Commutativity preserving extensions of groups

Primož Moravec
(joint work with Urban Jezernik)

University of Ljubljana
Group Theory and Computational Methods, ICTS-TIFR
Bangalore, 2016

CP extensions

An extension of a group N by a group Q is an exact sequence $e=(\chi, G, \pi)$ of groups

$$
1 \longrightarrow N \xrightarrow{\chi} G \xrightarrow{\pi} Q \longrightarrow 1
$$

We (almost) always assume that N is abelian, hence a Q-module.

CP extensions

An extension of a group N by a group Q is an exact sequence $e=(\chi, G, \pi)$ of groups

$$
1 \longrightarrow N \xrightarrow{\chi} G \xrightarrow{\pi} Q \longrightarrow 1
$$

We (almost) always assume that N is abelian, hence a Q-module.

Commutativity preserving extensions
The extension $e=(\chi, G, \pi)$ of N by Q is commutativity preserving (CP) if every commuting pair of elements of Q has a commuting lift in G.

Example

Let Q be a group in which for every commuting pair x, y the subgroup $\langle x, y\rangle$ is cyclic. Then every commuting pair of elements in Q has a commuting lift. Thus every extension of Q is CP.

Example

Let Q be a group in which for every commuting pair x, y the subgroup $\langle x, y\rangle$ is cyclic. Then every commuting pair of elements in Q has a commuting lift. Thus every extension of Q is CP.

The above condition is equivalent to Q having all abelian subgroups cyclic.

- In the case of finite groups, it is known that such groups are precisely the groups with periodic cohomology, and this further amounts to Q having cyclic Sylow p-subgroups for p odd, and cyclic or quaternion Sylow p-subgroups for $p=2$.
- Infinite groups with this property include free products of cyclic groups.

Special case

Example

Taking the simplest case $Q=C_{p}$ in the previous example, we see that every extension of a group by C_{p} is CP. Thus in particular, every finite p-group can be viewed as being composed from a sequence of $C P$ extensions.

The same argument shows that every polycyclic group can be obtained by a sequence of CP extensions.

Example of an extension which is not CP

Example

Take

$$
\begin{aligned}
& Q=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \cong C_{p} \times C_{p}, \\
& N=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times\left\langle a_{3}\right\rangle \cong C_{p} \times C_{p} \times C_{p}
\end{aligned}
$$

Let Q act on N via the following rules:

$$
a_{1}^{x_{1}}=a_{1}, a_{2}^{x_{1}}=a_{2}, a_{3}^{x_{1}}=a_{3}, a_{1}^{x_{2}}=a_{2}, a_{2}^{x_{2}}=a_{1}, a_{3}^{x_{2}}=a_{3} .
$$

Thus N is a Q-module. Now construct an extension G corresponding to this action by specifying

$$
x_{2}^{x_{1}}=x_{2} a_{3} .
$$

This extension is not CP because the commuting pair x_{1}, x_{2} in Q does not have a commuting lift in G.

CP extensions and equivalence

Extensions (χ, G, π) and $(\bar{\chi}, \bar{G}, \bar{\pi})$ of N by Q are equivalent if there exists a homomorphism $\beta: G \rightarrow \bar{G}$ such that the following diagram commutes:

CP extensions and equivalence

Extensions (χ, G, π) and $(\bar{\chi}, \bar{G}, \bar{\pi})$ of N by Q are equivalent if there exists a homomorphism $\beta: G \rightarrow \bar{G}$ such that the following diagram commutes:

Lemma
The class of CP extensions is closed under equivalence of extensions.

Cohomology

Let N be a Q-module. A map $\omega: Q \times Q \rightarrow N$ is a 2-cocycle if

$$
x \omega(y, z)+\omega(x, y z)=\omega(x y, z)+\omega(x, y) \quad \forall x, y, z \in Q .
$$

Let $Z^{2}(Q, N)$ denote the set of all such 2-cocycles.

Cohomology

Let N be a Q-module. A map $\omega: Q \times Q \rightarrow N$ is a 2-cocycle if

$$
x \omega(y, z)+\omega(x, y z)=\omega(x y, z)+\omega(x, y) \quad \forall x, y, z \in Q .
$$

Let $Z^{2}(Q, N)$ denote the set of all such 2-cocycles.
A map $\omega: Q \times Q \rightarrow N$ is a 2-coboundary if there exists a function $\varphi: Q \rightarrow N$ such that

$$
\omega(x, y)=x \varphi(y)-\varphi(x y)+\varphi(x) \quad \forall x, y \in Q
$$

Let $\mathrm{B}^{2}(Q, N)$ denote the set of all such 2-coboundaries. Put

$$
\mathrm{H}^{2}(Q, N)=\mathrm{Z}^{2}(Q, N) / \mathrm{B}^{2}(Q, N)
$$

Cohomology

Let N be a Q-module. A map $\omega: Q \times Q \rightarrow N$ is a 2-cocycle if

$$
x \omega(y, z)+\omega(x, y z)=\omega(x y, z)+\omega(x, y) \quad \forall x, y, z \in Q
$$

Let $Z^{2}(Q, N)$ denote the set of all such 2-cocycles.
A map $\omega: Q \times Q \rightarrow N$ is a 2-coboundary if there exists a function $\varphi: Q \rightarrow N$ such that

$$
\omega(x, y)=x \varphi(y)-\varphi(x y)+\varphi(x) \quad \forall x, y \in Q
$$

Let $\mathrm{B}^{2}(Q, N)$ denote the set of all such 2-coboundaries. Put

$$
\mathrm{H}^{2}(Q, N)=\mathrm{Z}^{2}(Q, N) / \mathrm{B}^{2}(Q, N)
$$

Equivalence classes of extensions with abelian kernel are determined by the elements of $\mathrm{H}^{2}(Q, N)$.

