．Levi，B．L．van der Waerden，Über eine besondere Klasse von Gruppen，Abh．Math．Sem．Hamburg Univ．， 9 （1932），154－158．
\＆F．Le Lionnais，Les nombres remarquables，Hermann，Paris， 1983.
D．V．Lytkina，The structure of a group with elements of order at most 4，Siberian Math．J． 48 （2007），283－287．
围 D．V．Lytkina，V．D．Mazurov，Groups with Given Element Orders，J．Siberian Federal University Math． 7 no． 2 （2014），191－203．

Bibliography

E．Marefat，A．Iranmanesh，A．Tehranian，On the sum of elements of finite simple groups，J．Algebra Appl． 12 no． 7 （2013）， DOI：10．1142／S0219498813500266．
击 V．D．Mazurov，Groups of exponent 60 with prescribed orders of elements，Algebra i Logika 39 （2000），329－346；English translation： Algebra and Logic 39 （2000），189－198．
围 B．H．Neumann，Groups whose elements have bounded orders，J． London Math．Soc． 12 （1937），195－198．
I．N．Sanov，Solution of Burnside＇s problem for exponent 4， Leningrad Univ．Ann．Math．Ser． 10 （1940），166－170．
目 R．Shen，G．Chen and C．Wu，On Groups with the Second Largest Value of the Sum of Element Orders，Comm．Algebra 43 no． 6 （2015），2618－2631．

Bibliography

（ A．V．Vasil＇ev，M．A．Grechkoseeva，V．D．Mazurov，On finite groups isospectral to simple symplectic and orthogonal groups， Siberian Math．J． 50 no． 6 （2009），965－981．
围 A．V．Vasil＇ev，M．A．Grechkoseeva，V．D．Mazurov， Characterization of the finite simple groups by spectrum and order， Algebra and Logic 48 no． 6 （2009），385－409．
囯 M．C． $\mathrm{Xu}, \mathrm{W} . J$. Shi，Pure quantitative characterization of finite simple groups ${ }^{2} D_{n}(q)$ and $D_{l}(q)$（I odd），Algebra Colloquium 10 no． 3 （2003），427－443．
图 A．K．Zhurtov，V．D．Mazurov，A recognition of simple groups $L_{2}\left(2^{m}\right)$ in the class of all groups，Sibirsk．Math．Zh． 40 （1999）， 75－78；English translation：Siberian Math．J． 40 （1999），62－64．

