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Latin squares
Latin square

A Latin square (LS) of order n is an n× n matrix in which each of n symbols
occurs exactly once in each row and column.

For example, a LS of order 4 is

[ 0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

]
.

LS are important:

I Sudoku

I LS are one of the oldest and most important objects in combinatorics,
allowing extensive applications in geometry, coding theory, experiment
design, communications technology, quantum information theory,
so�ware testing, scheduling, . . .

I the Cayley table of a finite group is a LS
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Partial Latin squares
Partial Latin square

A partial Latin square (PLS) is a matrix in which any two filled cells in the
same row or column must contain distinct symbols.

Convention:

I assume each row and column of a PLS has at least one non-empty cell
I the order of a PLS is the maximum of its number of rows, number of

columns, and the number of distinct symbols it contains
I the size of a PLS is the number of filled cells

For example,
[ 0 · · 3
· 2 · 0
2 3 1 ·

]
is a PLS

of order 4 and size 7.

Some (open) problems

I Which PLS can be completed to a LS?
Andersen & Hilton (1983): n× n PLS is completable if size ≤ n− 1;
Hall (1945): every (n− r)× n Latin rectangle is completable;
see Euler (2010, 2013) for recent work and references

I Which PLS can be completed to a subtable of a Cayley table?
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Group embeddings

The PLS
[ 0 · · 3
· 2 · 0
2 3 1 ·

]
embeds in the Cayley table of (Z4,+):

+ 0 1 2 3
0 000 1 2 333
1 1 222 3 000
2 222 333 111 1
3 3 0 1 2

.

Group embedding of PLS

An embedding of a PLS in a group G is a triple (ρ, κ, σ) of injective maps from
respectively the rows, columns, and symbols, to G, such that for any symbol s
in row r and column c, we have ρ(r)κ(c) = σ(s).
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Smallest PLS not embedding in group of order n

We’ll discuss solutions to the following questions

1 Dénes & Keedwell asked (“Open Problem 3.8”, 1974):
given n, what is the largest number m = ψ(n) such that every PLS of size
m can be embedded in some group of order n.

2 Abelian variant: what is the largest number m = ψ+(n) such that every
PLS of size m can be embedded in some abelian group of order n.

3 Cyclic variant: what is the largest number m = ψ◦(n) such that every
PLS of size m can be embedded in the cyclic group of order n.

Clearly, ψ◦(n) ≤ ψ+(n) ≤ ψ(n).

4 Infinite variant: what is the size of the smallest PLS which can be
embedded in an infinite group, but in no finite group.

Note:
I (1), (2), and (3) are based on work of Wanless & Webb

I (4) is joint work of D. & Wanless
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Finite Case
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The solution to (1)–(3)

Theorem (Wanless & Webb 2015)
If n is a positive integer, then

ψ(n) =



1 (n = 1, 2)
2 (n = 3)
3 (n = 4, or n > 3 odd)
5 (n = 6, or n ≡ 2, 4 mod 6 and n > 4)
6 (n ≡ 0 mod 6 and n > 6),

and

ψ+(n) =


1 (n = 1, 2)
2 (n = 3)
3 (n = 4 or n > 3 odd)
5 (n > 4 even),

and ψ◦(n) = ψ+(n).

Heiko Dietrich Group embeddings of partial Latin squares



Introduction Finite case Infinite case Results QC Upper bound Candidates Lower Bound

�adrangle Criterion

M =

 aaa bbb

ddd ccc


quadrangle (a, b, c, d)

�adrangle Criterion (QC)

A 4-tuple of entries of a matrix M is a quadrangle
if the four elements are the corners of a rectangular
block in M . The matrix M satisfies the QC if the
any 3 entries of a quadrangle determine the 4th.

Theorem
The Cayley table of a group satisfies the QC.

Proof.
For distinct group elements i, j let mi,j = ij be the element in the Cayley table
with row j and column j. Consider a quadrangle defined by rows i, k and
columns j, l, that is, mi,j = ij, mi,l = il, mk,l = kl, mk,j = kj. Then mk,j is
uniquely determined by mi,j,mi,l ,mk,l since

mk,j = kj = mk,l l−1i−1mi,j = mk,lm−1
i,l mi,j.
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An upper bound

Consider the PLS P =

[
a b ·
c a b
· c d

]
.

There are two quadrangles (a, b, a, c) and (a, b, d, c) which coincide in exactly 3
positions,

thus P does not satisfy the QC!