CP cocycles

Definition

A cocycle $\omega \in Z^{2}(Q, N)$ is said to be a CP cocycle if for all commuting pairs $x_{1}, x_{2} \in Q$ there exist $a_{1}, a_{2} \in N$ such that

$$
\omega\left(x_{1}, x_{2}\right)-\omega\left(x_{2}, x_{1}\right)=\left(x_{1}-1\right) a_{1}+\left(x_{2}-1\right) a_{2}
$$

Denote by $\mathrm{Z}_{\mathrm{CP}}^{2}(Q, N)$ the set of all CP cocycles in $\mathrm{Z}^{2}(Q, N)$.
Define

$$
\mathrm{H}_{\mathrm{CP}}^{2}(Q, N)=\mathrm{Z}_{\mathrm{CP}}^{2}(Q, N) / \mathrm{B}^{2}(Q, N)
$$

CP cocycles

Definition

A cocycle $\omega \in \mathrm{Z}^{2}(Q, N)$ is said to be a CP cocycle if for all commuting pairs $x_{1}, x_{2} \in Q$ there exist $a_{1}, a_{2} \in N$ such that

$$
\omega\left(x_{1}, x_{2}\right)-\omega\left(x_{2}, x_{1}\right)=\left(x_{1}-1\right) a_{1}+\left(x_{2}-1\right) a_{2}
$$

Denote by $\mathrm{Z}_{\mathrm{CP}}^{2}(Q, N)$ the set of all CP cocycles in $\mathrm{Z}^{2}(Q, N)$. Define

$$
\mathrm{H}_{\mathrm{CP}}^{2}(Q, N)=\mathrm{Z}_{\mathrm{CP}}^{2}(Q, N) / \mathrm{B}^{2}(Q, N)
$$

Example

Let Q be an abelian group and N a trivial Q-module. Then $\mathrm{H}_{\mathrm{CP}}^{2}(Q, N)$ coincides with $\operatorname{Ext}(Q, N)$.

Equivalence classes of CP extensions

Proposition

Let N be a Q-module. Then the equivalence classes of $C P$ extensions of N by Q are in bijective correspondence with the elements of $\mathrm{H}_{\mathrm{CP}}^{2}(Q, N)$.

Equivalence classes of CP extensions

Proposition

Let N be a Q-module. Then the equivalence classes of $C P$ extensions of N by Q are in bijective correspondence with the elements of $\mathrm{H}_{\mathrm{CP}}^{2}(Q, N)$.

Example
Let Q be a group with all abelian subgroups cyclic and N a Q-module. Then

$$
\mathrm{H}_{\mathrm{CP}}^{2}(Q, N)=\mathrm{H}^{2}(Q, N) .
$$

Schur multiplier and B_{0}

Given a group G, let $\mathrm{K}(G)$ denote the set of all commutators in G.

Schur multiplier and B_{0}

Given a group G, let $\mathrm{K}(G)$ denote the set of all commutators in G.

Definition
Let G be given by a free presentation $G=F / R$. Denote

$$
\mathrm{M}(G)=\frac{F^{\prime} \cap R}{[F, R]}
$$

Schur multiplier and B_{0}

Given a group G, let $\mathrm{K}(G)$ denote the set of all commutators in G.

Definition
Let G be given by a free presentation $G=F / R$. Denote

$$
\mathrm{M}(G)=\frac{F^{\prime} \cap R}{[F, R]}
$$

and

$$
\mathrm{B}_{0}(G)=\frac{F^{\prime} \cap R}{\langle\mathrm{~K}(F) \cap R\rangle}
$$

Schur multiplier and B_{0}

Given a group G, let $K(G)$ denote the set of all commutators in G.

Definition
Let G be given by a free presentation $G=F / R$. Denote

$$
\mathrm{M}(G)=\frac{F^{\prime} \cap R}{[F, R]}
$$

and

$$
\mathrm{B}_{0}(G)=\frac{F^{\prime} \cap R}{\langle\mathrm{~K}(F) \cap R\rangle}
$$

By Hopf's formula, $\mathrm{M}(G) \cong \mathrm{H}_{2}(G, \mathbb{Z})$; this is the Schur multiplier of G.

