Computational Group Cohomology
 Bangalore, November 2016

Graham Ellis
NUI Galway, Ireland

Slides available at http://hamilton.nuigalway.ie/Bangalore

Password: Limerick

Outline

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups
- Lecture 3: Homotopy 2-types
- Lecture 4: Steenrod algebra
- Lecture 5: Curvature and classifying spaces of groups

$$
G=\pi_{1}\left(\mathbb{R}^{3} \backslash L\right) \text { has presentation }
$$

$$
\mathcal{P}=\left\langle x, y, z \mid y z x y^{-1} z^{2} x z^{-1} y z^{-1}, y^{-1}\left(z^{-1} y\right)^{3}\left(z y^{-1}\right)^{2} z\right\rangle
$$

$$
G=\pi_{1}\left(\mathbb{R}^{3} \backslash L\right) \text { has presentation }
$$

$$
\mathcal{P}=\left\langle x, y, z \mid y z x y^{-1} z^{2} x z^{-1} y z^{-1}, y^{-1}\left(z^{-1} y\right)^{3}\left(z y^{-1}\right)^{2} z\right\rangle
$$

$$
H_{1}(G, \mathbb{Z})=\mathbb{Z} \oplus \mathbb{Z}
$$

$$
G=\pi_{1}\left(\mathbb{R}^{3} \backslash L\right) \text { has presentation }
$$

$$
\mathcal{P}=\left\langle x, y, z \mid y z x y^{-1} z^{2} x z^{-1} y z^{-1}, y^{-1}\left(z^{-1} y\right)^{3}\left(z y^{-1}\right)^{2} z\right\rangle
$$

$$
H_{1}(G, \mathbb{Z})=\mathbb{Z} \oplus \mathbb{Z}, \quad H_{\mathbf{n}}(\mathbf{G}, \mathbb{Z})=? \quad(\mathbf{n} \geq 2)
$$

$G=\pi_{1}\left(\mathbb{R}^{3} \backslash L\right)$ has presentation

$$
\mathcal{P}=\left\langle x, y, z \mid y z x y^{-1} z^{2} x z^{-1} y z^{-1}, y^{-1}\left(z^{-1} y\right)^{3}\left(z y^{-1}\right)^{2} z\right\rangle
$$

$$
H_{1}(G, \mathbb{Z})=\mathbb{Z} \oplus \mathbb{Z}, \quad H_{\mathrm{n}}(\mathbf{G}, \mathbb{Z})=? \quad(\mathrm{n} \geq 2)
$$

$$
X=K(\mathcal{P})=e^{0} \cup e_{x}^{1} \cup e_{y}^{1} \cup e_{z}^{1} \cup e_{1}^{2} \cup e_{2}^{2}
$$

$$
\begin{aligned}
& L= \\
& \mathcal{P}=\left\langle x, y, z \mid y z x y^{-1} z^{2} x z^{-1} y z^{-1}, y^{-1}\left(z^{-1} y\right)^{3}\left(z y^{-1}\right)^{2} z\right\rangle \\
& H_{1}(G, \mathbb{Z})=\mathbb{Z} \oplus \mathbb{Z}, \quad H_{\mathbf{n}}(\mathbf{G}, \mathbb{Z})=? \quad(\mathbf{n} \geq 2) \\
& \quad X=K(\mathcal{P})=e^{0} \cup \mathbb{R}^{3} \backslash e_{x}^{1} \cup e_{y}^{1} \cup e_{z}^{1} \cup e_{1}^{2} \cup e_{2}^{2}
\end{aligned}
$$

Hurewicz: $X=B G \Leftrightarrow \tilde{X}$ contractible $\Leftrightarrow \pi_{2}(X)=0$

Example with $\pi_{2}(\mathrm{~K}(\mathcal{P})) \neq 0$

$$
\mathcal{P}=\left\langle x, y \mid x^{2}=1, y^{2} x y^{-1} x^{-1}=1\right\rangle
$$

Example with $\pi_{2}(\mathrm{~K}(\mathcal{P})) \neq 0$

$$
\mathcal{P}=\left\langle x, y \mid x^{2}=1, y^{2} x y^{-1} x^{-1}=1\right\rangle
$$

