Rationality and Morita equivalence for blocks of finite groups

Radha Kessar
City, University of London

November 12, 2016

Let k be a field, A a finite dimensional k-algebra and $\sigma: k \rightarrow k$ an automorphism.

Rationality

Let k be a field, A a finite dimensional k-algebra and $\sigma: k \rightarrow k$ an automorphism.

Definition

The σ-twist of A, is the k-algebra $A^{(\sigma)}$ such that $A^{(\sigma)}=A$ as a ring and with scalar multiplication defined by

$$
\lambda . a:=\sigma^{-1}(\lambda) a \quad \lambda \in k, a \in A^{\sigma} .
$$

Rationality

Let k be a field, A a finite dimensional k-algebra and $\sigma: k \rightarrow k$ an automorphism.

Definition

The σ-twist of A, is the k-algebra $A^{(\sigma)}$ such that $A^{(\sigma)}=A$ as a ring and with scalar multiplication defined by

$$
\lambda . a:=\sigma^{-1}(\lambda) a \quad \lambda \in k, a \in A^{\sigma} .
$$

- A and $A^{(\sigma)}$ need not be isomorphic as k-algebras.

Rationality

Let k be a field, A a finite dimensional k-algebra and $\sigma: k \rightarrow k$ an automorphism.

Definition

The σ-twist of A, is the k-algebra $A^{(\sigma)}$ such that $A^{(\sigma)}=A$ as a ring and with scalar multiplication defined by

$$
\lambda . a:=\sigma^{-1}(\lambda) a \quad \lambda \in k, a \in A^{\sigma} .
$$

- A and $A^{(\sigma)}$ need not be isomorphic as k-algebras.

Let k_{0} be a subfield of A. We say that A is defined over k_{0} if there exists a k_{0}-algebra A_{0} such that $A=k \otimes_{k_{0}} A_{0}$

Rationality

Let k be a field, A a finite dimensional k-algebra and $\sigma: k \rightarrow k$ an automorphism.

Definition

The σ-twist of A, is the k-algebra $A^{(\sigma)}$ such that $A^{(\sigma)}=A$ as a ring and with scalar multiplication defined by

$$
\lambda . a:=\sigma^{-1}(\lambda) a \quad \lambda \in k, a \in A^{\sigma} .
$$

- A and $A^{(\sigma)}$ need not be isomorphic as k-algebras.

Let k_{0} be a subfield of A. We say that A is defined over k_{0} if there exists a k_{0}-algebra A_{0} such that $A=k \otimes_{k_{0}} A_{0}$, i.e. if there exists a k-basis \mathcal{B} of A containing 1_{A} such that for all $x, y \in \mathcal{B}$,

$$
x y=\sum_{z \in \mathcal{B}} \alpha_{x, y, z} z \quad \text { with } \quad \alpha_{x, y, z} \in k_{0}
$$

From now on:
p is a prime number, $k=\overline{\mathbb{F}}_{p}$, and $\sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

From now on:
p is a prime number, $k=\overline{\mathbb{F}}_{p}$, and $\sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Lemma

Let $d \in \mathbb{N}$. The following are equivalent.
(a) $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras

From now on:
p is a prime number, $k=\overline{\mathbb{F}}_{p}$, and $\sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Lemma

Let $d \in \mathbb{N}$. The following are equivalent.
(a) $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras
(b) A is defined over $\mathbb{F}_{p^{d}}$.

From now on:
p is a prime number, $k=\overline{\mathbb{F}}_{p}$, and $\sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Lemma

Let $d \in \mathbb{N}$. The following are equivalent.
(a) $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras
(b) A is defined over $\mathbb{F}_{p^{d}}$.

Definition

The Frobenius number, $f(A)$ of A is the least possible d such that $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras.

From now on:
p is a prime number, $k=\overline{\mathbb{F}}_{p}$, and $\sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Lemma

Let $d \in \mathbb{N}$. The following are equivalent.
(a) $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras
(b) A is defined over $\mathbb{F}_{p^{d}}$.

Definition

The Frobenius number, $f(A)$ of A is the least possible d such that $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras. The Morita Frobenius number $m f(A)$ is the least possible d such that $A^{\left(\sigma^{d}\right)}$ and A are Morita equivalent as k-algebras

From now on:
p is a prime number, $k=\overline{\mathbb{F}}_{p}$, and $\sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Lemma

Let $d \in \mathbb{N}$. The following are equivalent.
(a) $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras
(b) A is defined over $\mathbb{F}_{p^{d}}$.

