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Basic Problem

Let G be a periodic group.

Main Problem

Obtain information about the structure of G

by looking at the orders of its elements.

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



The function ω

Let G be a periodic group.

Definition

ω(G ) := { o(x) | x ∈ G }.

Problem

What can be said about the structure of G

by looking at the set ω(G )?
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The function ω

Remark

ω(G ) = {1, 2} if and only if G is an elementary abelian
2-group.

F. Levi, B.L. van der Waerden, 1932

If ω(G ) = {1, 3}, then G is nilpotent of class 6 3.

B.H. Neumann, 1937

If ω(G ) = {1, 2, 3}, then G is (elementary abelian)-by-(prime
order).
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The function ω

Question

Does ω(G ) finite imply G locally finite?
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The function ω

Question (Bounded Burnside Problem)

Does ω(G ) finite imply G locally finite?

Answered negatively by Novikov and Adjan, 1968.
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The function ω

I. N. Sanov, 1940

If ω(G ) ⊆ {1, 2, 3, 4}, then G is locally finite.

D.V. Lytkina, 2007

If ω(G ) = {1, 2, 3, 4}, then either
G is an extension of an (elementary abelian 3-group) by

(a cyclic or a quaternion group), or
G is an extension of a (nilpotent of class 2 2-group) by

(a subgroup of S3).
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The function ω

N.D. Gupta, V.D. Mazurov, A.K. Zhurtov, E. Jabara, 2004

If ω(G ) ⊆ {1, 2, 3, 4, 5}, ω(G ) 6= {1, 5}, then G is locally
finite.

E. Jabara, D. V. Lytkina, V. D. Mazurov, A. S. Mamontov, 2014

If ω(G ) ⊆ {1, 2, 3, 4, 5, 6}, ω(G ) 6= {1, 5}, then G is locally
finite.
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The function ω

Question

Does ω(G ) = {1, 5} imply G locally finite?

Still open!

M. C. Xu, W.J. Shi , 2003
A. V. Vasil’ev, M. A. Grechkoseeva, V.D. Mazurov, 2009

If G is a finite simple group, G1 a finite group,

|G | = |G1| and ω(G ) = ω(G1),

then G ' G1.
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The sets Le

Let G be a finite group and let e be a divisor of the order of G .

Definition

Le(G ) := {x ∈ G | xe = 1}.

Problem

Obtain information about the structure of G

by looking at the orders of the sets Le(G ).
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The sets Le

G. Frobenius, 1895

|Le(G )| divides |G |, for every e dividing |G |.

Remark

|Le(G )| = e, for every e dividing |G |, if and only if G is cyclic.

N. Iiyori, H. Yamaki, 1991

If |Le(G )| = e, then Le(G ) is a subgroup of G .
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The sets Le

W. Meng and J. Shi, in 2011, classified all finite groups G such that

|Le(G )| ≤ 2e, for every e dividing |G |.

H. Heineken and F. Russo, in 2015, studied groups G such that

|Le(G )| ≤ e2, for every e dividing |G |.
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The sets Le

Problem (J.G. Thompson)

Let G be a finite soluble group, G1 a finite group.

Assume |Le(G )| = |Le(G1)|, for any e dividing |G |.
Is it true that G1 is soluble?

Still open!
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Paper

Marcel Herzog, P. L., Mercede Maj

An exact upper bound for sums of element orders
in non-cyclic finite groups

submitted,
arXiv:1610.03669 [math.GR] 12 October 2016.
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The function ψ

Let G be a finite group.

Definition

ψ(G ) :=
∑
x∈G

o(x).

Problem

What can be said about the structure of G

by looking at the value ψ(G )?
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The function ψ - some examples

Examples

ψ(S3) = 13.

For, ψ(S3) = 1 · 1 + 3 · 2 + 2 · 3.

ψ(C6) = 21.

For, ψ(C6) = 1 · 1 + 1 · 2 + 2 · 3 + 2 · 6.

ψ(C5) = 21.

For, ψ(C5) = 1 · 1 + 4 · 5.

where Cn is the cyclic group of order n and S3 is the symmetric group of
degree 3.
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The function ψ - some remarks

Remark

ψ(G ) = ψ(G1) does not imply G ' G1.