Star graph of $\mathcal{P}=\langle\underline{x} \mid \underline{r}\rangle$

Assume $x \in \underline{x} \Rightarrow x^{-1} \in \underline{x}$

- One vertex for each generator x
- A single edge $u-v$ if $u v^{-1}$ occurs once as a relator corner
- A double edge $u \backsim v$ if $u v^{-1}$ occurs more than once

Star graph of $\mathcal{P}=\langle\underline{x} \mid \underline{r}\rangle$

Assume $x \in \underline{x} \Rightarrow x^{-1} \in \underline{x}$

- One vertex for each generator x
- A single edge $u-v$ if $u v^{-1}$ occurs once as a relator corner
- A double edge $u \backsim v$ if $u v^{-1}$ occurs more than once

Example: $\mathcal{P}=\left\langle x, y \mid x^{2}=1, y^{2} x y^{-1} x^{-1}=1\right\rangle$

Assume $x \in \underline{x} \Rightarrow x^{-1} \in \underline{x}$

- One vertex for each generator x
- A single edge $u-v$ if $u v^{-1}$ occurs once as a relator corner
- A double edge $u \backsim v$ if $u v^{-1}$ occurs more than once
- corners assigned numerical angles: for each n-corner relator relator angle sum $=(n-2) \pi$

Example: $\mathcal{P}=\left\langle x, y \mid x^{2}=1, y^{2} x y^{-1} x^{-1}=1\right\rangle$

Proposition (Sieradski-Gersten-Pride '80s)
If each loop in a labelled star graph of \mathcal{P} satisfies

$$
\text { loop angle sum } \geq 2 \pi
$$

then $\pi_{2}(K(\mathcal{P}))=0$.

Proposition (Sieradski-Gersten-Pride '80s)

If each loop in a labelled star graph of \mathcal{P} satisfies

$$
\text { loop angle sum } \geq 2 \pi
$$

then $\pi_{2}(K(\mathcal{P}))=0$.

```
gap> F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;
gap> G:=F/[y*z*x*y^-1*z^2*x*z^-1*y*z^-1,
\[
\left.y^{\wedge}-1 *\left(z^{\wedge}-1 * y\right)^{\wedge} 3 *\left(z * y^{\wedge}-1\right)^{\wedge} 2 * z\right] ;
\]
gap> IsAspherical(G);
```


Proposition (Sieradski-Gersten-Pride '80s)

If each loop in a labelled star graph of \mathcal{P} satisfies

$$
\text { loop angle sum } \geq 2 \pi
$$

then $\pi_{2}(K(\mathcal{P}))=0$.

```
gap> F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;
gap> G:=F/[y*z*x*y^-1*z^2*x*z^-1*y*z^-1,
\[
\left.y^{\wedge}-1 *\left(z^{\wedge}-1 * y\right)^{\wedge} 3 *\left(z * y^{\wedge}-1\right)^{\wedge} 2 * z\right] ;
\]
gap> IsAspherical(G);
```

fail

Proposition (Sieradski-Gersten-Pride '80s)

If each loop in a labelled star graph of \mathcal{P} satisfies

$$
\text { loop angle sum } \geq 2 \pi
$$

then $\pi_{2}(K(\mathcal{P}))=0$.

```
gap> F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;
gap> G:=F/[y*z*x*y^-1*z^2*x*z^-1*y*z^-1,
\[
\left.y^{\wedge}-1 *\left(z^{\wedge}-1 * y\right)^{\wedge} 3 *\left(z * y^{\wedge}-1\right)^{\wedge} 2 * z\right] ;
\]
gap> IsAspherical(G);
fail
```

gap> H:=SmoothedFpGroup(G); ;

Proposition (Sieradski-Gersten-Pride '80s)

If each loop in a labelled star graph of \mathcal{P} satisfies

$$
\text { loop angle sum } \geq 2 \pi
$$

then $\pi_{2}(K(\mathcal{P}))=0$.

```
gap> F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;
gap> G:=F/[y*z*x*y^-1*z^2*x*z^-1*y*z^-1,
    y^-1*(z^-1*y)^3*(z*y^-1)^2*z];;
gap> IsAspherical(G);
fail
```

gap> H:=SmoothedFpGroup(G); ;
gap> IsAspherical(H) ;
true

What if $\pi_{2}(K(\mathcal{P})) \neq 0$?

- If $\pi_{1}(K(\mathcal{P}))$ is finite or nilpotent use a resolution from previous lectures.

What if $\pi_{2}(K(\mathcal{P})) \neq 0$?