Definition

The Frobenius number, $f(A)$ of A is the least possible d such that $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras. The Morita Frobenius number $m f(A)$ is the least possible d such that $A^{\left(\sigma^{d}\right)}$ and A are Morita equivalent as k-algebras, i.e. $A^{\left(\sigma^{d}\right)}$-mod and A-mod are equivalent as k-linear categories.

From now on:
p is a prime number, $k=\overline{\mathbb{F}}_{p}$, and $\sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Lemma

Let $d \in \mathbb{N}$. The following are equivalent.
(a) $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras
(b) A is defined over $\mathbb{F}_{p^{d}}$.

Definition

The Frobenius number, $f(A)$ of A is the least possible d such that $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras. The Morita Frobenius number $m f(A)$ is the least possible d such that $A^{\left(\sigma^{d}\right)}$ and A are Morita equivalent as k-algebras, i.e. $A^{\left(\sigma^{d}\right)}-\bmod$ and A-mod are equivalent as k-linear categories. We have $m f(A) \leq f(A)<\infty$.

From now on:
p is a prime number, $k=\overline{\mathbb{F}}_{p}$, and $\sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Lemma

Let $d \in \mathbb{N}$. The following are equivalent.
(a) $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras
(b) A is defined over $\mathbb{F}_{p^{d}}$.

Definition

The Frobenius number, $f(A)$ of A is the least possible d such that $A^{\left(\sigma^{d}\right)} \cong A$ as k-algebras. The Morita Frobenius number $m f(A)$ is the least possible d such that $A^{\left(\sigma^{d}\right)}$ and A are Morita equivalent as k-algebras, i.e. $A^{\left(\sigma^{d}\right)}-\bmod$ and A-mod are equivalent as k-linear categories. We have $m f(A) \leq f(A)<\infty$.

As before: p a prime, $k=\overline{\mathbb{F}}_{p}, \sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Example

Let $\zeta \in k^{\times}$and let $A=k\langle x, y\rangle /\left\langle x^{p}, y^{p}, x y-\zeta y x\right\rangle$.

As before: p a prime, $k=\overline{\mathbb{F}}_{p}, \sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Example

Let $\zeta \in k^{\times}$and let $A=k\langle x, y\rangle /\left\langle x^{p}, y^{p}, x y-\zeta y x\right\rangle$. Then

$$
f(A)=m f(A)=\left[\mathbb{F}_{p}\left(\zeta+\zeta^{-1}\right): \mathbb{F}_{p}\right]
$$

As before: p a prime, $k=\overline{\mathbb{F}}_{p}, \sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Example

Let $\zeta \in k^{\times}$and let $A=k\langle x, y\rangle /\left\langle x^{p}, y^{p}, x y-\zeta y x\right\rangle$. Then

$$
f(A)=m f(A)=\left[\mathbb{F}_{p}\left(\zeta+\zeta^{-1}\right): \mathbb{F}_{p}\right]
$$

Example

Suppose that $f(A)=2$.

- If $B=A \times A^{(\sigma)}$, then $f(B)=1$.

As before: p a prime, $k=\overline{\mathbb{F}}_{p}, \sigma: k \rightarrow k, \lambda \rightarrow \lambda^{p}, \lambda \in k$.

Example

Let $\zeta \in k^{\times}$and let $A=k\langle x, y\rangle /\left\langle x^{p}, y^{p}, x y-\zeta y x\right\rangle$. Then

$$
f(A)=m f(A)=\left[\mathbb{F}_{p}\left(\zeta+\zeta^{-1}\right): \mathbb{F}_{p}\right]
$$

Example

Suppose that $f(A)=2$.

- If $B=A \times A^{(\sigma)}$, then $f(B)=1$.
- If $B=A \times \operatorname{Mat}_{2}\left(A^{(\sigma)}\right)$, then $f(B)=2$ and $m f(B)=1$.

Blocks of finite group algebras
As before, p prime and $k=\overline{\mathbb{F}}_{p}$.

Blocks of finite group algebras
As before, p prime and $k=\overline{\mathbb{F}}_{p}$. Let G be a finite group. A block of $k G$ is an indecomposable direct factor of the group algebra $k G$.

