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CP extensions

An extension of a group N by a group Q is an exact sequence
e = (χ,G , π) of groups

1 // N χ // G π // Q // 1 .

We (almost) always assume that N is abelian, hence a Q-module.

Commutativity preserving extensions
The extension e = (χ,G , π) of N by Q is commutativity
preserving (CP) if every commuting pair of elements of Q has a
commuting lift in G .



CP extensions

An extension of a group N by a group Q is an exact sequence
e = (χ,G , π) of groups

1 // N χ // G π // Q // 1 .

We (almost) always assume that N is abelian, hence a Q-module.

Commutativity preserving extensions
The extension e = (χ,G , π) of N by Q is commutativity
preserving (CP) if every commuting pair of elements of Q has a
commuting lift in G .



Example

Let Q be a group in which for every commuting pair x , y the
subgroup 〈x , y〉 is cyclic. Then every commuting pair of elements in
Q has a commuting lift. Thus every extension of Q is CP.

The above condition is equivalent to Q having all abelian subgroups
cyclic.

In the case of finite groups, it is known that such groups are
precisely the groups with periodic cohomology, and this further
amounts to Q having cyclic Sylow p-subgroups for p odd, and
cyclic or quaternion Sylow p-subgroups for p = 2.
Infinite groups with this property include free products of cyclic
groups.
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Special case

Example
Taking the simplest case Q = Cp in the previous example, we see
that every extension of a group by Cp is CP. Thus in particular,
every finite p-group can be viewed as being composed from a
sequence of CP extensions.

The same argument shows that every polycyclic group can be
obtained by a sequence of CP extensions.



Example of an extension which is not CP

Example
Take

Q = 〈x1〉 × 〈x2〉 ∼= Cp × Cp,

N = 〈a1〉 × 〈a2〉 × 〈a3〉 ∼= Cp × Cp × Cp.

Let Q act on N via the following rules:

ax1
1 = a1, ax1

2 = a2, ax1
3 = a3, ax2

1 = a2, ax2
2 = a1, ax2

3 = a3.

Thus N is a Q-module. Now construct an extension G
corresponding to this action by specifying

xx1
2 = x2a3.

This extension is not CP because the commuting pair x1, x2 in Q
does not have a commuting lift in G .



CP extensions and equivalence

Extensions (χ,G , π) and (χ̄, Ḡ , π̄) of N by Q are equivalent if there
exists a homomorphism β : G → Ḡ such that the following diagram
commutes:

0 //N

1

��

χ //G

β

��

π //Q

1

��

//1

0 //N χ̄ //Ḡ π̄ //Q //1

Lemma

The class of CP extensions is closed under equivalence of extensions.
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Cohomology
Let N be a Q-module. A map ω : Q × Q → N is a 2-cocycle if

xω(y , z) + ω(x , yz) = ω(xy , z) + ω(x , y) ∀x , y , z ∈ Q.

Let Z2(Q,N) denote the set of all such 2-cocycles.

A map ω : Q × Q → N is a 2-coboundary if there exists a function
ϕ : Q → N such that

ω(x , y) = xϕ(y)− ϕ(xy) + ϕ(x) ∀x , y ∈ Q.

Let B2(Q,N) denote the set of all such 2-coboundaries. Put

H2(Q,N) = Z2(Q,N)/B2(Q,N).

Equivalence classes of extensions with abelian kernel are determined
by the elements of H2(Q,N).



Cohomology
Let N be a Q-module. A map ω : Q × Q → N is a 2-cocycle if

xω(y , z) + ω(x , yz) = ω(xy , z) + ω(x , y) ∀x , y , z ∈ Q.

Let Z2(Q,N) denote the set of all such 2-cocycles.
A map ω : Q × Q → N is a 2-coboundary if there exists a function
ϕ : Q → N such that

ω(x , y) = xϕ(y)− ϕ(xy) + ϕ(x) ∀x , y ∈ Q.

Let B2(Q,N) denote the set of all such 2-coboundaries. Put

H2(Q,N) = Z2(Q,N)/B2(Q,N).