This shows:

Lemma
For every n, we have ψ(n) ≤ 6.
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An upper bound

Lemma
For each ` ≥ 2 there is a PLS of size 2` that can only be embedded in groups of
order divisible by `.

Proof.

Suppose the PLS

P =
[ a1 a2 ··· a`−1 a`
a2 a3 ··· a` a1

]
is embedded in a group G; let the rows and columns of that embedding be
labelled with group elements r1, r2 and c1, . . . , c`, respectively.

Can assume that
r1 = 1 = c1, hence

c1 c2 · · · c`−1 c`
r1 a1 a2 · · · a`−1 a`
r2 a2 a3 · · · a` a1

and r ∈ G has order `, which implies ` | |G|.
Clearly, P can be embedded in any group which has an element of order `.
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An upper bound

Lemma
Upper bounds for ψ are given as follows:

I ψ(1) = ψ(2) = 1, ψ(3) = 2, ψ(4) = 3, and ψ(6) = 5 (direct comp.)

I ψ(n) = 3 for n ≥ 5 odd (by previous lemma)

I ψ(n) ≤ 5 for n > 6 with n ≡ 2, 4 mod 6 (by previous lemma)

I ψ(n) ≤ 6 for n > 6 with n ≡ 0 mod 6 (QC showed ψ(n) ≤ 6 for all n)

This proves the claimed values of ψ(n) as an upper bound.

To complete the proof: identify the smallest PLS (“obstacle”) that cannot be
embedded in any group of order n; similarly for ψ+(n) and ψ◦(n).

Good news: there are only finitely many PLS to consider!
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The list of candidates

Number of species (Wanless 2007)

A species is an orbit of PLS (of order n) under the action of Sym(n) o Sym(3),
acting naturally on the PLS represented as sets of triples (r, c, s):

size 1 2 3 4 5 6 7
# species 1 2 5 18 59 306 1861

test

Two LS P and P′ are isotopic if they are in the same Sym(n)× Sym(n)× Sym(n)-orbit;
they are conjugate if they are in the same Sym(3)-orbit.

Known: The 6 conjugates of a Cayley table are all isotopic; this implies:
If P and P ′ are PLS of the same species, then P can be embedded in a group if
and only if P ′ can.
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Reducing the list of candidates

Most PLS don’t need to be considered because they contain entries which may
be omi�ed without a�ecting embeddability, for example, if

P =

[ a · ·
· a b
b c ·

]
and P ′ =

[ a · ·
· a b
b · ·

]
then P can be embedded if and only if P ′ can be embedded.

Reduced number of species

Ge�ing rid of “obvious” candidates which do / do not embedd in groups of size
n ≥ 6, the following numbers of species remain:

size 1 2 3 4 5 6 7
# species 1 2 5 18 59 306 1861

# “reduced” 0 0 0 2 0 11 50

Heiko Dietrich Group embeddings of partial Latin squares



Introduction Finite case Infinite case Results QC Upper bound Candidates Lower Bound

Reducing the list of candidates

Most PLS don’t need to be considered because they contain entries which may
be omi�ed without a�ecting embeddability, for example, if

P =

[ a · ·
· a b
b c ·

]
and P ′ =

[ a · ·
· a b
b · ·

]
then P can be embedded if and only if P ′ can be embedded.

Reduced number of species

Ge�ing rid of “obvious” candidates which do / do not embedd in groups of size
n ≥ 6, the following numbers of species remain:

size 1 2 3 4 5 6 7
# species 1 2 5 18 59 306 1861

# “reduced” 0 0 0 2 0 11 50

Heiko Dietrich Group embeddings of partial Latin squares



Introduction Finite case Infinite case Results QC Upper bound Candidates Lower Bound

A lower bound
Recall: it remains to show that for all even n > 6n > 6n > 6 we have

ψ(n) ≥ 5 if n ≡ 2, 4 mod 6,

ψ(n) ≥ 6 if n ≡ 0 mod 6;

in other words, that every PLS of size ≤ 5 can be embedded in some group of
order n for all n > 6 with n ≡ 2, 4 mod 6; analogously for n ≡ 0 mod 6.

Proof of lower bound

I every PLS of size s ≤ 3 can be embedded in any group of order n > 6.

I there are two species of PLS of size 4 to check, namely

[ a b
b a ] and [ a b ·

· a b ];

The le� one embeds in every group of even order; the right one in every
group which has an element of order more than 2.