Blocks of finite group algebras

As before, p prime and $k=\overline{\mathbb{F}}_{p}$. Let G be a finite group. A block of $k G$ is an indecomposable direct factor of the group algebra $k G$.

- There exists a unique block decomposition

$$
k G=A_{1} \times \cdots \times A_{r}
$$

of $k G$ into blocks; each A_{i} is an indecomposable ($k G, k G$)-bimodule.

Blocks of finite group algebras

As before, p prime and $k=\overline{\mathbb{F}}_{p}$. Let G be a finite group. A block of $k G$ is an indecomposable direct factor of the group algebra $k G$.

- There exists a unique block decomposition

$$
k G=A_{1} \times \cdots \times A_{r}
$$

of $k G$ into blocks; each A_{i} is an indecomposable ($k G, k G$)-bimodule.

- Setting $e_{i}=1_{A_{i}}$, then

$$
1_{k G}=e_{1}+\cdots+e_{r}
$$

is the unique decomposition of $1_{k G}$ into orthogonal central primitive idempotents.

Blocks of finite group algebras

As before, p prime and $k=\overline{\mathbb{F}}_{p}$. Let G be a finite group. A block of $k G$ is an indecomposable direct factor of the group algebra $k G$.

- There exists a unique block decomposition

$$
k G=A_{1} \times \cdots \times A_{r}
$$

of $k G$ into blocks; each A_{i} is an indecomposable ($k G, k G$)-bimodule.

- Setting $e_{i}=1_{A_{i}}$, then

$$
1_{k G}=e_{1}+\cdots+e_{r}
$$

is the unique decomposition of $1_{k G}$ into orthogonal central primitive idempotents.

- Corresponding decomposition of module categories

$$
k G-\bmod =A_{1}-\bmod \oplus \cdots \oplus A_{r}-\bmod
$$

Blocks of finite group algebras

As before, p prime and $k=\overline{\mathbb{F}}_{p}$. Let G be a finite group. A block of $k G$ is an indecomposable direct factor of the group algebra $k G$.

- There exists a unique block decomposition

$$
k G=A_{1} \times \cdots \times A_{r}
$$

of $k G$ into blocks; each A_{i} is an indecomposable ($k G, k G$)-bimodule.

- Setting $e_{i}=1_{A_{i}}$, then

$$
1_{k G}=e_{1}+\cdots+e_{r}
$$

is the unique decomposition of $1_{k G}$ into orthogonal central primitive idempotents.

- Corresponding decomposition of module categories

$$
k G-\bmod =A_{1}-\bmod \oplus \cdots \oplus A_{r}-\bmod
$$

For blocks of finite group algebras, there is a useful way to think about Frobenius twists.

For blocks of finite group algebras, there is a useful way to think about Frobenius twists.

Let $\tau: k G \rightarrow k G$ be the map defined by

$$
\tau\left(\sum_{g \in G} \alpha_{g}(g)\right)=\sum_{g \in G} \sigma\left(\alpha_{g}\right) g
$$

For blocks of finite group algebras, there is a useful way to think about Frobenius twists.

Let $\tau: k G \rightarrow k G$ be the map defined by

$$
\tau\left(\sum_{g \in G} \alpha_{g}(g)\right)=\sum_{g \in G} \sigma\left(\alpha_{g}\right) g .
$$

The map τ is an isomorphism of rings, hence permutes the blocks of $k G$.

For blocks of finite group algebras, there is a useful way to think about Frobenius twists.

Let $\tau: k G \rightarrow k G$ be the map defined by

$$
\tau\left(\sum_{g \in G} \alpha_{g}(g)\right)=\sum_{g \in G} \sigma\left(\alpha_{g}\right) g .
$$

The map τ is an isomorphism of rings, hence permutes the blocks of $k G$.

- If A is a block of $k G$, then $\tau(A) \cong A^{(\sigma)}$ as k-algebras.

For blocks of finite group algebras, there is a useful way to think about Frobenius twists.

Let $\tau: k G \rightarrow k G$ be the map defined by

$$
\tau\left(\sum_{g \in G} \alpha_{g}(g)\right)=\sum_{g \in G} \sigma\left(\alpha_{g}\right) g
$$

The map τ is an isomorphism of rings, hence permutes the blocks of $k G$.