- If $\pi_{1}(K(\mathcal{P}))$ is finite or nilpotent use a resolution from previous lectures.
- Else try to find a useful representation of $\pi_{1}(K(\mathcal{P}))$ from which one can construct a nice contractible space to which Wall's technique applies.

What if $\pi_{2}(K(\mathcal{P})) \neq 0$?

- If $\pi_{1}(K(\mathcal{P}))$ is finite or nilpotent use a resolution from previous lectures.
- Else try to find a useful representation of $\pi_{1}(K(\mathcal{P}))$ from which one can construct a nice contractible space to which Wall's technique applies.

Triangle groups

$$
T=T(I, m, n)=\left\langle a, b \mid a^{\prime}=b^{m}=\left(a b^{-1}\right)^{n}=1\right\rangle
$$

What if $\pi_{2}(K(\mathcal{P})) \neq 0$?

- If $\pi_{1}(K(\mathcal{P}))$ is finite or nilpotent use a resolution from previous lectures.
- Else try to find a useful representation of $\pi_{1}(K(\mathcal{P}))$ from which one can construct a nice contractible space to which Wall's technique applies.

Triangle groups

$$
T=T(I, m, n)=\left\langle a, b \mid a^{\prime}=b^{m}=\left(a b^{-1}\right)^{n}=1\right\rangle
$$

act on

$$
X=\left\{\begin{array}{lll}
\mathbb{H}^{2} & \text { (hyperbolic plane) }, & \text { if } 1 / I+1 / m+1 / n<1 \\
\mathbb{R}^{2} & \text { (real plane) }, & \text { if } 1 / I+1 / m+1 / n=1 \\
\mathbb{S}^{2} & (2-\text { sphere }), & \text { if } 1 / I+1 / m+1 / n>1
\end{array}\right.
$$

with finite cyclic stabilizers.
$T(2,3,7)$ and $T(2,3,5)$

Δ is a triangle whose geodesic sides subtend angles $\pi / I, \pi / m, \pi / n$.
$\Delta \cup \sigma(\Delta)$ is a fundamental domain.
$T(2,3,7)$ and $T(2,3,5)$

Δ is a triangle whose geodesic sides subtend angles $\pi / I, \pi / m, \pi / n$. $\Delta \cup \sigma(\Delta)$ is a fundamental domain.
For $X=\mathbb{R}^{2}$ and $X=\mathbb{H}^{2}$
$R_{*}^{T}: \cdots \rightarrow(\mathbb{Z} T)^{3} \rightarrow(\mathbb{Z} T)^{3} \rightarrow(\mathbb{Z} T)^{3} \rightarrow(\mathbb{Z} T)^{4} \rightarrow(\mathbb{Z} T)^{5} \rightarrow(\mathbb{Z} T)^{3}$

Generalized triangle groups

(first studied by Coxeter, Sinkov)

$$
G=G(I, m, n)=\left\langle x, y \mid x^{\prime}=y^{m}=[x, y]^{n}=1\right\rangle
$$

Generalized triangle groups

(first studied by Coxeter, Sinkov)

$$
G=G(I, m, n)=\left\langle x, y \mid x^{\prime}=y^{m}=[x, y]^{n}=1\right\rangle
$$

Hagelberg (1995): acts on \mathbb{H}^{3} with triangle stabilizers if

$$
2 /|I|+1 /|n| \leq 1 \text { and } 2 /|m|+1 /|n| \leq 1
$$

Generalized triangle groups

(first studied by Coxeter, Sinkov)

$$
G=G(I, m, n)=\left\langle x, y \mid x^{\prime}=y^{m}=[x, y]^{n}=1\right\rangle
$$

Hagelberg (1995): acts on \mathbb{H}^{3} with triangle stabilizers if

$$
2 /|I|+1 /|n| \leq 1 \text { and } 2 /|m|+1 /|n| \leq 1
$$

non
compact $\Delta=$

Compact dual ∇

Compact dual ∇

$$
X=\nabla^{G} \simeq \simeq \mathbb{H}^{3}
$$

Compact dual ∇

$$
X=\nabla^{G} \simeq \simeq \mathbb{H}^{3}
$$

$C_{*}(X): 0 \rightarrow\left(\mathbb{Z}_{G} \otimes_{\langle x\rangle} \mathbb{Z}\right) \oplus\left(\mathbb{Z}_{G} \otimes_{\langle y\rangle} \mathbb{Z}\right) \oplus\left(\mathbb{Z}_{G} \otimes_{\langle[x, y]\rangle} \mathbb{Z}\right) \rightarrow(\mathbb{Z} G)^{2} \rightarrow \mathbb{Z} G$