I there are no PLS of size 5 to check; this proves ψ(n) ≥ 5 for even n > 6
I it remains to consider n ≡ 0 mod 6 and 11 species of PLS of size 6
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A lower bound

Proof of lower bound (cont.)
Let n > 6 with n ≡ 0 mod 6; consider the 11 candidates of size 6. Two of them
are

[ a b c
b c a ] and

[
a b ·
c · b
· c d

]
.

The le� embeds in groups of order n ≡ 0 mod 3; the right one embeds in the
dihedral group D6 = 〈r, s | r3 = s2 = 1, sr = r−1s〉 via

1 rs s
1 1 rs ·
r r · rs
r2s · r r2

The remaining 9 PLS can be embedded in cyclic groups of any order > 6.

This completes the proof for ψ(n); cases ψ+(n) and ψ◦(n) analogously.
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Infinite Case
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The infinite case
Is there a PLS which can be embedded in an infinite group, but in no finite?

Hirsch & Jackson (2012), Undecidability of representability as binary relations.
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The infinite case

This PLS of size 29 can be embedded in Higman’s (1951) group

〈a, b, c, d | ba = b2, cb = c2, dc = d2, ad = a2〉

which has no non-trivial finite quotients!

�estion
What is the smallest PLS which can be embedded in an infinite group but in no
finite group?
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From PLS to group
A PLS which is embedded in a group G yields a list of relations in G:
If s is in the row and column labelled r and c, respectively, then rc = s in G.

Example
The embedding of

P =

 s1 s2 s3
· s3 s1
s2 s1 ·

 in a group via

c1 c2 c3
r1 s1 s2 s3
r2 · s3 s1
r3 s2 s1 ·

yields relations
R = {r1c1 = s1, r1c2 = s2, r1c3 = s3, r2c2 = s3,

r2c3 = s1, r3c1 = s2, r3c2 = s1}.

Every group in which P can be embedded must satisfy these relations;
we define

〈P〉 = 〈r1, r2, r3, c1, c2, c3, s1, s2, s3 | R〉;
without loss of generality, we can add the relations r1 = c1 = 1.

Heiko Dietrich Group embeddings of partial Latin squares



Introduction Finite case Infinite case First example PLS to group Smallest example Proof

From PLS to group
A PLS which is embedded in a group G yields a list of relations in G:
If s is in the row and column labelled r and c, respectively, then rc = s in G.

Example
The embedding of

P =

 s1 s2 s3
· s3 s1
s2 s1 ·

 in a group via

c1 c2 c3
r1 s1 s2 s3
r2 · s3 s1
r3 s2 s1 ·

yields relations
R = {r1c1 = s1, r1c2 = s2, r1c3 = s3, r2c2 = s3,

r2c3 = s1, r3c1 = s2, r3c2 = s1}.

Every group in which P can be embedded must satisfy these relations;

we define
〈P〉 = 〈r1, r2, r3, c1, c2, c3, s1, s2, s3 | R〉;

without loss of generality, we can add the relations r1 = c1 = 1.

Heiko Dietrich Group embeddings of partial Latin squares



Introduction Finite case Infinite case First example PLS to group Smallest example Proof

From PLS to group
A PLS which is embedded in a group G yields a list of relations in G:
If s is in the row and column labelled r and c, respectively, then rc = s in G.

Example
The embedding of

P =

 s1 s2 s3
· s3 s1
s2 s1 ·

 in a group via

c1 c2 c3
r1 s1 s2 s3
r2 · s3 s1
r3 s2 s1 ·

yields relations
R = {r1c1 = s1, r1c2 = s2, r1c3 = s3, r2c2 = s3,

r2c3 = s1, r3c1 = s2, r3c2 = s1}.

Every group in which P can be embedded must satisfy these relations;
we define

〈P〉 = 〈r1, r2, r3, c1, c2, c3, s1, s2, s3 | R〉;
without loss of generality, we can add the relations r1 = c1 = 1.

Heiko Dietrich Group embeddings of partial Latin squares



Introduction Finite case Infinite case First example PLS to group Smallest example Proof

The group 〈P〉

Definition
Let P be a PLS whose rows and columns are labelled 1, . . . , n and 1, . . . ,m,
respectively, and whose entries are 1, . . . , s. The group defined by P is
〈P〉 = 〈X | R〉, where X = {r1, . . . , rn, c1, . . . , cm, e1, . . . , es},

R = {ricj = ek | P has entry k in row i and j}.

Lemma

Let (ρ, κ, σ) : P → G be a group embedding. Then P embeds in the subgroup H
of G generated by im(ρ) ∪ im(κ) ∪ im(σ), and H is a quotient of 〈P〉.
In particular, if P can be embedded in some group, then also in 〈P〉.