- If A is a block of $k G$, then $\tau(A) \cong A^{(\sigma)}$ as k-algebras.

Thus, when comparing a block with its Frobenius twist, we are comparing blocks of the same finite group algebra. This point of view has many advantages.

For blocks of finite group algebras, there is a useful way to think about Frobenius twists.

Let $\tau: k G \rightarrow k G$ be the map defined by

$$
\tau\left(\sum_{g \in G} \alpha_{g}(g)\right)=\sum_{g \in G} \sigma\left(\alpha_{g}\right) g
$$

The map τ is an isomorphism of rings, hence permutes the blocks of $k G$.

- If A is a block of $k G$, then $\tau(A) \cong A^{(\sigma)}$ as k-algebras.

Thus, when comparing a block with its Frobenius twist, we are comparing blocks of the same finite group algebra. This point of view has many advantages.

- If $1_{A} \in \mathbb{F}_{p} G$, then $\tau(A)=A$ and hence $f(A)=1$.

For blocks of finite group algebras, there is a useful way to think about Frobenius twists.

Let $\tau: k G \rightarrow k G$ be the map defined by

$$
\tau\left(\sum_{g \in G} \alpha_{g}(g)\right)=\sum_{g \in G} \sigma\left(\alpha_{g}\right) g
$$

The map τ is an isomorphism of rings, hence permutes the blocks of $k G$.

- If A is a block of $k G$, then $\tau(A) \cong A^{(\sigma)}$ as k-algebras.

Thus, when comparing a block with its Frobenius twist, we are comparing blocks of the same finite group algebra. This point of view has many advantages.

- If $1_{A} \in \mathbb{F}_{p} G$, then $\tau(A)=A$ and hence $f(A)=1$.
- If A has an ordinary irreducible character which is rational-valued, then $f(A)=1$.

Example

$$
G=\left\langle x, y, z \mid x^{7}=y^{5}=z^{2}, x y x^{-1} y^{-1}, z x z x, z y z y\right\rangle \cong\left(C_{7} \times C_{5}\right) \rtimes C_{2}
$$

Example

$$
G=\left\langle x, y, z \mid x^{7}=y^{5}=z^{2}, x y x^{-1} y^{-1}, z x z x, z y z y\right\rangle \cong\left(C_{7} \times C_{5}\right) \rtimes C_{2}
$$

Let $p=7$. Then $k G$ has 3 blocks, with corresponding central idempotents:

$$
\begin{gathered}
1_{A_{1}}=\frac{1}{5}\left(1+y+y^{2}+y^{3}+y^{4}\right) \\
1_{A_{2}}=\frac{1}{5}\left(2+\theta y+\theta^{\prime} y^{2}+\theta^{\prime} y^{3}+\theta y^{4}\right) \\
1_{A_{3}}=\frac{1}{5}\left(2+\theta^{\prime} y+\theta y^{2}+\theta y^{3}+\theta^{\prime} y^{4}\right)
\end{gathered}
$$

Here θ, θ^{\prime} are the roots of $x^{2}+x-1=0$ over \mathbb{F}_{7}.

Example

$G=\left\langle x, y, z \mid x^{7}=y^{5}=z^{2}, x y x^{-1} y^{-1}, z x z x, z y z y\right\rangle \cong\left(C_{7} \times C_{5}\right) \rtimes C_{2}$
Let $p=7$. Then $k G$ has 3 blocks, with corresponding central idempotents:

$$
\begin{gathered}
1_{A_{1}}=\frac{1}{5}\left(1+y+y^{2}+y^{3}+y^{4}\right) \\
1_{A_{2}}=\frac{1}{5}\left(2+\theta y+\theta^{\prime} y^{2}+\theta^{\prime} y^{3}+\theta y^{4}\right) \\
1_{A_{3}}=\frac{1}{5}\left(2+\theta^{\prime} y+\theta y^{2}+\theta y^{3}+\theta^{\prime} y^{4}\right)
\end{gathered}
$$

Here θ, θ^{\prime} are the roots of $x^{2}+x-1=0$ over \mathbb{F}_{7}.

- $1_{A_{1}} \in \mathbb{F}_{7} G$, hence by previous slide $f(A)=1$.