Compact dual ∇

$$
x=\nabla^{G} \xrightarrow{\simeq} \mathbb{H}^{3}
$$

$$
\begin{aligned}
& C_{*}(X): 0 \rightarrow\left(\mathbb{Z}_{G} \otimes_{\langle x\rangle} \mathbb{Z}\right) \oplus\left(\mathbb{Z}_{G} \otimes_{\langle y\rangle} \mathbb{Z}\right) \oplus\left(\mathbb{Z}_{G} \otimes_{\langle[x, y]} \mathbb{Z}\right) \rightarrow(\mathbb{Z} G)^{2} \rightarrow \mathbb{Z} G \\
& R_{*}^{G}: \xrightarrow{\beta}(\mathbb{Z} G)^{3} \xrightarrow{\alpha}(\mathbb{Z} G)^{3} \xrightarrow{\beta}(\mathbb{Z} G)^{3} \xrightarrow{\alpha}(\mathbb{Z} G)^{3} \rightarrow(\mathbb{Z} G)^{3} \rightarrow(\mathbb{Z} G)^{2} \rightarrow \mathbb{Z} G
\end{aligned}
$$

Contraction of $\mathrm{X}=\mathbb{R}^{n}$ or \mathbb{H}^{n}

$$
H: X \times[0,1] \longrightarrow X
$$

with $H(x, t)$ the unique geodesic path from x to base-point x_{0}

Contraction of $\mathrm{X}=\mathbb{R}^{n}$ or \mathbb{H}^{n}

$$
H: X \times[0,1] \longrightarrow X
$$

with $H(x, t)$ the unique geodesic path from x to base-point x_{0}

> Theorem (Gromov et al.)

A piecewise euclidean/hyperbolic CW complex X is a unique geodesic space if $\pi_{1} X=0$ and the link of each cell is a piecewise spherical CW complex with no geodesic loop of length less than 2π.

Links

The link of a point x in a piecewise euclidean/hyperbolic space is the set of tangent vectors at x.

Links

The link of a point x in a piecewise euclidean/hyperbolic space is the set of tangent vectors at x.

The link of a cell e^{n} is the set of those unit tangent vectors at one of its points $x \in e^{n}$ which are orthogonal to all those tangent vectors lying in the cell.

Links

The link of a point x in a piecewise euclidean/hyperbolic space is the set of tangent vectors at x.

The link of a cell e^{n} is the set of those unit tangent vectors at one of its points $x \in e^{n}$ which are orthogonal to all those tangent vectors lying in the cell.

The link of e^{n} inherits a piecewise spherical CW-structure.

Links

The link of a point x in a piecewise euclidean/hyperbolic space is the set of tangent vectors at x.

The link of a cell e^{n} is the set of those unit tangent vectors at one of its points $x \in e^{n}$ which are orthogonal to all those tangent vectors lying in the cell.

The link of e^{n} inherits a piecewise spherical CW-structure.

Example

For the cubical tesselation of \mathbb{R}^{3}, the link of a point x in an edge e^{1} is a sphere. The link of e^{1} is a circle.

Coxeter Matrix, Graph and Group

$$
\begin{gathered}
\left(m_{i j}\right)=\left(\begin{array}{ccc}
1 & 3 & 2 \\
3 & 1 & 5 \\
2 & 5 & 1
\end{array}\right) \bullet G=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle \\
\sigma_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, v \mapsto v-2\left\langle e_{i}, v\right\rangle e_{i} \\
\left\langle e_{i}, e_{j}\right\rangle=-\cos \left(\pi / m_{i j}\right)
\end{gathered}
$$

Coxeter Matrix, Graph and Group

$$
\begin{gathered}
\left(m_{i j}\right)=\left(\begin{array}{ccc}
1 & 3 & 2 \\
3 & 1 & 5 \\
2 & 5 & 1
\end{array}\right) \bullet{ }^{5} \bullet G=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle \\
\sigma_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, v \mapsto v-2\left\langle e_{i}, v\right\rangle e_{i} \\
\left\langle e_{i}, e_{j}\right\rangle=-\cos \left(\pi / m_{i j}\right)
\end{gathered}
$$

