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e Lecture 5: Curvature and classifying spaces of groups
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L= G = m1(R?\ L) has presentation

P=(xy,z|yxy 'z?

xz lyzl y TNz )y 2 )
Hl(G?Z):Z@Z? Hn(sz): ? (nzz)

X:K(P):eOUeiUe;UeZIUereg

Hurewicz: X = BG < X contractible < m(X) =0
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Star graph of P = (x | r)
Assume x € x = x" L € x
e One vertex for each generator x
e A single edge u v ifuv!
corner
e A double edge u_ v if uv™

occurs once as a relator

1 occurs more than once



Star graph of P = (x | r)
Assume x € x = x" L € x
e One vertex for each generator x
e Asingle edge u v ifuv!
corner
e A double edge u_ v if uv™

occurs once as a relator

1 occurs more than once

Example: P = (x,y | x> =1, y2xy Ix71 =1)




Labelled Star graph of P = (x | r)
Assume x € x = x" L € x
e One vertex for each generator x
e Asingle edge u v ifuv!
corner
e A double edge v v if uv~! occurs more than once
- \/.

e corners assigned numerical angles: for each n-corner relator

occurs once as a relator

1
relator angle sum = (n—2)7

Example: P = (x,y | x> =1, y2xy Ix71 =1)




Proposition (Sieradski-Gersten-Pride '80s)
If each loop in a labelled star graph of P satisfies

loop angle sum > 27

then m(K(P)) = 0.
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Proposition (Sieradski-Gersten-Pride '80s)
If each loop in a labelled star graph of P satisfies

loop angle sum > 27

then m(K(P)) = 0.

gap> F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;
gap> G:=F/[y*z*x*xy —1%z"2%kx*z"-1xy*z"-1,

yo-1x (27 -1%y) "3* (zxy~-1) "2%z] ; ;
gap> IsAspherical(G);

fail

gap> H:=SmoothedFpGroup(G) ;;

gap> IsAspherical (H);
true
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o If m1(K(P)) is finite or nilpotent use a resolution from
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What if mp(K(P)) #0 ?

o If m1(K(P)) is finite or nilpotent use a resolution from
previous lectures.

e Else try to find a useful representation of 71 (K(P)) from
which one can construct a nice contractible space to which
Wall’s technique applies.

Triangle groups

T=T(,mn)=(abl|a =b"=(ab"})"=1)
act on

H? (hyperbolic plane), if 1//+1/m+1/n<1
X =< R? (real plane), if 1/I+1/m+1/n=1
S? (2 — sphere), if 1/I+1/m+1/n>1

with finite cyclic stabilizers.



T(2,3,7) and T(2,3,5)

A is a triangle whose geodesic sides subtend angles 7//, 7w/ m,7/n.
A Uo(A) is a fundamental domain.



T(2,3,7) and T(2,3,5)

A is a triangle whose geodesic sides subtend angles 7//, 7w/ m,7/n.
A Uo(A) is a fundamental domain.

For X =R? and X = H?

RI: i 5 (@Te® = (2T = (2T)} - (ZT)* = (ZT)® —» (2T)®
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Generalized triangle groups
(first studied by Coxeter, Sinkov)

G=G(l,mn)={xy|[x =y"=[xy"=1)
Hagelberg (1995): acts on H3 with triangle stabilizers if
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Generalized triangle groups
(first studied by Coxeter, Sinkov)

G=G(l,mn) = (x,y | x' =y"=[xy]"=1)
Hagelberg (1995): acts on H3 with triangle stabilizers if

2/|II|+1/|n] <1and 2/|m|+1/|n| < 1.
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Compact dual V

X=vV¢ = .3

C(X):0— (ZG®(X>Z)€9(ZG®(y>Z)@(ZG®<[X7y]>Z) — (ZG)2 — 7.G



Compact dual V

X=V¢ " H
C(X):0— (ZG®(X>Z)€9(ZG®(y>Z)@(ZG®<[X7y]>Z) — (ZG)2 — 7.G

RC . % (2G)? % (2G)® 4 (2G)® % (2G)® — (ZG)® — (ZG)? — ZG



Contraction of X= R"” or H"

H: X x [0,1] — X

with H(x, t) the unique geodesic path from x to base-point xg



Contraction of X= R"” or H"

H: X x [0,1] — X

with H(x, t) the unique geodesic path from x to base-point xg

Theorem (Gromov et al.)