Universal Coefficient Theorem

Theorem (Universal Coefficient Theorem)
Let N be a trivial Q-module. Then there is a split exact sequence

$$
0 \longrightarrow \operatorname{Ext}\left(Q^{\mathrm{ab}}, N\right) \xrightarrow{\psi} \mathrm{H}^{2}(Q, N) \xrightarrow{\varphi} \operatorname{Hom}(M(Q), N) \longrightarrow 0 .
$$

Universal Coefficient Theorem

Theorem (Universal Coefficient Theorem)
Let N be a trivial Q-module. Then there is a split exact sequence

$$
0 \longrightarrow \operatorname{Ext}\left(Q^{\mathrm{ab}}, N\right) \xrightarrow{\psi} \mathrm{H}^{2}(Q, N) \xrightarrow{\varphi} \operatorname{Hom}(\mathrm{M}(Q), N) \longrightarrow 0 .
$$

Theorem
Let N be a trivial Q-module. Then there is a split exact sequence
$0 \longrightarrow \operatorname{Ext}\left(Q^{\mathrm{ab}}, N\right) \xrightarrow{\psi} \mathrm{H}_{\mathrm{CP}}^{2}(Q, N) \xrightarrow{\tilde{\varphi}} \operatorname{Hom}\left(\mathrm{B}_{0}(Q), N\right) \longrightarrow 0$,
where the maps ψ and $\tilde{\varphi}$ are induced by the Universal Coefficient Theorem.

Special case: $N=\mathbb{Q} / \mathbb{Z}$

Let \mathbb{Q} / \mathbb{Z} be trivial Q-module. As

$$
\operatorname{Ext}\left(Q^{\mathrm{ab}}, \mathbb{Q} / \mathbb{Z}\right)=0
$$

the "Universal Coefficient Theorem" implies

$$
\mathrm{H}_{\mathrm{CP}}^{2}(Q, \mathbb{Q} / \mathbb{Z}) \cong \operatorname{Hom}\left(\mathrm{B}_{0}(Q), \mathbb{Q} / \mathbb{Z}\right)
$$

Special case: $N=\mathbb{Q} / \mathbb{Z}$

Let \mathbb{Q} / \mathbb{Z} be trivial Q-module. As

$$
\operatorname{Ext}\left(Q^{\mathrm{ab}}, \mathbb{Q} / \mathbb{Z}\right)=0
$$

the "Universal Coefficient Theorem" implies

$$
\mathrm{H}_{\mathrm{CP}}^{2}(Q, \mathbb{Q} / \mathbb{Z}) \cong \operatorname{Hom}\left(\mathrm{B}_{0}(Q), \mathbb{Q} / \mathbb{Z}\right)
$$

The LHS group is easily seen to be isomorphic to

$$
\operatorname{Bog}(Q)=\bigcap_{\substack{A \leq Q, A \text { abelian }}} \operatorname{ker~res}_{A}^{Q},
$$

where $\operatorname{res}_{A}^{Q}: \mathrm{H}^{2}(Q, \mathbb{Q} / \mathbb{Z}) \rightarrow \mathrm{H}^{2}(A, \mathbb{Q} / \mathbb{Z})$ is the usual cohomological restriction map.

Bogomolov multiplier

The $\operatorname{group} \operatorname{Bog}(Q)$ is called the Bogomolov multiplier.

Bogomolov multiplier

The group $\operatorname{Bog}(Q)$ is called the Bogomolov multiplier.
Theorem (Bogomolov, 1987)
If Q is finite, then $\operatorname{Bog}(Q)$ is isomorphic to the so-called unramified Brauer group of $\mathbb{C}(V)^{Q}$ over \mathbb{C}, where V is a faithful finite dimensional complex representation of Q.

Bogomolov multiplier

The group $\operatorname{Bog}(Q)$ is called the Bogomolov multiplier.
Theorem (Bogomolov, 1987)
If Q is finite, then $\operatorname{Bog}(Q)$ is isomorphic to the so-called unramified Brauer group of $\mathbb{C}(V)^{Q}$ over \mathbb{C}, where V is a faithful finite dimensional complex representation of Q.

If Q is finite, then $\operatorname{Bog}(Q) \cong B_{0}(Q)$.

Noether's problem

Let Q be a finite group and V a faithful finite dimensional representation of Q over \mathbb{C}.

Problem (Emmy Noether, 1916)
When is $\mathbb{C}(V)^{Q} / \mathbb{C}$ is (stably) rational?

Noether's problem

Let Q be a finite group and V a faithful finite dimensional representation of Q over \mathbb{C}.

Problem (Emmy Noether, 1916)
When is $\mathbb{C}(V)^{Q} / \mathbb{C}$ is (stably) rational?

The answer is positive, for example, for abelian groups, symmetric groups,...

Noether's problem

Let Q be a finite group and V a faithful finite dimensional representation of Q over \mathbb{C}.

Problem (Emmy Noether, 1916)
When is $\mathbb{C}(V)^{Q} / \mathbb{C}$ is (stably) rational?

The answer is positive, for example, for abelian groups, symmetric groups,...

By Artin and Mumford (1972), the group $\operatorname{Bog}(Q)$, and hence also $B_{0}(Q)$, is an obstruction to Noether's problem.