Convex hull of v^{G}

Coxeter Matrix, Graph and Group

$$
\left(m_{i j}\right)=\left(\begin{array}{lll}
1 & 3 & 3 \\
3 & 1 & 3 \\
3 & 3 & 1
\end{array}\right) \quad G=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle
$$

Coxeter Matrix, Graph and Group

$$
\left(m_{i j}\right)=\left(\begin{array}{lll}
1 & 3 & 3 \\
3 & 1 & 3 \\
3 & 3 & 1
\end{array}\right) \quad G=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle
$$

Convex hulls of cosets of finite subgroups of G

Coxeter Matrix, Graph and Group

$$
\left(m_{i j}\right)=\left(\begin{array}{ccc}
1 & 3 & 2 \\
3 & 1 & \infty \\
2 & \infty & 1
\end{array}\right) \quad \bullet \varrho^{\infty} \quad G=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle
$$

Coxeter Matrix, Graph and Group

$$
\left(m_{i j}\right)=\left(\begin{array}{ccc}
1 & 3 & 2 \\
3 & 1 & \infty \\
2 & \infty & 1
\end{array}\right) \quad G=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle
$$

Convex hulls of cosets of finite subgroups of G

Coxeter Complex X

$S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, G=\langle S\rangle, X=$ piecewise euclidean complex

Coxeter Complex X

$S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, G=\langle S\rangle, X=$ piecewise euclidean complex cosets of finite subgroups
k-cells of $X \leftrightarrow$

$$
\left\langle\sigma_{i_{1}}, \ldots, \sigma_{i_{k}}\right\rangle \leq G
$$

Coxeter Complex X

$S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, G=\langle S\rangle, X=$ piecewise euclidean complex cosets of finite subgroups

$$
\left\langle\sigma_{i_{1}}, \ldots, \sigma_{i_{k}}\right\rangle \leq G
$$

$\operatorname{Link}(1, X) \cong$ Simplicial complex $\{T \subset S: 1 \neq|\langle T\rangle|<\infty\}$

Coxeter Complex X

$S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, G=\langle S\rangle, X=$ piecewise euclidean complex cosets of finite subgroups

$$
\left\langle\sigma_{i_{1}}, \ldots, \sigma_{i_{k}}\right\rangle \leq G
$$

$\operatorname{Link}(1, X) \cong$ Simplicial complex $\{T \subset S: 1 \neq|\langle T\rangle|<\infty\}$

Theorem (Davis '93)

The Coxeter complex X is contractible and admits an action of G with all stabilizers finite

Coxeter Complex X

$S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, G=\langle S\rangle, X=$ piecewise euclidean complex cosets of finite subgroups k-cells of $X \quad \leftrightarrow$

$$
\left\langle\sigma_{i_{1}}, \ldots, \sigma_{i_{k}}\right\rangle \leq G
$$

$\operatorname{Link}(1, X) \cong$ Simplicial complex $\{T \subset S: 1 \neq|\langle T\rangle|<\infty\}$

Theorem (Davis '93)

The Coxeter complex X is contractible and admits an action of G with all stabilizers finite Coxeter groups.

Coxeter Complex X

$S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, G=\langle S\rangle, X=$ piecewise euclidean complex cosets of finite subgroups
k-cells of $X \leftrightarrow$

$$
\left\langle\sigma_{i_{1}}, \ldots, \sigma_{i_{k}}\right\rangle \leq G
$$

$\operatorname{Link}(1, X) \cong$ Simplicial complex $\{T \subset S: 1 \neq|\langle T\rangle|<\infty\}$

Theorem (Davis '93)

The Coxeter complex X is contractible and admits an action of G with all stabilizers finite Coxeter groups.

Theorem (De Concini \& Salvetti, '00)
There is a free $\mathbb{Z} G$-resoluton R_{*}^{G} whose generators in degree k correspond to sub k-multisets of S that generate a finite group.

