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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

NOTATION

Throughout this lecture, let F be a field and A a
finite-dimensional F -algebra.

J(A): Jacobson radical of A
i.e. the annihilator of the simple A-modules
i.e. the intersection of the maximal right ideals of A

mod-A: category of finite-dimensional right A-modules
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PRESENTATIONS FOR ALGEBRAS

F 〈X1, . . . ,Xn〉: free associative F -algebra in X1, . . . ,Xn

For R ⊂ F 〈X1, . . . ,Xn〉 write

〈X1, . . . ,Xn | R 〉 := F 〈X1, . . . ,Xn〉/I,

where I is the two-sided ideal generated by R.

Example: 〈X1,X2 | X 2
1 ,X

2
2 ,X1X2 − X2X1〉 ∼= F (C2 × C2).

A is finitely presented if A ∼= 〈X1, . . . ,Xn | R 〉 for some finite R.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE V



PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

PRESENTATIONS FOR ALGEBRAS

F 〈X1, . . . ,Xn〉: free associative F -algebra in X1, . . . ,Xn

For R ⊂ F 〈X1, . . . ,Xn〉 write

〈X1, . . . ,Xn | R 〉 := F 〈X1, . . . ,Xn〉/I,

where I is the two-sided ideal generated by R.

Example: 〈X1,X2 | X 2
1 ,X

2
2 ,X1X2 − X2X1〉 ∼= F (C2 × C2).

A is finitely presented if A ∼= 〈X1, . . . ,Xn | R 〉 for some finite R.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE V



PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

PRESENTATIONS FOR ALGEBRAS

F 〈X1, . . . ,Xn〉: free associative F -algebra in X1, . . . ,Xn

For R ⊂ F 〈X1, . . . ,Xn〉 write

〈X1, . . . ,Xn | R 〉 := F 〈X1, . . . ,Xn〉/I,

where I is the two-sided ideal generated by R.

Example: 〈X1,X2 | X 2
1 ,X

2
2 ,X1X2 − X2X1〉 ∼= F (C2 × C2).

A is finitely presented if A ∼= 〈X1, . . . ,Xn | R 〉 for some finite R.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE V



PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

PRESENTATIONS FOR ALGEBRAS

F 〈X1, . . . ,Xn〉: free associative F -algebra in X1, . . . ,Xn

For R ⊂ F 〈X1, . . . ,Xn〉 write

〈X1, . . . ,Xn | R 〉 := F 〈X1, . . . ,Xn〉/I,

where I is the two-sided ideal generated by R.

Example: 〈X1,X2 | X 2
1 ,X

2
2 ,X1X2 − X2X1〉 ∼= F (C2 × C2).

A is finitely presented if A ∼= 〈X1, . . . ,Xn | R 〉 for some finite R.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE V



PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

GENERATORS AND RELATIONS FOR MATRIX ALGEBRAS

Suppose that F is finite, char(F ) = p, and let A ≤ F d×d be a
matrix algebra generated by A1, . . . ,Al .

Carlson and Matthews have developed and implemented an
algorithm that computes

1 a finite presentation for A,
2 a matrix algebra isomorphic to the basic algebra of A,
3 the Cartan matrix and the dimension of A.

Applications: Homomorphisms from A, cohomology, see also
Lecture 4.
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THE CARLSON-MATTHEWS ALGORITHM: BACKGROUND

Let S1, . . . ,Sr denote the simple A-modules (up to
isomorphism).

A/J(A) ∼= A1 ⊕ · · · ⊕Ar with homogeneous components Ai ; the
Ai are full matrix algebras over finite extension fields Ki of F .

In fact Ai is the image of the action homomorphism

ϕi : A→ EndF (Si).

Ai , ϕi and Ki are constructed with the MeatAxe.

There is a subalgebra A′ of A with A′ ∩ J(A) = 0, so that
A′ ∼= A1 ⊕ · · · ⊕ Ar .

This subalgebra is also constructed during the algorithm.
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THE CARLSON-MATTHEWS ALGORITHM: OUTLINE

Here is a very rough outline of the algorithm:

1 Compute, with the MeatAxe, a sequence Ei of pairwise
orthogonal idempotents of A such that∑

i Ei = 1A,
ϕj (Ei ) = δij1Ai .

2 For each i , compute, with the MeatAxe, a sequence eij of
pairwise orthogonal primitive idempotents with Ei =

∑
j eij .

3 Construct elements βi ∈ ei1 Aei1, τi in EiAEi such that
〈βi , τi〉 ∼= Ai ; this gives generators for A′.

4 Determine ideal generators for J(A).
5 Determine the relations.

Put e =
∑

i ei1. Then eAe is the basic algebra of A.
Determine matrix representation of eAe on F 1×de.
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THE CARLSON-MATTHEWS ALGORITHM: STEP 1

1 Choose E ∈ A at random.
2 For i from 2 to r do:

Compute minimal polynomial µi of ϕi (E);
Replace E by Eµi (E). (This is still in A.)