Noether's problem - negative answer

Theorem (Saltman, 1985)
There exist groups of order p^{9} with non-trivial B_{0}.

Noether's problem - negative answer

Theorem (Saltman, 1985)
There exist groups of order p^{9} with non-trivial B_{0}.

Theorem (Bogomolov, 1987)

- If G is a p-group of order $\leq p^{4}$, then $\mathrm{B}_{0}(G)=0$.
- There exist groups of order p^{6} with non-trivial B_{0}.

Noether's problem - negative answer

Theorem (Saltman, 1985)
There exist groups of order p^{9} with non-trivial B_{0}.

Theorem (Bogomolov, 1987)

- If G is a p-group of order $\leq p^{4}$, then $\mathrm{B}_{0}(G)=0$.
- There exist groups of order p^{6} with non-trivial B_{0}.

Theorem (Kunyavskiĭ, 2010)
If G is a finite simple group, then $B_{0}(G)=0$.

Noether's problem - negative answer

Theorem (Saltman, 1985)
There exist groups of order p^{9} with non-trivial B_{0}.

Theorem (Bogomolov, 1987)

- If G is a p-group of order $\leq p^{4}$, then $\mathrm{B}_{0}(G)=0$.
- There exist groups of order p^{6} with non-trivial B_{0}.

Theorem (Kunyavskiĭ, 2010)
If G is a finite simple group, then $B_{0}(G)=0$.
Theorem (Hoshi, Kang, Kunyavskiï (2012), M (2012))
Let $|G|=p^{5}$. Then

$$
\mathrm{B}_{0}(G) \neq 0 \Longleftrightarrow G \text { is of maximal class. }
$$

Further applications of B_{0}

- Martino (2013): Ekedahl invariants of finite groups which are also related to Noether's problem.

Further applications of B_{0}

- Martino (2013): Ekedahl invariants of finite groups which are also related to Noether's problem.
- Davydov (2013): Isomorphism classes of soft braided autoequivalences of the Drienfeld center of a finite group can be described in terms of B_{0}. Applications in Conformal Field Theory.

Further applications of B_{0}

- Martino (2013): Ekedahl invariants of finite groups which are also related to Noether's problem.
- Davydov (2013): Isomorphism classes of soft braided autoequivalences of the Drienfeld center of a finite group can be described in terms of B_{0}. Applications in Conformal Field Theory.
- Kang, Kunyavskiĭ (2014): Relationship between B_{0} and rigidity (a finite group is rigid if every class-preserving automorphism is inner).

Further applications of B_{0}

- Martino (2013): Ekedahl invariants of finite groups which are also related to Noether's problem.
- Davydov (2013): Isomorphism classes of soft braided autoequivalences of the Drienfeld center of a finite group can be described in terms of B_{0}. Applications in Conformal Field Theory.
- Kang, Kunyavskiĭ (2014): Relationship between B_{0} and rigidity (a finite group is rigid if every class-preserving automorphism is inner).
- Jaikin-Zapirain, Jezernik, Rodriguez (2016): Used groups with non-trivial Bogomolov multiplier to produce further counterexamples to the Fake Degree Conjecture (on character degrees of the so-called algebra groups, i.e., groups of the form $G=1+J$, where J is a finite dimensional nilpotent algebra over a finite field).

Calculations of B_{0}

Chu, Hu, Kang, Kunyavskiï (2009).
$B_{0}(G)$ for all groups G of order 64. Nine of these have nontrivial Bogomolov multipliers.

Calculations of B_{0}

Chu, Hu, Kang, Kunyavskiĭ (2009).
$B_{0}(G)$ for all groups G of order 64. Nine of these have nontrivial Bogomolov multipliers.

Algorithm (Jezernik, M., 2013); implemented in GAP.

- Input: finite solvable group $G=F / R$ with a pc presentation.

Calculations of B_{0}

Chu, Hu, Kang, Kunyavskiĭ (2009).
$B_{0}(G)$ for all groups G of order 64 . Nine of these have nontrivial Bogomolov multipliers.

Algorithm (Jezernik, M., 2013); implemented in GAP.

- Input: finite solvable group $G=F / R$ with a pc presentation.
- Compute $H=F /[F, R]$ by adding tails and checking consistency (Eick, Nickel, 2008);

Calculations of B_{0}

Chu, Hu, Kang, Kunyavskiï (2009).
$B_{0}(G)$ for all groups G of order 64. Nine of these have nontrivial Bogomolov multipliers.

Algorithm (Jezernik, M., 2013); implemented in GAP.

- Input: finite solvable group $G=F / R$ with a pc presentation.
- Compute $H=F /[F, R]$ by adding tails and checking consistency (Eick, Nickel, 2008);
- Compute $F /\langle K(F) \cap R\rangle$ by factoring out those $[x, y] \in K(H)$ whose images in G are trivial (extra relations between tails);

Calculations of B_{0}

Chu, Hu, Kang, Kunyavskiï (2009).
$B_{0}(G)$ for all groups G of order 64. Nine of these have nontrivial Bogomolov multipliers.

Algorithm (Jezernik, M., 2013); implemented in GAP.