Finite Coxeter Groups

$$
\begin{aligned}
& S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, G=\langle S\rangle \\
& v \in \mathbb{R}^{n}, t(v)=\{\sigma \in S: \sigma(v) \neq v\}
\end{aligned}
$$

Finite Coxeter Groups

$S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, G=\langle S\rangle$
$v \in \mathbb{R}^{n}, t(v)=\{\sigma \in S: \sigma(v) \neq v\}$
Combinatorial description of $P(G, v)$ available:

- faces e^{k} of

$$
P(G, v)=\text { Convex } \operatorname{Hull}\left(v^{G}\right)
$$

indexed be their centres $c\left(e^{k}\right)$;

- stabilizer of e^{k} is generated by $S=t\left(c\left(e^{k}\right)\right)$.

Finite Coxeter Groups

$S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, \quad G=\langle S\rangle$
$v \in \mathbb{R}^{n}, t(v)=\{\sigma \in S: \sigma(v) \neq v\}$
Combinatorial description of $P(G, v)$ available:

- faces e^{k} of

$$
P(G, v)=\operatorname{Convex} \operatorname{Hull}\left(v^{G}\right)
$$

indexed be their centres $c\left(e^{k}\right)$;

- stabilizer of e^{k} is generated by $S=t\left(c\left(e^{k}\right)\right)$.

Mathieu Group \mathbf{M}_{24}
$P\left(M_{24}, v\right)=P\left(S_{24}, v\right)$ for $v=(1,2,3,4,5,0, \ldots, 0) \in \mathbb{R}^{24}$

Finite Coxeter Groups

$S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, \quad G=\langle S\rangle$
$v \in \mathbb{R}^{n}, t(v)=\{\sigma \in S: \sigma(v) \neq v\}$
Combinatorial description of $P(G, v)$ available:

- faces e^{k} of

$$
P(G, v)=\operatorname{Convex} \operatorname{Hull}\left(v^{G}\right)
$$

indexed be their centres $c\left(e^{k}\right)$;

- stabilizer of e^{k} is generated by $S=t\left(c\left(e^{k}\right)\right)$.

Mathieu Group \mathbf{M}_{24}

$P\left(M_{24}, v\right)=P\left(S_{24}, v\right)$ for $v=(1,2,3,4,5,0, \ldots, 0) \in \mathbb{R}^{24}$
There is a free $\mathbb{Z} M_{24}$-resolution $R_{*}^{M_{24}}$ with $1,9,50,204,649, \ldots$ free generators in degrees $0,1,2,3,4, \ldots$

Artin groups

To any Coxeter diagram

is associated a Coxeter group W_{D} and Artin group

$$
\begin{aligned}
A_{D}=\langle w, x, y, z: & w x w=x w x, w y=y w, w z w=z w z, \\
& x z=z x, y z y z=z y z y\rangle
\end{aligned}
$$

Associated to D is a finite CW space B_{D}.

Associated to D is a finite CW space B_{D}.

The $\mathrm{K}(\pi, 1)$ Conjecture: $\widetilde{B_{D}}$ is contractible.

The conjecture is true for many D. [Deligne '72, Appel \& Schupp '83, Charney \& Davis '95, ...]

The conjecture is true for many D. [Deligne '72, Appel \& Schupp '83, Charney \& Davis '95, ...]

Theorem:(E, Sköldberg '10)
An Artin group A_{D} satisfies the conjecture if $A_{D^{\prime}}$ satisfies conjecture for every ∞-free full subgraph D^{\prime} in D.

The conjecture is true for many D. [Deligne '72, Appel \& Schupp '83, Charney \& Davis '95, ...]

Theorem:(E, Sköldberg '10)
An Artin group A_{D} satisfies the conjecture if $A_{D^{\prime}}$ satisfies conjecture for every ∞-free full subgraph D^{\prime} in D.

$$
\begin{array}{ll}
H^{0}\left(A_{D}, \mathbb{Z}\right) \cong \mathbb{Z}, & H^{1}\left(A_{D}, \mathbb{Z}\right) \cong \mathbb{Z}^{5} \\
H^{2}\left(A_{D}, \mathbb{Z}\right) \cong \mathbb{Z}^{11}, & H^{3}\left(A_{D}, \mathbb{Z}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}^{14} \\
H^{4}\left(A_{D}, \mathbb{Z}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}^{12}, & H^{5}\left(A_{D}, \mathbb{Z}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}^{6}, \\
H^{6}\left(A_{D}, \mathbb{Z}\right) \cong \mathbb{Z}, & H^{n}\left(A_{D}, \mathbb{Z}\right)=0(n \geq 7)
\end{array}
$$

bahut dhanyavaad