Example

Let A = C8 × C2,
B = C2 n C8, where C2 = 〈a〉, C8 = 〈b〉, ba = b5.

Then
ψ(A) = ψ(B) = 87.

Remark

|G | = |G1| and ψ(G ) = ψ(G1) do not imply G ' G1.
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The function ψ - a problem

Remark

ψ(G ) = ψ(S3) implies G ' S3.

Problem

Find information about the structure of a finite group G
from some inequalities on ψ(G ).
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The function ψ - a property

Proposition

If G = G1 × G2, where |G1| and |G2| are coprime, then

ψ(G ) = ψ(G1)ψ(G2).
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Sum of the orders of the elements in a cyclic group

Remark

ψ(Cn) =
∑
d |n

dϕ(d),

where ϕ is the Euler’s function.

Proposition

Let p be a prime, α ≥ 0. Then:

ψ(Cpα) = p2α+1+1
p+1 .
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Sum of the orders of the elements in a cyclic group

Proposition

Let p be a prime, α ≥ 0. Then: ψ(Cpα) = p2α+1+1
p+1 .

Proof. ψ(Cpα) = 1 + pϕ(p) + p2ϕ(p2) + · · ·+ pα(ϕ(pα)) =

1 + p(p − 1) + p2(p2 − p) + · · ·+ pα(pα − pα−1) =

= 1 + p2 − p + p4 − p3 + · · ·+ p2α − p2α−1 = p2α+1+1
p+1 , as required.//

Corollary

Let n > 1. Write n = pα1
1 · · · pαs

s , p′i s different primes, αi ’s > 0. Then

ψ(Cn) =
∏

i∈{1,··· ,s}

p2αi+1
i + 1
pi + 1

.
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Sum of the orders of the elements in a cyclic group

Remarks

Let p be a prime, α ≥ 0. Then

ψ(Cpα) = p2α+1+1
p+1 =

p|Cpα |2+1
p+1 > p

p+1 |Cpα |2.

Let n > 1. Write n = pα1
1 · · · pαs

s , p′i s different primes, αi ’s > 0,
and let p be the largest prime divisor of n. Then

ψ(Cn) =
∏

i∈{1,··· ,s}
p2αi +1
i +1
pi+1 > 2

p+1n
2.
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The function ψ - a recent result

Theorem [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, Comm.
Algebra 2009]

Let G be a finite group, |G | = n. Then

ψ(G ) ≤ ψ(Cn).

Moreover

ψ(G ) = ψ(Cn) if and only if G ' Cn.

Let G be a finite non-cyclic group, |G | = n.
Then

ψ(G ) < ψ(Cn).
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The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G | = n.

Then

ψ(G ) ≤ 7
11ψ(Cn).

Remark

This upper bound is the best possible:
for each n = 4k , k odd,

there exists a group G of order n satisfying
ψ(G ) = 7

11ψ(Cn).
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The function ψ - some new results

Proposition

Let k be an odd integer and let n = 4k . Then
ψ(C2k × C2) = 7

11ψ(Cn).

Proof. We have

ψ(Cn) = ψ(C4k) = ψ(C4)ψ(Ck) =
32 + 1
2 + 1

ψ(Ck) = 11ψ(Ck).

and

ψ(C2k × C2) = ψ(Ck × C2 × C2) = ψ(Ck)ψ(C2 × C2) = 7ψ(Ck). //

Remark

But for instance
ψ(S3) = 13 = 13

2121 = 13
21ψ(C6) <

7
11ψ(C6).
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Remark

But for instance
ψ(S3) = 13 = 13

2121 = 13
21ψ(C6) <

7
11ψ(C6).
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The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G | = n and
let q be the smallest prime divisor of n.

Then

ψ(G ) < 1
q−1ψ(Cn).

Hence

|G | = n, q the smallest prime divisor of n. Then:

ψ(G ) ≥ 1
q−1ψ(Cn) implies G cyclic.
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The function ψ - some new results

Corollary

Let G be a non-cyclic finite group of odd order n. Then
ψ(G ) < 1

2ψ(Cn).