- Input: finite solvable group $G=F / R$ with a pc presentation.
- Compute $H=F /[F, R]$ by adding tails and checking consistency (Eick, Nickel, 2008);
- Compute $F /\langle\mathrm{K}(F) \cap R\rangle$ by factoring out those $[x, y] \in \mathrm{K}(H)$ whose images in G are trivial (extra relations between tails);
- $\mathrm{B}_{0}(G)$ is isomorphic to the torsion subgroup of $R /\langle\mathrm{K}(F) \cap R\rangle$.

Calculations of B_{0}

Chu, Hu, Kang, Kunyavskiï (2009).
$B_{0}(G)$ for all groups G of order 64. Nine of these have nontrivial Bogomolov multipliers.

Algorithm (Jezernik, M., 2013); implemented in GAP.

- Input: finite solvable group $G=F / R$ with a pc presentation.
- Compute $H=F /[F, R]$ by adding tails and checking consistency (Eick, Nickel, 2008);
- Compute $F /\langle\mathrm{K}(F) \cap R\rangle$ by factoring out those $[x, y] \in \mathrm{K}(H)$ whose images in G are trivial (extra relations between tails);
- $\mathrm{B}_{0}(G)$ is isomorphic to the torsion subgroup of $R /\langle\mathrm{K}(F) \cap R\rangle$.

Calculations of B_{0}

Chu, Hu, Kang, Kunyavskiï (2009).
$B_{0}(G)$ for all groups G of order 64. Nine of these have nontrivial Bogomolov multipliers.

Algorithm (Jezernik, M., 2013); implemented in GAP.

- Input: finite solvable group $G=F / R$ with a pc presentation.
- Compute $H=F /[F, R]$ by adding tails and checking consistency (Eick, Nickel, 2008);
- Compute $F /\langle\mathrm{K}(F) \cap R\rangle$ by factoring out those $[x, y] \in \mathrm{K}(H)$ whose images in G are trivial (extra relations between tails);
- $\mathrm{B}_{0}(G)$ is isomorphic to the torsion subgroup of $R /\langle\mathrm{K}(F) \cap R\rangle$.

Ellis (2013). Algorithm for computing $B_{0}(G)$, where G is an arbitrary finite group. Part of HAP. BogomolovMultiplier (G)

Isoclinism of central extensions

Let

$$
e_{1}: 1 \longrightarrow N_{1} \xrightarrow{\chi_{1}} G_{1} \xrightarrow{\pi_{1}} Q_{1} \longrightarrow 1
$$

and

$$
e_{2}: 1 \longrightarrow N_{2} \xrightarrow{\chi_{2}} G_{2} \xrightarrow{\pi_{2}} Q_{2} \longrightarrow 1
$$

be central extensions. We say that e_{1} and e_{2} are isoclinic, if there exist isomorphisms $\eta: Q_{1} \rightarrow Q_{2}$ and $\xi: G_{1}^{\prime} \rightarrow G_{2}^{\prime}$ such that the diagram

$$
\begin{aligned}
& Q_{1} \times Q_{1} \xrightarrow{c_{1}} G_{1}^{\prime} \\
& \quad \left\lvert\, \begin{array}{|c}
\eta \times \eta \\
\downarrow^{\prime} \\
Q_{2} \times Q_{2} \xrightarrow{c_{2}} \\
\downarrow_{2}^{\prime}
\end{array}\right.
\end{aligned}
$$

commutes, where the maps $c_{i}, i=1,2$, are defined by the rules $c_{i}\left(\pi_{i}(x), \pi_{i}(y)\right)=[x, y]$.

Isoclinism and central CP extensions

Proposition
Let e_{1} and e_{2} be isoclinic central extensions. If e_{1} is a $C P$ extension, then so is e_{2}.

Isoclinism and central CP extensions

Proposition
Let e_{1} and e_{2} be isoclinic central extensions. If e_{1} is a $C P$ extension, then so is e_{2}.

Theorem
The isoclinism classes of central CP extensions with factor group isomorphic to Q correspond to the orbits of the action of Aut Q on the subgroups of $\mathrm{B}_{0}(Q)$ given by

$$
(\varphi, U) \mapsto \mathrm{B}_{0}(\varphi) U
$$

where $\varphi \in$ Aut Q and $U \leq \mathrm{B}_{0}(Q)$.

Maximal extensions

A central extension

$$
1 \longrightarrow N \xrightarrow{\chi} G \longrightarrow Q \longrightarrow 1
$$

is termed to be stem whenever $\chi(N) \leq[G, G]$.

Maximal extensions

A central extension

$$
1 \longrightarrow N \xrightarrow{\chi} G \longrightarrow Q \longrightarrow 1
$$

is termed to be stem whenever $\chi(N) \leq[G, G]$.
Proposition
Every central CP extension is isoclinic to a stem central CP extension.

Maximal extensions

A central extension

$$
1 \longrightarrow N \xrightarrow{\chi} G \longrightarrow Q \longrightarrow 1
$$

is termed to be stem whenever $\chi(N) \leq[G, G]$.
Proposition
Every central CP extension is isoclinic to a stem central CP extension.