Equivalence classes of extensions with abelian kernel are determined
by the elements of H2(Q,N).



Cohomology
Let N be a Q-module. A map ω : Q × Q → N is a 2-cocycle if

xω(y , z) + ω(x , yz) = ω(xy , z) + ω(x , y) ∀x , y , z ∈ Q.

Let Z2(Q,N) denote the set of all such 2-cocycles.
A map ω : Q × Q → N is a 2-coboundary if there exists a function
ϕ : Q → N such that

ω(x , y) = xϕ(y)− ϕ(xy) + ϕ(x) ∀x , y ∈ Q.

Let B2(Q,N) denote the set of all such 2-coboundaries. Put

H2(Q,N) = Z2(Q,N)/B2(Q,N).

Equivalence classes of extensions with abelian kernel are determined
by the elements of H2(Q,N).



CP cocycles

Definition
A cocycle ω ∈ Z2(Q,N) is said to be a CP cocycle if for all
commuting pairs x1, x2 ∈ Q there exist a1, a2 ∈ N such that

ω(x1, x2)− ω(x2, x1) = (x1 − 1)a1 + (x2 − 1)a2

Denote by Z2
CP(Q,N) the set of all CP cocycles in Z2(Q,N).

Define

H2
CP(Q,N) = Z2

CP(Q,N)/B2(Q,N).

Example

Let Q be an abelian group and N a trivial Q-module. Then
H2

CP(Q,N) coincides with Ext(Q,N).
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Proposition

Let N be a Q-module. Then the equivalence classes of CP
extensions of N by Q are in bijective correspondence with the
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Schur multiplier and B0

Given a group G , let K(G) denote the set of all commutators in G .

Definition
Let G be given by a free presentation G = F/R. Denote

M(G) = F ′ ∩ R
[F ,R]

and
B0(G) = F ′ ∩ R

〈K(F ) ∩ R〉 .

By Hopf’s formula, M(G) ∼= H2(G ,Z); this is the Schur multiplier
of G .
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Universal Coefficient Theorem

Theorem (Universal Coefficient Theorem)
Let N be a trivial Q-module. Then there is a split exact sequence

0 // Ext(Qab,N) ψ // H2(Q,N) ϕ // Hom(M(Q),N) // 0 .

Theorem
Let N be a trivial Q-module. Then there is a split exact sequence

0 // Ext(Qab,N) ψ // H2
CP(Q,N) ϕ̃ // Hom(B0(Q),N) // 0 ,

where the maps ψ and ϕ̃ are induced by the Universal Coefficient
Theorem.
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Special case: N = Q/Z

Let Q/Z be trivial Q-module. As

Ext(Qab,Q/Z) = 0,

the "Universal Coefficient Theorem" implies

H2
CP(Q,Q/Z) ∼= Hom(B0(Q),Q/Z).

The LHS group is easily seen to be isomorphic to

Bog(Q) =
⋂

A ≤ Q,
A abelian

ker resQ
A ,

where resQ
A : H2(Q,Q/Z)→ H2(A,Q/Z) is the usual cohomological

restriction map.
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Bogomolov multiplier

The group Bog(Q) is called the Bogomolov multiplier.

Theorem (Bogomolov, 1987)
If Q is finite, then Bog(Q) is isomorphic to the so-called unramified
Brauer group of C(V )Q over C, where V is a faithful finite
dimensional complex representation of Q.

If Q is finite, then Bog(Q) ∼= B0(Q).
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Noether’s problem

Let Q be a finite group and V a faithful finite dimensional
representation of Q over C.

Problem (Emmy Noether, 1916)
When is C(V )Q/C is (stably) rational?

The answer is positive, for example, for abelian groups, symmetric
groups,...

By Artin and Mumford (1972), the group Bog(Q), and hence also
B0(Q), is an obstruction to Noether’s problem.
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Noether’s problem – negative answer

Theorem (Saltman, 1985)
There exist groups of order p9 with non-trivial B0.

Theorem (Bogomolov, 1987)
If G is a p-group of order ≤ p4, then B0(G) = 0.
There exist groups of order p6 with non-trivial B0.