Example

$G=\left\langle x, y, z \mid x^{7}=y^{5}=z^{2}, x y x^{-1} y^{-1}, z x z x, z y z y\right\rangle \cong\left(C_{7} \times C_{5}\right) \rtimes C_{2}$
Let $p=7$. Then $k G$ has 3 blocks, with corresponding central idempotents:

$$
\begin{gathered}
1_{A_{1}}=\frac{1}{5}\left(1+y+y^{2}+y^{3}+y^{4}\right) \\
1_{A_{2}}=\frac{1}{5}\left(2+\theta y+\theta^{\prime} y^{2}+\theta^{\prime} y^{3}+\theta y^{4}\right) \\
1_{A_{3}}=\frac{1}{5}\left(2+\theta^{\prime} y+\theta y^{2}+\theta y^{3}+\theta^{\prime} y^{4}\right)
\end{gathered}
$$

Here θ, θ^{\prime} are the roots of $x^{2}+x-1=0$ over \mathbb{F}_{7}.

- $1_{A_{1}} \in \mathbb{F}_{7} G$, hence by previous slide $f(A)=1$.
- $\tau\left(A_{2}\right)=A_{3}$ but by using block theory can show

$$
f\left(A_{2}\right)=f\left(A_{3}\right)=1
$$

Defect groups and Finiteness Conjectures

Definition

Let A be a block of $k G$. A defect group is a subgroup P of G minimal with respect to the property that A is a summand of $A \otimes_{k P} A$ as (A, A)-bimodule.

Defect groups and Finiteness Conjectures

Definition

Let A be a block of $k G$. A defect group is a subgroup P of G minimal with respect to the property that A is a summand of $A \otimes_{k P} A$ as (A, A)-bimodule.

- Defect groups form a conjugacy class of p-subgroups of G.
- If A is the principal block of $k G$, i,e. the block containing the 1 -dimensional trivial $k G$-module, then the defect groups of A are the Sylow p-subgroups of G.

There is a close relationship between the structure of the defect groups of A, the way these are embedded in G, and the structure of A as finite dimensional algebra, or equivalently of the category A-mod.

There is a close relationship between the structure of the defect groups of A, the way these are embedded in G, and the structure of A as finite dimensional algebra, or equivalently of the category A-mod.

- The number of isomorphism classes of simple A-modules is at most $\frac{1}{4}|P|^{2}+1$ (Brauer-Feit 1956).

There is a close relationship between the structure of the defect groups of A, the way these are embedded in G, and the structure of A as finite dimensional algebra, or equivalently of the category A-mod.

- The number of isomorphism classes of simple A-modules is at most $\frac{1}{4}|P|^{2}+1$ (Brauer-Feit 1956).
- The largest elementary divisor of the Cartan matrix of A is $|P|$ (Brauer 1954).

There is a close relationship between the structure of the defect groups of A, the way these are embedded in G, and the structure of A as finite dimensional algebra, or equivalently of the category A-mod.

- The number of isomorphism classes of simple A-modules is at most $\frac{1}{4}|P|^{2}+1$ (Brauer-Feit 1956).
- The largest elementary divisor of the Cartan matrix of A is $|P|$ (Brauer 1954).
- Hochschild cohomology of A is bounded by P : For any $n \in \mathbb{N}$, there exists an integer $h(P, n)$, depending only on P and n such that $\operatorname{dim}_{k}\left(H H^{n}(A)\right) \leq h(P, n)$ and there are only finitely many possibilities for the corresponding Hilbert series $\sum_{n=0}^{\infty} \operatorname{dim}_{k}\left(H H^{n}(A)\right) t^{n} \in \mathbb{Z}[[t]]$ (K.-Linckelmann 2012).

Definition

Let P be a finite p-group. A P-block is a block of $k G$ (some G) whose defect groups are isomorphic to P.

Definition

Let P be a finite p-group. A P-block is a block of $k G$ (some G) whose defect groups are isomorphic to P.

Donovan's Conjecture (1970s)
Let P be a finite p-group. There are only finitely many Morita equivalence classes of P-blocks.

Definition

Let P be a finite p-group. A P-block is a block of $k G$ (some G) whose defect groups are isomorphic to P.

Donovan's Conjecture (1970s)
Let P be a finite p-group. There are only finitely many Morita equivalence classes of P-blocks.

Theorem (Hiss 1999, K. 2004)

Let P be a finite p-group. The following are equivalent.
(a) Donovan's conjecture holds for P-blocks.