Definition
Given a group Q, any stem central CP extension of a group N by Q with $|N|=\left|\mathrm{B}_{0}(Q)\right|$ is called a CP cover of Q.

CP covers and maximality

Theorem
Let Q be a finite group given via a free presentation $Q=F / R$. Set

$$
H=F /\langle\mathrm{K}(F) \cap R\rangle .
$$

CP covers and maximality

Theorem
Let Q be a finite group given via a free presentation $Q=F / R$. Set

$$
H=F /\langle\mathrm{K}(F) \cap R\rangle .
$$

(1) Let G be a stem central CP extension of a group N by Q. Then G is a homomorphic image of H and N is an image of $B_{0}(Q)$.

CP covers and maximality

Theorem
Let Q be a finite group given via a free presentation $Q=F / R$. Set

$$
H=F /\langle\mathrm{K}(F) \cap R\rangle .
$$

(1) Let G be a stem central $C P$ extension of a group N by Q. Then G is a homomorphic image of H and N is an image of $\mathrm{B}_{0}(Q)$.
(2) Let G be a $C P$ cover of Q with kernel N. Then $N \cong B_{0}(Q)$.

CP covers and maximality

Theorem
Let Q be a finite group given via a free presentation $Q=F / R$. Set

$$
H=F /\langle\mathrm{K}(F) \cap R\rangle .
$$

(1) Let G be a stem central $C P$ extension of a group N by Q. Then G is a homomorphic image of H and N is an image of $B_{0}(Q)$.
(2) Let G be a $C P$ cover of Q with kernel N. Then $N \cong B_{0}(Q)$.
(3) CP covers of Q are precisely the stem central CP extensions of Q with kernel of maximal order.

Existence of CP covers

Theorem
Let Q be a finite group given via a free presentation $Q=F / R$. Set $H=F /\langle\mathrm{K}(F) \cap R\rangle$ and $A=R /\langle K(F) \cap R\rangle$.

Existence of CP covers

Theorem
Let Q be a finite group given via a free presentation $Q=F / R$. Set $H=F /\langle\mathrm{K}(F) \cap R\rangle$ and $A=R /\langle K(F) \cap R\rangle$.
(1) A is a finitely generated central subgroup of H and its torsion subgroup $T(A)$ is isomorphic to $\mathrm{B}_{0}(Q)$.

Existence of CP covers

Theorem
Let Q be a finite group given via a free presentation $Q=F / R$. Set $H=F /\langle\mathrm{K}(F) \cap R\rangle$ and $A=R /\langle K(F) \cap R\rangle$.
(1) A is a finitely generated central subgroup of H and its torsion subgroup $T(A)$ is isomorphic to $\mathrm{B}_{0}(Q)$.
(2) Let C be a complement to $T(A)$ in A. Then H / C is a $C P$ cover of Q.

Existence of CP covers

Theorem
Let Q be a finite group given via a free presentation $Q=F / R$. Set $H=F /\langle\mathrm{K}(F) \cap R\rangle$ and $A=R /\langle K(F) \cap R\rangle$.
(1) A is a finitely generated central subgroup of H and its torsion subgroup $T(A)$ is isomorphic to $\mathrm{B}_{0}(Q)$.
(2) Let C be a complement to $T(A)$ in A. Then H / C is a $C P$ cover of Q.
(3) CP covers of Q are represented by the cocycles $\tilde{\varphi}^{-1}\left(1_{\mathrm{B}_{0}(Q)}\right)$ in $\mathrm{H}^{2}\left(Q, \mathrm{~B}_{0}(Q)\right)$, where $\tilde{\varphi}$ is the mapping induced by the Universal Coefficient Theorem.

Existence of CP covers

Theorem

Let Q be a finite group given via a free presentation $Q=F / R$. Set $H=F /\langle\mathrm{K}(F) \cap R\rangle$ and $A=R /\langle K(F) \cap R\rangle$.
(1) A is a finitely generated central subgroup of H and its torsion subgroup $T(A)$ is isomorphic to $\mathrm{B}_{0}(Q)$.
(2) Let C be a complement to $T(A)$ in A. Then H / C is a $C P$ cover of Q.
(3) CP covers of Q are represented by the cocycles $\tilde{\varphi}^{-1}\left(1_{\mathrm{B}_{0}(Q)}\right)$ in $\mathrm{H}^{2}\left(Q, \mathrm{~B}_{0}(Q)\right)$, where $\tilde{\varphi}$ is the mapping induced by the Universal Coefficient Theorem.

Existence of CP covers

Theorem

Let Q be a finite group given via a free presentation $Q=F / R$. Set $H=F /\langle\mathrm{K}(F) \cap R\rangle$ and $A=R /\langle K(F) \cap R\rangle$.
(1) A is a finitely generated central subgroup of H and its torsion subgroup $T(A)$ is isomorphic to $\mathrm{B}_{0}(Q)$.
(2) Let C be a complement to $T(A)$ in A. Then H / C is a $C P$ cover of Q.
(3) CP covers of Q are represented by the cocycles $\tilde{\varphi}^{-1}\left(1_{\mathrm{B}_{0}(Q)}\right)$ in $\mathrm{H}^{2}\left(Q, \mathrm{~B}_{0}(Q)\right)$, where $\tilde{\varphi}$ is the mapping induced by the Universal Coefficient Theorem.