Proof.
Clearly, P embeds in the group H , and the generators of H satisfy the relations
of 〈P〉. By von Dyck’s Theorem, H is a quotient of 〈P〉.

Based on this, we use GAP to study possible embeddings of PLS.
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The group 〈P〉

Problem: Computing with finitely presented groups is very hard in general...

However, it is easy to compute in abelianisations or in free groups.

Lemma
Let P be a PLS and G = 〈P〉.

a) If P can be embedded in G, and G is residually finite (for example, free),
then P can be embedded in a finite group.

b) If P can be embedded in G/G′, then also in a finite abelian group.

This is a good first test to see if P can be embedded in some finite group.

Heiko Dietrich Group embeddings of partial Latin squares



Introduction Finite case Infinite case First example PLS to group Smallest example Proof

The group 〈P〉

Problem: Computing with finitely presented groups is very hard in general...

However, it is easy to compute in abelianisations or in free groups.

Lemma
Let P be a PLS and G = 〈P〉.

a) If P can be embedded in G, and G is residually finite (for example, free),
then P can be embedded in a finite group.

b) If P can be embedded in G/G′, then also in a finite abelian group.

This is a good first test to see if P can be embedded in some finite group.

Heiko Dietrich Group embeddings of partial Latin squares



Introduction Finite case Infinite case First example PLS to group Smallest example Proof

The group 〈P〉

Problem: Computing with finitely presented groups is very hard in general...

However, it is easy to compute in abelianisations or in free groups.

Lemma
Let P be a PLS and G = 〈P〉.

a) If P can be embedded in G, and G is residually finite (for example, free),
then P can be embedded in a finite group.

b) If P can be embedded in G/G′, then also in a finite abelian group.

This is a good first test to see if P can be embedded in some finite group.

Heiko Dietrich Group embeddings of partial Latin squares



Introduction Finite case Infinite case First example PLS to group Smallest example Proof

A smaller example

The PLS of the Hirsch & Jackson paper had size 29; too big for exhaustive
search! We looked around for other non-”residually finite” groups: groups
which admit nontrivial elements which are trivial in each finite quotient.

Baumslag group (1969)

B = 〈a, b | b = [b, ba]〉 is infinite, non-cyclic, with b = 1 in every finite quotient.

A�er playing with this presentation a lot, we were able to find:

Theorem

P =


· b · c ·
a · c · ·
· a b · ·
b · · · d
c d · · ·
· · · b c

 can be embedded in an infinite group but in no finite group.

Thus the smallest PLS which can be embedded in an infinite group, but in no
finite one, has size ≤ 12.
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· b · c ·
a · c · ·
· a b · ·
b · · · d
c d · · ·
· · · b c

 can be embedded in an infinite group but in no finite group.

Thus the smallest PLS which can be embedded in an infinite group, but in no
finite one, has size ≤ 12.
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A smaller example
Theorem

P =


· b · c ·
a · c · ·
· a b · ·
b · · · d
c d · · ·
· · · b c

 can be embedded in an infinite group but in no finite group.

Proof.

From an embedding in a group G with row and column labels 1, r2, . . . , r6 and
1, c2, . . . , c5 we deduce that . . . c = aba−1b and d = aba−1b2, and

c2 = b, c3 = ba−1b, c4 = aba−1b, c5 = ab2a−1b
r2 = a, r3 = ab−1, r4 = b, r5 = aba−1b, r6 = ab−1a−1,

and, eventually,
bab2a−1b = r4c5 = d = aba−1b2,

thus b2 = a−1b−1aba−1ba, and b = b−1a−1b−1aba−1ba, . . . and so b = [b, ba]b = [b, ba]b = [b, ba].
By von Dyck’s Theorem, K = 〈a, b〉 ≤ G is a quotient of the Baumslag group.
If G is finite, then so is K , hence b = 1, and r4 = 1 = r1 yields a contradiction.

A similar computation shows that P does indeed embed in 〈P〉 ∼= B:
if two labels or symbols coincide, then B would be cyclic, which is not possible.
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The smallest example!

Theorem
The PLS P is a smallest possible example.

Proof.

Show that every PLS of size ≤ 11, which can be embedded in an infinite group,
can also be embedded in some finite group . . .

Serious problems:
I Constructing all PLS of size ≤ 12 is just feasible.

I How to decide whether P can be embedded in 〈P〉?
I If P can be embedded in 〈P〉, how to prove that it can or cannot be

embedded in any finite group?

In the end, we were just lucky...
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How many candidates?