A piecewise euclidean/hyperbolic CW complex X is a unique
geodesic space if 11X = 0 and the link of each cell is a
piecewise spherical CW complex with no geodesic loop of length
less than 2.
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Links

The link of a point x in a piecewise euclidean/hyperbolic space is
the set of tangent vectors at x.

The link of a cell €” is the set of those unit tangent vectors at one
of its points x € e" which are orthogonal to all those tangent
vectors lying in the cell.

The link of e" inherits a piecewise spherical CW-structure.
Example

For the cubical tesselation of R3, the link of a point x in an edge

el is a sphere. The link of el is a circle.



Coxeter Matrix, Graph and Group

1 3 2 5
3 1 5 o—eo—o G =(o01,00,03)
2 51

o REo R3S v v — 2(ej, v)ei

(ei, &) = —cos(m/myj)



Coxeter Matrix, Graph and Group

2
5) .—.i. G:<01,02,03>
1

o REo R3S v v — 2(ej, v)ei

(ei, &) = — cos(m/m;;)

Convex hull of v&




Coxeter Matrix, Graph and Group

A G:<O-1)0-270-3>

(myj) =

w W =
w = W
= W W



Coxeter Matrix, Graph and Group




Coxeter Matrix, Graph and Group

o0

3 2
(mij): 1 oo *—o—o G:<0'1,0'2,0'3>
oo 1

N W=



Coxeter Matrix, Graph and Group

1 3 2
(mij): 3 1 o~ .—&.i. G:<0'1,0'2,0'3>
2 oo 1

Convex hulls of cosets of finite subgroups of G
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Coxeter Complex X
S={o1,...,0n}, G=(S), X = piecewise euclidean complex

cosets of finite subgroups

k-cells of X <>
(a,-l,...,a,-k> <G

Link(1, X) = Simplicial complex {T C S : 1# |(T)| < oo}

Theorem (Davis '93)

The Coxeter complex X is contractible and admits an action of G
with all stabilizers finite Coxeter groups.

Theorem (De Concini & Salvetti, '00)

There is a free ZG-resoluton R® whose generators in degree k
correspond to sub k-multisets of S that generate a finite group.
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Finite Coxeter Groups

S=A{o1,...,0n}, G=(S)
veR" t(v)={ceS : o(v) #v}

Combinatorial description of P(G, v) available:

e faces ek of
P(G,v) = Convex Hull(v®)

indexed be their centres c(eX);

o stabilizer of e¥ is generated by S = t(c(e¥)).
Mathieu Group My,
P(Mag, v) = P(Sp4,v) for v =(1,2,3,4,5,0,...,0) € R?

There is a free ZMhb4-resolution Rl\/’“ with 1,9,50, 204, 649, ...
free generators in degrees 0,1,2,3,4,...



Artin groups

To any Coxeter diagram

is associated a Coxeter group Wp and Artin group

Ap = (W, x,y,z: wWxw = Xwx,wy = yw, WZw = Zwz,
XZ = zX,yzyz = zyzy)



Associated to D is a finite CW space Bp.




Associated to D is a finite CW space Bp.

The K(7,1) Conjecture: Bp is contractible.
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'83, Charney & Davis '95, ...]
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An Artin group Ap satisfies the conjecture if Ap/ satisfies
conjecture for every oo-free full subgraph D’ in D.



The conjecture is true for many D. [Deligne '72, Appel & Schupp
'83, Charney & Davis '95, ...]

Theorem:(E, Skoldberg '10)
An Artin group Ap satisfies the conjecture if Ap/ satisfies
conjecture for every oo-free full subgraph D’ in D.

%9 4

H°(Ap,Z) = Z, HY(Ap,Z) = 7°,
H?(Ap,Z) = 71, H3(Ap,Z) = 7y © 71,
H*(Ap,Z) = 73 ® 72, H5(Ap,Z) = 7, & Z°,
HS(Ap,Z) = Z, H"(Ap,Z) =0 (n > 7).
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