Corollary
The number of $C P$ covers of a group Q is at most $\left|\operatorname{Ext}\left(Q^{\mathrm{ab}}, \mathrm{B}_{0}(Q)\right)\right|$. In particular, perfect groups have a unique $C P$ cover.

Some properties of CP covers

Theorem
The Bogomolov multiplier of a CP cover is trivial.

Some properties of CP covers

Theorem
The Bogomolov multiplier of a CP cover is trivial.

Example
Let p be an arbitrary prime. The Schur cover of $C_{p} \times C_{p}$ is isomorphic to the unitriangular group $\mathrm{UT}_{3}(p)$. The Schur multiplier of the latter is $C_{p} \times C_{p}$.

Some properties of CP covers

Theorem
The Bogomolov multiplier of a CP cover is trivial.

Example

Let p be an arbitrary prime. The Schur cover of $C_{p} \times C_{p}$ is isomorphic to the unitriangular group $\mathrm{UT}_{3}(p)$. The Schur multiplier of the latter is $C_{p} \times C_{p}$.

Proposition
CP covers of isoclinic groups are isoclinic.

Some properties of CP covers

Theorem
The Bogomolov multiplier of a CP cover is trivial.
Example
Let p be an arbitrary prime. The Schur cover of $C_{p} \times C_{p}$ is isomorphic to the unitriangular group $\mathrm{UT}_{3}(p)$. The Schur multiplier of the latter is $C_{p} \times C_{p}$.

Proposition
CP covers of isoclinic groups are isoclinic.

Example

Let p be an arbitrary prime. The Schur cover of $C_{p^{2}}$ is $C_{p^{2}}$, and the Schur cover of $C_{p} \times C_{p}$ is isomorphic to $\mathrm{UT}_{3}(p)$. The two covers are not isoclinic.

Minimal CP extensions

Central CP extensions of a cyclic group of prime order by some given group Q are called minimal CP extensions.

Minimal CP extensions

Central CP extensions of a cyclic group of prime order by some given group Q are called minimal CP extensions.

The object that characterizes such extensions up to equivalency is

$$
\mathrm{H}_{\mathrm{CP}}^{2}(Q)=\mathrm{H}_{\mathrm{CP}}^{2}\left(Q, \mathbb{F}_{p}\right)
$$

the action of Q on \mathbb{F}_{p} being trivial.

Minimal CP extensions

Central CP extensions of a cyclic group of prime order by some given group Q are called minimal CP extensions.

The object that characterizes such extensions up to equivalency is

$$
\mathrm{H}_{\mathrm{CP}}^{2}(Q)=\mathrm{H}_{\mathrm{CP}}^{2}\left(Q, \mathbb{F}_{p}\right)
$$

the action of Q on \mathbb{F}_{p} being trivial.

Theorem
The group $\mathrm{H}_{\mathrm{CP}}^{2}(Q)$ is elementary abelian of rank $\mathrm{d}(Q)+\mathrm{d}\left(\mathrm{B}_{0}(Q)\right)$.

Applications

Corollary
Let $Q=F / R$ be a presentation with $\mathrm{d}(Q)=\mathrm{d}(F)$. Let $\mathrm{r}(F, R)$ be the minimal number of relators in R that generate R as a normal subgroup of F, and let $r_{\mathrm{K}}(F, R)$ be the number of relators among these that belong to $\mathrm{K}(F)$. Then

$$
\mathrm{d}\left(\mathrm{~B}_{0}(Q)\right) \leq \mathrm{r}(F, R)-\mathrm{r}_{\mathrm{k}}(F, R)-\mathrm{d}(Q) .
$$

Applications

Corollary
Let $Q=F / R$ be a presentation with $\mathrm{d}(Q)=\mathrm{d}(F)$. Let $\mathrm{r}(F, R)$ be the minimal number of relators in R that generate R as a normal subgroup of F, and let $r_{k}(F, R)$ be the number of relators among these that belong to $\mathrm{K}(F)$. Then

$$
\mathrm{d}\left(\mathrm{~B}_{0}(Q)\right) \leq \mathrm{r}(F, R)-\mathrm{r}_{\mathrm{k}}(F, R)-\mathrm{d}(Q) .
$$

The corollary may be applied to show that the Bogomolov multiplier of a group is trivial. This works with classes of groups which may be given by a presentation with many simple commutators among relators.

Example: Unitriangular groups

The group of unitriangular matrices $\mathrm{UT}_{n}(p)$ has a minimal presentation with $n-1$ generators of order p, and all other relators are commutators (Biss, Dasgupta, 2001). Hence

$$
\mathrm{B}_{0}\left(\mathrm{UT}_{n}(p)\right)=0
$$

The same holds for lower central quotients of $\mathrm{UT}_{n}(p)$.