Remark

In the Theorem it is not possible to substitute q − 1 by q. For:

ψ(S3) = 13 ≥ 1
2ψ(C6) = 21

2 .
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The function ψ - some new results

Problem

What can be said if ψ(G ) ≥ 1
qψ(Cn)?

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, |G | = n and
let q and p be the smallest and the largest prime divisors of n.

If ψ(G ) ≥ 1
2(q−1)

ψ(Cn),

then G is soluble and either its Sylow p-subgroups or
its Sylow q-subgroups are cyclic.
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The function ψ - some new results

ψ(G ) ≥ 1
2(q−1)

ψ(Cn)

Remark

The Theorem applies

if ψ(G ) ≥ 1
qψ(Cn) and

if n is odd and ψ(G ) ≥ 1
q+1ψ(Cn).
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The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, |G | = n.

If ψ(G ) ≥ 3
5nϕ(n), then

G is soluble and G ′′ ≤ Z (G ).

Remark

Notice that

ψ(C2 × C2 × C2) = 15 < 3
5 · 8 · 4 = 3

5nϕ(n)

and that
ψ(A5) = 211 > 192 = 1

5nϕ(n).

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, |G | = n.

If ψ(G ) ≥ 3
5nϕ(n), then

G is soluble and G ′′ ≤ Z (G ).

Remark

Notice that

ψ(C2 × C2 × C2) = 15 < 3
5 · 8 · 4 = 3

5nϕ(n)

and that
ψ(A5) = 211 > 192 = 1

5nϕ(n).

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, |G | = n.

If ψ(G ) ≥ 3
5nϕ(n), then

G is soluble and G ′′ ≤ Z (G ).

Remark

Notice that

ψ(C2 × C2 × C2) = 15 < 3
5 · 8 · 4 = 3

5nϕ(n)

and that
ψ(A5) = 211 > 192 = 1

5nϕ(n).

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



The function ψ - some new results

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, |G | = n.

If ψ(G ) ≥ 3
5nϕ(n), then

G is soluble and G ′′ ≤ Z (G ).

Remark

Notice that

ψ(C2 × C2 × C2) = 15 < 3
5 · 8 · 4 = 3

5nϕ(n)

and that
ψ(A5) = 211 > 192 = 1

5nϕ(n).

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



The function ψ - a useful result

Theorem [Ramanujan, 1913-1914]

Let q1, q2, . . . , qs , . . . be the sequence of all primes:
q1 < q2 < · · · < qs < · · · .

Then∏∞
i=1

q2
i +1

q2
i −1 = 5

2 .

Lemma

Let p2, p3, . . . , ps be primes satisfying p2 < p3 < · · · < ps .
If p2 > 3 then∏s

i=2
p2
i −1

p2
i +1 >

5
6 .
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The function ψ - key lemmas

Lemma 1 [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, 2009]

Let G be a finite group, p a prime,
P a cyclic normal Sylow p-subgroup of G .

Then:

ψ(G ) ≤ ψ(G/P)ψ(P).

Moreover

ψ(G ) = ψ(G/P)ψ(P) if and only if P ≤ Z (G ).
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The function ψ - key lemmas

Lemma 2

Let n be a positive integer > 1,
with the largest prime divisor p and

the smallest prime divisor q.
Then:

ϕ(n) ≥ q−1
p n .
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A proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a non-cyclic finite group, |G | = n and
let q be the smallest prime divisor of n.

Then
ψ(G ) < 1

q−1ψ(Cn).

Assume |G | = n and ψ(G ) ≥ 1
q−1ψ(Cn). We show that G is cyclic.