Theorem (Kunyavskĭı, 2010)
If G is a finite simple group, then B0(G) = 0.

Theorem (Hoshi, Kang, Kunyavskĭı (2012), M (2012))
Let |G | = p5. Then

B0(G) 6= 0 ⇐⇒ G is of maximal class.
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If G is a finite simple group, then B0(G) = 0.

Theorem (Hoshi, Kang, Kunyavskĭı (2012), M (2012))
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Further applications of B0

Martino (2013): Ekedahl invariants of finite groups which are
also related to Noether’s problem.

Davydov (2013): Isomorphism classes of soft braided
autoequivalences of the Drienfeld center of a finite group can
be described in terms of B0. Applications in Conformal Field
Theory.
Kang, Kunyavskĭı (2014): Relationship between B0 and rigidity
(a finite group is rigid if every class-preserving automorphism is
inner).
Jaikin-Zapirain, Jezernik, Rodriguez (2016): Used groups with
non-trivial Bogomolov multiplier to produce further
counterexamples to the Fake Degree Conjecture
(on character degrees of the so-called algebra groups, i.e.,
groups of the form G = 1 + J , where J is a finite dimensional
nilpotent algebra over a finite field).
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Calculations of B0

Chu, Hu, Kang, Kunyavskĭı (2009).
B0(G) for all groups G of order 64. Nine of these have nontrivial
Bogomolov multipliers.

Algorithm (Jezernik, M., 2013); implemented in GAP.

Input: finite solvable group G = F/R with a pc presentation.

Compute H = F/[F ,R] by adding tails and checking
consistency (Eick, Nickel, 2008);

Compute F/〈K(F ) ∩ R〉 by factoring out those [x , y ] ∈ K(H)
whose images in G are trivial (extra relations between tails);

B0(G) is isomorphic to the torsion subgroup of R/〈K(F ) ∩ R〉.

Ellis (2013). Algorithm for computing B0(G), where G is an
arbitrary finite group. Part of HAP. BogomolovMultiplier(G)
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Isoclinism of central extensions

Let
e1 : 1 // N1

χ1 // G1
π1 // Q1 // 1

and
e2 : 1 // N2

χ2 // G2
π2 // Q2 // 1

be central extensions. We say that e1 and e2 are isoclinic, if there
exist isomorphisms η : Q1 → Q2 and ξ : G ′1 → G ′2 such that the
diagram

Q1 × Q1
c1 //

η×η
��

G ′1
ξ
��

Q2 × Q2
c2 // G ′2

commutes, where the maps ci , i = 1, 2, are defined by the rules
ci (πi (x), πi (y)) = [x , y ].



Isoclinism and central CP extensions

Proposition

Let e1 and e2 be isoclinic central extensions. If e1 is a CP extension,
then so is e2.

Theorem

The isoclinism classes of central CP extensions with factor group
isomorphic to Q correspond to the orbits of the action of AutQ on
the subgroups of B0(Q) given by

(ϕ,U) 7→ B0(ϕ)U,

where ϕ ∈ AutQ and U ≤ B0(Q).
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Maximal extensions

A central extension

1 // N χ // G // Q // 1

is termed to be stem whenever χ(N) ≤ [G ,G ].

Proposition
Every central CP extension is isoclinic to a stem central CP
extension.

Definition
Given a group Q, any stem central CP extension of a group N by Q
with |N| = |B0(Q)| is called a CP cover of Q.
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with |N| = |B0(Q)| is called a CP cover of Q.



CP covers and maximality

Theorem
Let Q be a finite group given via a free presentation Q = F/R. Set

H = F/〈K(F ) ∩ R〉.

1 Let G be a stem central CP extension of a group N by Q. Then
G is a homomorphic image of H and N is an image of B0(Q).

2 Let G be a CP cover of Q with kernel N. Then N ∼= B0(Q).

3 CP covers of Q are precisely the stem central CP extensions of
Q with kernel of maximal order.
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Existence of CP covers
Theorem
Let Q be a finite group given via a free presentation Q = F/R. Set
H = F/〈K(F ) ∩ R〉 and A = R/〈K (F ) ∩ R〉.