We only have to test species of connected PLS, since otherwise we simply
embed each piece and use direct products:

size 1 2 3 4 5 6 7 8 9 10
all 1 2 5 18 59 306 1861 15097 146893 1693416

conn. 1 1 3 11 36 213 1405 12274 125235 1490851
red. 0 0 0 2 0 11 50 489 6057 92533

size 11 12
all 22239872 327670703

conn. 20003121 299274006
red. 1517293 27056665.
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Proving non-embeddability

Let P be a PLS and G = 〈P〉 = 〈X | R〉, where

X = {r1, . . . , rn, c1, . . . , cm, e1, . . . , es}.
In GAP:

I Use Tietze transformations to obtain G ∼= 〈X̂ | R̂〉 with significantly fewer
generators and relations. For our PLS of size ≤ 12, usually |X̂ |, |R̂| ≤ 3.

I Construct isomorphism 〈X̂ | R̂〉 → G, and write the original generators X
as words in X̂ .

I If we observe duplicates in the labels or symbols (either as elements of the
free group, or by using a Knuth-Bendix completion algorithm), then we
have proved that P cannot be embedded in 〈P〉, thus P cannot be
embedded in any group.
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Proving non-embeddability

Example
The PLS

P =


a d · ·
· a d ·
· b · c
c · b a


yields G = 〈P〉 = 〈X | R〉 where X = {r2, r3, r4, c2, c3, c4, a, b, c, d} and

R = {a, c2d−1, r2c2a−1, r2c3d−1, r3c2b−1, r3c4c−1,

r4c−1, r4c3b−1, r4c4a−1};

note that we assume r1 = c1 = 1.

A�er applying Tietze transformations, we see
that G is a one-generator group with no relations, that is, G ∼= (Z,+).
Expressing X in terms of the new generator, we obtain that c = d in G; this
shows that P cannot be embedded in any group.
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Other computational methods

Computational approaches to find embeddings in finite groups:

Let P be a PLS and G = 〈P〉.

I Lemma: If P embeds in G/G′ or in a free G, then P embeds in a finite group

I use GAP’s nilpotent quotient algorithm: try to embed P in a nilpotent
quotient of G, then try to find an embedding in a finite quotient by
adding random relations

I brute-force: try if some random homomorphisms in some small groups
give an embedding

I use GAP to construct set U of subgroups of G of low index;
let U = ∩H∈UH and consider permutation action of G on cosets of U in G;
check if P embeds under this homomorphism
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Statistics

size NE abelian nonabelian infNotFin

4 0 2 0 0
6 0 10 1 0
7 2 44 4 0
8 16 435 38 0
9 147 5447 463 0

10 2402 82555 7576 0
11 42884 1338816 135593 0
12 854559 23520406 2681650 50

NE : cannot be embedded in any group;
abelian : can be embedded in a finite abelian group;
nonabelian : can be embedded in a finite nonabelian group,

but not in any abelian group;
infNotFin : can be embedded in an infinite group, but not in any finite group.
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Statistics
Comment on the 50 PLS of size 12 which can be embedded in an
infinite group, but in no finite group:

I in all but 6 cases, 〈P〉 is defined as the Baumslag group B

I in the remaining 6 cases, 〈P〉 is isomorphic to one of

B1 = 〈a, b | b = [b, (b−2)a]〉,
B2 = 〈a, b | b = [b, (b2)a]〉.

In B2, note that [b2, (b2)a] = [b, (b2)a]b[b, (b2)a] = bbb = b2, hence
H = 〈b2, a〉 is a subgroup of B2 isomorphic to B; in particular, b2 is trivial
in any finite quotient of H . Similarly, in B1 we have b−1 = [b−1, (b−2)a],
hence H = 〈b−2, a〉 is a subgroup isomorphic to B, and, again, b2 is trivial
in every finite quotient. Magma tells us that B1 ∼= B2 ∼= B.

I That each of the 50 PLS embeds in 〈P〉 can be proved as for P by showing
that there are no duplicates among the list of symbols, row labels, and
columns labels, respectively. The structure of the embedded PLS implies
that no embedding in a finite group exists.
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Conclusion

Thus the answer to Hirsch & Jackson’s question is:

Theorem
The smallest PLS which can be embedded into an infinite group but in no finite
group has size 12; an example of such a PLS is

P =


· b · c ·
a · c · ·
· a b · ·
b · · · d
c d · · ·
· · · b c

 .

[ · T · H · N ·
· · · A · · ·
· · · · · · K
· · Y · O · ·
· · · · · U !

]
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