Definition

Let P be a finite p-group. A P-block is a block of $k G$ (some G) whose defect groups are isomorphic to P.

Donovan's Conjecture (1970s)

Let P be a finite p-group. There are only finitely many Morita equivalence classes of P-blocks.

Theorem (Hiss 1999, K. 2004)

Let P be a finite p-group. The following are equivalent.
(a) Donovan's conjecture holds for P-blocks.
(b) There exist integers $c(P)$ and $r(P)$ depending only on P such that for any P-block A,

- the Cartan numbers of A are at most $c(P)$ and
- the Morita Frobenius number of A is at most $r(P)$.

Definition

Let P be a finite p-group. A P-block is a block of $k G$ (some G) whose defect groups are isomorphic to P.

Donovan's Conjecture (1970s)

Let P be a finite p-group. There are only finitely many Morita equivalence classes of P-blocks.

Theorem (Hiss 1999, K. 2004)

Let P be a finite p-group. The following are equivalent.
(a) Donovan's conjecture holds for P-blocks.
(b) There exist integers $c(P)$ and $r(P)$ depending only on P such that for any P-block A,

- the Cartan numbers of A are at most $c(P)$ and
- the Morita Frobenius number of A is at most $r(P)$.

The assertion that $c(P)$ exists is the "Weak Donovan Conjecture", and the assertion that $r(P)$ exists is the "Rationality Conjecture".

Morita Frobenius numbers of blocks

Let P be a finite p-group and let A be a P-block. In certain special cases, $m f(A)$ can be determined, but only as a consequence of some highly non-trivial theory.

Let P be a finite p-group and let A be a P-block. In certain special cases, $m f(A)$ can be determined, but only as a consequence of some highly non-trivial theory.

- If P is cyclic, then A is a Brauer tree algebra. Consequently, $m f(A)=1$ (Brauer, Dade, Janusz, Kupisch 1960s)

Let P be a finite p-group and let A be a P-block. In certain special cases, $\operatorname{mf}(A)$ can be determined, but only as a consequence of some highly non-trivial theory.

- If P is cyclic, then A is a Brauer tree algebra. Consequently, $m f(A)=1$ (Brauer, Dade, Janusz, Kupisch 1960s)
- $p=2, P$ is dihedral, semi-dihedral or quaternion of order 8 , then A can be computed upto quiver and relations, and $m f(A)=1$ (Erdmann 1980s)

Morita Frobenius numbers of blocks

Let P be a finite p-group and let A be a P-block. In certain special cases, $m f(A)$ can be determined, but only as a consequence of some highly non-trivial theory.

- If P is cyclic, then A is a Brauer tree algebra. Consequently, $m f(A)=1$ (Brauer, Dade, Janusz, Kupisch 1960s)
- $p=2, P$ is dihedral, semi-dihedral or quaternion of order 8 , then A can be computed upto quiver and relations, and $m f(A)=1$ (Erdmann 1980s)
- If P is fusion trivial, then $A=M a t_{n}(k P)$ and hence $m f(A)=1$ (Puig, 1988)

Morita Frobenius numbers of blocks

Let P be a finite p-group and let A be a P-block. In certain special cases, $m f(A)$ can be determined, but only as a consequence of some highly non-trivial theory.

- If P is cyclic, then A is a Brauer tree algebra. Consequently, $m f(A)=1$ (Brauer, Dade, Janusz, Kupisch 1960s)
- $p=2, P$ is dihedral, semi-dihedral or quaternion of order 8, then A can be computed upto quiver and relations, and $m f(A)=1$ (Erdmann 1980s)
- If P is fusion trivial, then $A=M a t_{n}(k P)$ and hence $m f(A)=1$ (Puig, 1988)
P is fusion trivial if P admits no non-trivial saturated fusion system. In particular, if P is fusion trivial, then whenever P is a Sylow p-subgroup of a finite group H, then $N_{H}(Q) / C_{H}(Q)$ is a p-group for all p-subgroups Q of G

Morita Frobenius numbers of blocks

Let P be a finite p-group and let A be a P-block. In certain special cases, $\operatorname{mf}(A)$ can be determined, but only as a consequence of some highly non-trivial theory.