1 A is a finitely generated central subgroup of H and its torsion
subgroup T (A) is isomorphic to B0(Q).

2 Let C be a complement to T (A) in A. Then H/C is a CP
cover of Q.

3 CP covers of Q are represented by the cocycles ϕ̃−1(1B0(Q)) in
H2(Q,B0(Q)), where ϕ̃ is the mapping induced by the
Universal Coefficient Theorem.

Corollary

The number of CP covers of a group Q is at most
|Ext(Qab,B0(Q))|. In particular, perfect groups have a unique CP
cover.
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Some properties of CP covers
Theorem

The Bogomolov multiplier of a CP cover is trivial.

Example
Let p be an arbitrary prime. The Schur cover of Cp × Cp is
isomorphic to the unitriangular group UT3(p). The Schur multiplier
of the latter is Cp × Cp.

Proposition

CP covers of isoclinic groups are isoclinic.

Example
Let p be an arbitrary prime. The Schur cover of Cp2 is Cp2 , and the
Schur cover of Cp × Cp is isomorphic to UT3(p). The two covers
are not isoclinic.
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Minimal CP extensions

Central CP extensions of a cyclic group of prime order by some
given group Q are called minimal CP extensions.

The object that characterizes such extensions up to equivalency is

H2
CP(Q) = H2

CP(Q,Fp),

the action of Q on Fp being trivial.

Theorem

The group H2
CP(Q) is elementary abelian of rank d(Q) + d(B0(Q)).
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Applications

Corollary

Let Q = F/R be a presentation with d(Q) = d(F ). Let r(F ,R) be
the minimal number of relators in R that generate R as a normal
subgroup of F , and let rK(F ,R) be the number of relators among
these that belong to K(F ). Then

d(B0(Q)) ≤ r(F ,R)− rK(F ,R)− d(Q).

The corollary may be applied to show that the Bogomolov multiplier
of a group is trivial. This works with classes of groups which may be
given by a presentation with many simple commutators among
relators.
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Example: Unitriangular groups

The group of unitriangular matrices UTn(p) has a minimal
presentation with n − 1 generators of order p, and all other relators
are commutators (Biss, Dasgupta, 2001). Hence

B0(UTn(p)) = 0.

The same holds for lower central quotients of UTn(p).

This was also proved by Michailov (2013) using different means. It
is also implicit in the work of Fried and Völklein (1991) on the
inverse Galois problem.



Example: Braid groups

The braid group Bn has a minimal presentation

Bn = 〈σ1, σ2, . . . σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi〉,

where i = 1, 2, . . . , n − 2 and |i − j | ≥ 2.

Example (Generators of B4)

σ1 σ2 σ3

This is a presentation with n − 1 generators and n − 2 braid relators
that are not commutators, so B0(Bn) = 0.



Commuting probability

The commuting probability cp(G) of a finite group G is defined to
be the probability that two randomly chosen elements of G
commute, and is equal to

cp(G) = |{(x , y) ∈ G × G | [x , y ] = 1}|
|G |2 .

Erdös, Turan (1968). cp(G) = k(G)/|G |, where k(G) is the
number of conjugacy classes of G .
Gustafson (1973). If cp(G) > 5/8, then G is abelian.
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Commuting probability and B0

Theorem (Jezernik, M, 2013)
Let Q be a finite group. If cp(Q) > 1/4, then B0(Q) = 0. The
bound is sharp.

Proposition

A central extension 0 // N // G // Q // 1 is a CP
extension if and only if cp(G) = cp(Q).

Corollary
For every number p in the range of the commuting probability
function, there exists a group G with cp(G) = p and B0(G) = 0.
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Bounds

Theorem

Let ε > 0, and let Q be a group with cp(Q) > ε.
|B0(Q)| can be bounded in terms of a function of ε and

max{d(S) | S a Sylow subgroup of Q}.

expB0(Q) can be bounded in terms of a function of ε.

Corollary
Given ε > 0, there exists a constant C = C(ε) such that for every
group Q with cp(Q) > ε, we have

expM(Q) ≤ C · expQ.
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