Obviously
ψ(Cn) > nϕ(n)

and, by the previous Lemma,

ϕ(n) ≥ q − 1
p

n,

where p denotes the largest prime divisor of n. Then

ψ(G ) ≥ 1
q−1ψ(Cn) >

n
q−1ϕ(n) ≥ n2

p .
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A proof sketch - continued

Hence

ψ(G ) >
n2

p

which implies that there exists x ∈ G with o(x) > n/p.
Thus [G : 〈x〉] < p and 〈x〉 contains a Sylow p-subgroup P of G . Since
〈x〉 ≤ NG (P), it follows that P is a cyclic normal subgroup of G and
Lemma 1 implies that

ψ(P)ψ(G/P) ≥ ψ(G ) ≥ 1
q − 1

ψ(Cpr )ψ(Cn/pr ),

where pr = |P|. Since P ∼= Cpr , cancellation yields

ψ(G/P) ≥ 1
q − 1

ψ(Cn/pr ).
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A proof sketch - continued

If n = pr , then from o(x) > n/p it follows o(x) = n and G is cyclic, as
required.

So we may assume that n is divisible by exactly k different primes with
k > 1. Apply induction with respect to k.

Then G/P is cyclic and G = P o F , with F ∼= G/P and F 6= 1.

Notice that n = |P||F |, P and F are both cyclic and (|P|, |F |) = 1.

Hence ψ(Cn) = ψ(P)ψ(F ).

If CF (P) = F , then G = P × F and G is cyclic, as required.

So it suffices to prove that if CF (P) =: Z < F , then ψ(G ) < 1
q−1ψ(Cn),

contrary to our assumptions.
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A proof sketch - continued

We get that

ψ(G ) = ψ(P)ψ(Z ) + |P|ψ(F \ Z ) < ψ(P)ψ(Z ) + |P|ψ(F ).

Hence

ψ(G ) < ψ(P)ψ(F )(
ψ(Z )

ψ(F )
+

|P|
ψ(P)

) = ψ(Cn)(
ψ(Z )

ψ(F )
+

|P|
ψ(P)

).

Then we show that
ψ(Z )

ψ(F )
+

|P|
ψ(P)

<
1

q − 1
,

and we get the required contradiction.
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Another proof sketch

Theorem [M. Herzog, P. L., M. Maj]

Let G be a finite group, |G | = n and
let q and p be the smallest and the largest prime divisors of n.

If ψ(G ) ≥ 1
2(q−1)

ψ(Cn),

then G is soluble and either its Sylow p-subgroups or
its Sylow q-subgroups are cyclic.

Since ψ(Cn) > nϕ(n) and by Lemma 2 ϕ(n) ≥ (q−1)n
p , it follows by our

assumptions that ψ(G ) > n2

2p . Hence there exists x ∈ G such that
o(x) > n

2p and
[G : 〈x〉] < 2p.
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A proof sketch - another lemma

Lemma 3

Let G be a finite group and suppose that there exists x ∈ G
such that

|G : 〈x〉| < 2p,

where p is the maximal prime divisor of |G |.
Then one of the following holds:

G has a normal cyclic Sylow p-subgroup,
〈x〉 is a maximal subgroup of G , and G is soluble.
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Sum of the orders of the elements

Definition

Let n be a positive integer. Put

Tn := {ψ(H) | |H| = n}

Recall that

ψ(Cn) is the maximum of Tn.

Problem

What is the structure of G if ψ(G ) is the minimum of Tn?

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



Sum of the orders of the elements

Definition

Let n be a positive integer. Put

Tn := {ψ(H) | |H| = n}

Recall that

ψ(Cn) is the maximum of Tn.

Problem

What is the structure of G if ψ(G ) is the minimum of Tn?

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



Sum of the orders of the elements

Definition

Let n be a positive integer. Put

Tn := {ψ(H) | |H| = n}

Recall that

ψ(Cn) is the maximum of Tn.

Problem

What is the structure of G if ψ(G ) is the minimum of Tn?

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



Sum of the orders of the elements - minimum

If n = pα for some prime p and some α > 0 and |G | = pα,
then obviously

ψ(G ) is minimum if and only if expG = p.

If p = 2 and ψ(G ) is minimum ,
then G is the elementary abelian group of order 2α.

But there are non-isomorphic groups G and G1 of order pα > p2 ( p > 2)
with ψ(G ) = ψ(G1) minimum.

For instance, the two groups of exponent 3 and order 33.
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Sum of the orders of the elements - minimum

Problem

What happens in the general case?

What happens for non-abelian simple groups?