- If P is cyclic, then A is a Brauer tree algebra. Consequently, $m f(A)=1$ (Brauer, Dade, Janusz, Kupisch 1960s)
- $p=2, P$ is dihedral, semi-dihedral or quaternion of order 8 , then A can be computed upto quiver and relations, and $m f(A)=1$ (Erdmann 1980s)
- If P is fusion trivial, then $A=\operatorname{Mat}_{n}(k P)$ and hence $m f(A)=1$ (Puig, 1988)
P is fusion trivial if P admits no non-trivial saturated fusion system. In particular, if P is fusion trivial, then whenever P is a Sylow p-subgroup of a finite group H, then $N_{H}(Q) / C_{H}(Q)$ is a p-group for all p-subgroups Q of G, e.g. $C_{4} \times C_{2}$ is fusion trivial.
- $p=2, P=C_{2^{m}} \times C_{2^{m}}, m \geq 2$, then A is Morita equivalent to one of $k P$ or $k P \rtimes C_{3}$. Consequently, $m f(A)=1$
(Eaton-Hethelyi-K-Külshammer (2013))
- $p=2, P=C_{2^{m}} \times C_{2^{m}}, m \geq 2$, then A is Morita equivalent to one of $k P$ or $k P \rtimes C_{3}$. Consequently, $m f(A)=1$
(Eaton-Hethelyi-K-Külshammer (2013))
- $p=2$ and $P=C_{2} \times C_{2} \times C_{2}$, then there are eight Morita equivalence classes of blocks with representatives the principal blocks of:
(1) $k P$
(2) $k P \rtimes C_{3}$
(3) $k P \rtimes C_{7}$
(4) $k\left(P \rtimes\left(C_{7} \rtimes C_{3}\right)\right.$
(5) $k C_{2} \times A_{5}$
(6) $k S L_{2}(8)$
(7) $k J_{1}$
(8) $k^{2} G_{2}(3)$

Consequently $m f(A)=1$ (Eaton (2015))

- $p=2, P=C_{2^{m}} \times C_{2^{m}}, m \geq 2$, then A is Morita equivalent to one of $k P$ or $k P \rtimes C_{3}$. Consequently, $m f(A)=1$
(Eaton-Hethelyi-K-Külshammer (2013))
- $p=2$ and $P=C_{2} \times C_{2} \times C_{2}$, then there are eight Morita equivalence classes of blocks with representatives the principal blocks of:
(1) $k P$
(2) $k P \rtimes C_{3}$
(3) $k P \rtimes C_{7}$
(4) $k\left(P \rtimes\left(C_{7} \rtimes C_{3}\right)\right.$
(5) $k C_{2} \times A_{5}$
(6) $k S L_{2}(8)$
(7) $k J_{1}$
(8) $k^{2} G_{2}(3)$

Consequently $m f(A)=1$ (Eaton (2015))
The above results rely on the classification of finite simple groups and the parametrisation of p-blocks of finite reductive groups through Lusztig's theory of irreducible characters.

Theorem (Farrell 2015)

Let G be a quasi-simple group, $\bar{G}=G / Z(G)$ and A a block of $k G$. Suppose that one of the following holds.

- \bar{G} is an alternating or sporadic group.
- \bar{G} is a finite group of Lie type in characteristic p.
- \bar{G} is $P S L_{n}(q)$ or $P S U_{n}(q)$.
- \bar{G} is a finite group of Lie type in non-describing characteristic, not of type E_{8}, and A is a unipotent block.
Then $m f(A)=1$.

Theorem (Benson-K. 2007)

For any prime p, there exists a finite soluble group G and a block A of $k G$ such that

- $m f(A)=2$.

Theorem (Benson-K. 2007)

For any prime p, there exists a finite soluble group G and a block A of $k G$ such that

- $m f(A)=2$.
- The defect groups of A are elementary abelian and are normal in G.
- A has only one isomorphism class of simple modules, and A is a matrix algebra over a quantum complete intersection.

Theorem (Benson-K. 2007)

For any prime p, there exists a finite soluble group G and a block A of $k G$ such that

- $m f(A)=2$.
- The defect groups of A are elementary abelian and are normal in G.
- A has only one isomorphism class of simple modules, and A is a matrix algebra over a quantum complete intersection.
- No known examples of blocks A with $m f(A)>2$.
- No known examples of blocks A of quasi-simple groups with $m f(A)>1$.
- Rationality Conjecture is open.