This was also proved by Michailov (2013) using different means. It is also implicit in the work of Fried and Völklein (1991) on the inverse Galois problem.

Example: Braid groups

The braid group B_{n} has a minimal presentation

$$
B_{n}=\left\langle\sigma_{1}, \sigma_{2}, \ldots \sigma_{n-1} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle
$$

where $i=1,2, \ldots, n-2$ and $|i-j| \geq 2$.

Example (Generators of B_{4})

This is a presentation with $n-1$ generators and $n-2$ braid relators that are not commutators, so $\mathrm{B}_{0}\left(B_{n}\right)=0$.

Commuting probability

The commuting probability $\mathrm{cp}(G)$ of a finite group G is defined to be the probability that two randomly chosen elements of G commute, and is equal to

$$
\mathrm{cp}(G)=\frac{|\{(x, y) \in G \times G \mid[x, y]=1\}|}{|G|^{2}}
$$

Commuting probability

The commuting probability $\mathrm{cp}(G)$ of a finite group G is defined to be the probability that two randomly chosen elements of G commute, and is equal to

$$
\mathrm{cp}(G)=\frac{|\{(x, y) \in G \times G \mid[x, y]=1\}|}{|G|^{2}}
$$

- Erdös, Turan (1968). $\mathrm{cp}(G)=\mathrm{k}(G) /|G|$, where $\mathrm{k}(G)$ is the number of conjugacy classes of G.

Commuting probability

The commuting probability $\mathrm{cp}(G)$ of a finite group G is defined to be the probability that two randomly chosen elements of G commute, and is equal to

$$
\mathrm{cp}(G)=\frac{|\{(x, y) \in G \times G \mid[x, y]=1\}|}{|G|^{2}}
$$

- Erdös, Turan (1968). $\mathrm{cp}(G)=\mathrm{k}(G) /|G|$, where $\mathrm{k}(G)$ is the number of conjugacy classes of G.
- Gustafson (1973). If $\mathrm{cp}(G)>5 / 8$, then G is abelian.

Commuting probability and B_{0}

Theorem (Jezernik, M, 2013)
Let Q be a finite group. If $\mathrm{cp}(Q)>1 / 4$, then $\mathrm{B}_{0}(Q)=0$. The bound is sharp.

Commuting probability and B_{0}

Theorem (Jezernik, M, 2013)
Let Q be a finite group. If $\operatorname{cp}(Q)>1 / 4$, then $\mathrm{B}_{0}(Q)=0$. The bound is sharp.

Proposition
A central extension $0 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ is a $C P$ extension if and only if $\operatorname{cp}(G)=\operatorname{cp}(Q)$.

Commuting probability and B_{0}

Theorem (Jezernik, M, 2013)
Let Q be a finite group. If $\mathrm{cp}(Q)>1 / 4$, then $\mathrm{B}_{0}(Q)=0$. The bound is sharp.

Proposition
A central extension $0 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ is a $C P$ extension if and only if $\operatorname{cp}(G)=\operatorname{cp}(Q)$.

Corollary
For every number p in the range of the commuting probability function, there exists a group G with $\operatorname{cp}(G)=p$ and $\mathrm{B}_{0}(G)=0$.

Bounds

Theorem
Let $\epsilon>0$, and let Q be a group with $\operatorname{cp}(Q)>\epsilon$.

- $\left|B_{0}(Q)\right|$ can be bounded in terms of a function of ϵ and

$$
\max \{\mathrm{d}(S) \mid S \text { a Sylow subgroup of } Q\} .
$$

Bounds

Theorem
Let $\epsilon>0$, and let Q be a group with $\operatorname{cp}(Q)>\epsilon$.

- $\left|\mathrm{B}_{0}(Q)\right|$ can be bounded in terms of a function of ϵ and $\max \{\mathrm{d}(S) \mid S$ a Sylow subgroup of $Q\}$.
- $\exp \mathrm{B}_{0}(Q)$ can be bounded in terms of a function of ϵ.

Bounds

Theorem
Let $\epsilon>0$, and let Q be a group with $\operatorname{cp}(Q)>\epsilon$.

- $\left|\mathrm{B}_{0}(Q)\right|$ can be bounded in terms of a function of ϵ and

$$
\max \{\mathrm{d}(S) \mid S \text { a Sylow subgroup of } Q\} .
$$

- $\exp \mathrm{B}_{0}(Q)$ can be bounded in terms of a function of ϵ.

Bounds

Theorem
Let $\epsilon>0$, and let Q be a group with $\operatorname{cp}(Q)>\epsilon$.

- $\left|\mathrm{B}_{0}(Q)\right|$ can be bounded in terms of a function of ϵ and

$$
\max \{\mathrm{d}(S) \mid S \text { a Sylow subgroup of } Q\}
$$

- $\exp \mathrm{B}_{0}(Q)$ can be bounded in terms of a function of ϵ.

Corollary
Given $\epsilon>0$, there exists a constant $C=C(\epsilon)$ such that for every group Q with $\operatorname{cp}(Q)>\epsilon$, we have

$$
\exp M(Q) \leq C \cdot \exp Q
$$