Theorem [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite nilpotent group.

Then there exists a non-nilpotent group K with |K | = |G | such that

ψ(K ) < ψ(G ).
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Sum of the orders of the elements - minimum

Question

If S is a simple group of order n,
is ψ(S) the minimum of Tn?

NO!
There are non-isomorphic simple groups S and S1 such that

|S | = |S1| and ψ(S) 6= ψ(S1).

For instance, the groups A8 and PSL(3, 4) are such that
|A8| = 20160 = |PSL(3, 4)| and

ψ(A8) = 137047 > 103111 = ψ(PSL(3, 4)).
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Sum of the orders of the elements - minimum

Conjecture [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite non-simple group, S a finite simple group, |G | = |S |.

Then

ψ(S) < ψ(G ).

Theorem [S.M. Jafarian Amiri, 2013]

Let G be a finite non-simple group.

If |G | = 60, then ψ(A5) < ψ(G ).

If |G | = 168, then ψ(PSL(2, 7)) < ψ(G ).
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Sum of the orders of the elements - minimum

Assume G is a finite non-simple group.

Using GAP it is possible to see that:

If |G | = 360, then ψ(A6) < ψ(G ).

If |G | = 504, then ψ(PSL(2, 8)) < ψ(G ).

If |G | = 660, then ψ(PSL(2, 11)) < ψ(G ).

If |G | = 1092, then ψ(PSL(2, 13)) < ψ(G ).
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Sum of the orders of the elements - minimum

But the conjecture is not true.

Theorem [Y. Marefat, A. Iranmanesh, A. Tehranian, 2013]

Let S = PSL(2, 64) and G = 32 × Sz(8).

Then |G | = |S | and ψ(G ) ≤ ψ(S).

Conjecture

Let G be a finite soluble group, S a simple group, |G | = |S |.
Then

ψ(S) < ψ(G ).
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Some other functions

Let G be a finite group.

Definition

P(G ) :=
∏
x∈G

o(x).

Theorem [M. Garonzi, M. Patassini, 2015]

Let G be a finite group, |G | = n. Then

P(G ) ≤ P(Cn).

Moreover

P(G ) = P(Cn) if and only if G ' Cn.
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Some other functions

Let G be a finite group, r , s real numbers.

Definition

RG (r , s) :=
∑

x∈G
o(x)s

ϕ(o(x))r
.

RG (r) := RG (r , r).

Remark

RG (0, 1) = ψ(G ).
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Some other functions

Theorem [M. Garonzi, M. Patassini, 2015]

Let G be a finite group, |G | = n, r < 0.

Then RG (r) ≥ RCn(r).

Moreover

RG (r) = RCn(r) if and only if G is nilpotent.

Problem

Let G be a finite group, |G | = n, and r , s real numbers.

Does RG (s, r) = RCn(s, r) imply G soluble?
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Some other functions

Theorem [T. De Medts, M. Tărnăuceanu, 2008]

Let G be a finite group, |G | = n.

If G is nilpotent, then RG (1) = RCn(1).

Problem

Let G be a finite group, |G | = n.

Does RG (1) = RCn(1) imply G nilpotent?

Problem

Let G be a finite group, |G | = n.

Does RG (1) ≤ RCn(1)?

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



Some other functions

Theorem [T. De Medts, M. Tărnăuceanu, 2008]

Let G be a finite group, |G | = n.

If G is nilpotent, then RG (1) = RCn(1).

Problem

Let G be a finite group, |G | = n.

Does RG (1) = RCn(1) imply G nilpotent?

Problem

Let G be a finite group, |G | = n.

Does RG (1) ≤ RCn(1)?

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



Some other functions

Theorem [T. De Medts, M. Tărnăuceanu, 2008]

Let G be a finite group, |G | = n.

If G is nilpotent, then RG (1) = RCn(1).

Problem

Let G be a finite group, |G | = n.

Does RG (1) = RCn(1) imply G nilpotent?

Problem

Let G be a finite group, |G | = n.

Does RG (1) ≤ RCn(1)?

Patrizia Longobardi - University of Salerno On sums of element orders in finite groups



Thank you for the attention !
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