Rationality and Perverse Equivalences

Brauer's first main theorem
Let G be a finite group and $P \leq G$ be a p-subgroup of G. There is a canonical bijection (Brauer Correpondence) between the set of blocks of $k G$ with defect group P and the set of blocks of $k N_{G}(P)$ with defect group P.

Rationality and Perverse Equivalences

Brauer's first main theorem
 Let G be a finite group and $P \leq G$ be a p-subgroup of G. There is a canonical bijection (Brauer Correpondence) between the set of blocks of $k G$ with defect group P and the set of blocks of $k N_{G}(P)$ with defect group P.

There are many known and conjectural connections between the module categories of Brauer correspondent blocks. These blocks are not in general Morita equivalent. However, if the relevant defect groups are abelian, then it is predicted that there is a weaker equivalence between their module categories.

Rationality and Perverse Equivalences

> Brauer's first main theorem
> Let G be a finite group and $P \leq G$ be a p-subgroup of G. There is a canonical bijection (Brauer Correpondence) between the set of blocks of $k G$ with defect group P and the set of blocks of $k N_{G}(P)$ with defect group P.

There are many known and conjectural connections between the module categories of Brauer correspondent blocks. These blocks are not in general Morita equivalent. However, if the relevant defect groups are abelian, then it is predicted that there is a weaker equivalence between their module categories.

Abelian Defect Group Conjecture (Broué, 1990)

Let A be a block of $k G$ with defect group P and B the block of $k N_{G}(P)$ in Brauer correspondence with A. If P is abelian, then there is an equivalence of derived bounded module categories $D^{b}(A$-mod $) \sim D^{b}(B-\bmod)$.

Abelian Defect Group Conjecture (Broué, 1990)

Let A be a block of $k G$ with defect group P and B the block of $k N_{G}(P)$ in Brauer correspondence with A. If P is abelian, then there is an equivalence of derived bounded module categories $D^{b}(A-\bmod) \sim D^{b}(B-\bmod)$.

Abelian Defect Group Conjecture (Broué, 1990)

Let A be a block of $k G$ with defect group P and B the block of $k N_{G}(P)$ in Brauer correspondence with A. If P is abelian, then there is an equivalence of derived bounded module categories $D^{b}(A$-mod $) \sim D^{b}(B-\bmod)$.

Chuang and Rouquier have identified a special type of derived equivalence called perverse equivalence which seems to be key for the Abelian defect group conjecture. A perverse equivalence is stronger than a derived equivalence, but weaker than a Morita equivalence, i.e. we have:

Morita Equiv. \Longrightarrow Perverse Equiv. \Longrightarrow Derived Equiv.

Abelian Defect Group Conjecture (Broué, 1990)

Let A be a block of $k G$ with defect group P and B the block of $k N_{G}(P)$ in Brauer correspondence with A. If P is abelian, then there is an equivalence of derived bounded module categories $D^{b}(A$-mod $) \sim D^{b}(B-\bmod)$.

Chuang and Rouquier have identified a special type of derived equivalence called perverse equivalence which seems to be key for the Abelian defect group conjecture. A perverse equivalence is stronger than a derived equivalence, but weaker than a Morita equivalence, i.e. we have:

Morita Equiv. \Longrightarrow Perverse Equiv. \Longrightarrow Derived Equiv. Most derived equivalences which have been found in the context of the Abelian defect group conjecture are known to be compositions of perverse equivalences and it is believed that when the defect groups are abelian there always exists a derived equivalence between a block and its Brauer correspondent which is a composition of perverse equivalences.

Theorem (Chuang-K. 2016)

Let A be a block of $k G$ with defect group P and let B be the block of $k N_{G}(P)$ in Brauer correspondence with A. Suppose that there exists a derived equivalence between A and B which is a composition of perverse equivalences. Then,

$$
m f(A) \leq|P \| \operatorname{Aut}(\mathrm{P})|^{2}
$$

Theorem (Chuang-K. 2016)

Let A be a block of $k G$ with defect group P and let B be the block of $k N_{G}(P)$ in Brauer correspondence with A. Suppose that there exists a derived equivalence between A and B which is a composition of perverse equivalences. Then,

$$
m f(A) \leq|P \| \operatorname{Aut}(\mathrm{P})|^{2}
$$

Corollary

An affirmative answer to the perverse form of the Abelian defect group conjecture would imply the rationality conjecture for abelian P.