3 Now ϕi(E) = 0 for all 2 ≤ i ≤ r .

4 If ϕ1(E) is not invertible, go back to Step 1.
5 Compute the minimal polynomial µ of ϕ1(E).

Note µ = ν + a with 0 6= a ∈ F and ν has no constant term.
6 Replace E by −ν(E)/a; now ϕ1(E) = 1A1 .
7 Now ϕj(E2 − E) = 0 for all j , i.e. E2 − E ∈ J(A).
8 If E2 − E 6= 0, replace E by Ep; then

(Ep)2 − Ep = (E2 − E)p.
9 Repeat until E2 = E ; put E1 := E . (J(A) is nilpotent.)

10 Continue with (1A − E1)A(1A − E1).
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PRESENTATIONS FOR MODULES

For a finite set Y1, . . . ,Ym put

FMA(Y1, . . . ,Ym) := free right A-module
m⊕

i=1

YiA.

For R ⊂ FMA(Y1, . . . ,Ym) write

〈Y1, . . . ,Ym | R 〉 := FMA(Y1, . . . ,Ym)/W ,

where W is the submodule generated by R.

An A-module V is finitely presented if V ∼= 〈Y1, . . . ,Ym | R 〉 for
some finite R.
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THE VECTORENUMERATOR

Let A = 〈X1, . . . ,Xn | R 〉 be finitely presented, and let
V = 〈Y1, . . . ,Ym | R′ 〉 be a finite presentation for the
A-module V .

THEOREM (LABONTÉ, LINTON)
There is an algorithm, the VectorEnumerator, which terminates,
if and only if V is finite-dimensional.
In this case, the VectorEnumerator returns an F-basis B of V ,
and representing matrices for Xi w.r.t. B.

Taking V = 〈Y | ∅ 〉, The VectorEnumerator computes the
(right) regular representation of A.

The VectorEnumerator is a linear version of the Todd-Coxeter
algorithm for finitely presented groups.
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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

COXETER GROUPS

Let M := (mij)1≤i,j≤r be a symmetric matrix with mij ∈ Z
satisfying mii = 1 and mij > 1 for i 6= j .

The group

W := W (mij) :=
〈
s1, . . . , sr | (sisj)

mij = 1
〉

group ,

is called the Coxeter group of M, the elements s1, . . . , sr are the
Coxeter generators of W .

The relations (sisj)
mij = 1 (i 6= j) are called braid relations.

In view of s2
i = 1, they can be written as sisjsi · · · = sjsisj · · ·

The finite real reflection groups are Coxeter groups.

E.g. Sn = 〈s1, . . . , sn−1 | s2
i , (sisi+1)3, (sisj)

2 for |i − j | > 1〉.
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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

THE IWAHORI-HECKE ALGEBRA

Let W be a Coxeter group with Coxeter matrix (mij).

For q ∈ F , the algebra

HF ,q(W ) :=
〈

Ts1 , . . . ,Tsr | T 2
si

= q1 + (q − 1)Tsi , braid rel’s
〉

F -alg.

is the Iwahori-Hecke algebra of W over F with parameter q.
Braid rel’s: Tsi Tsj Tsi · · · = Tsj Tsi Tsj · · · (mij factors on each side)

FACT

HF ,q(W ) has finite dimension |W |.

These Iwahori-Hecke algebras play a crucial role in the
representation theory of finite groups of Lie type.
If F = Q(u) for an indeterminate u, then HF ,u is called the
generic Iwahori-Hecke algebra associated to W .
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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

COMPLEX REFLECTION GROUPS

A complex reflection group is a finite group W generated by
pseudo reflections in GLd (C).

A pseudo reflection is an element of GLd (C) of finite order with
fixed space of dimension d − 1.

Shephard and Todd classified the irreducible complex reflection
groups. Apart from a (3-parameter) infinite family there are 34
exceptional groups.

Many of them have a Coxeter like presentation, e.g.

G25 = 〈r , s, t | r3 = s3 = t3 = 1, rsr = srs, sts = tst , rt = tr〉.

One can thus associate a Hecke algebra to them, called
Cyclotomic Hecke Algebra (Ariki, Koike; Broué, Malle).
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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

THE VECTORENUMERATOR: AN APPLICATION

W finite complex reflection group, given by a Coxeter like
presentation on S (order + braid relations)

Let u := (us,j | s ∈ S,0 ≤ j ≤ |s| − 1) be a vector of
indeterminates, F := Q(u) rational function field.

HF ,u := 〈Ts, s ∈ S | braid relations,
|s|−1∏
j=0

(Ts − us,j)〉

is the cyclotomic Hecke algebra associated to (W ,S).

Conjecture (Broué, Malle, Rouquier): dimHF ,u = |W |.
Jürgen Müller proved this for some exceptional cyclotomic
Hecke algebras using the VectorEnumerator over Q(u).

Ivan Marin and collaborators proved many more instances.
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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

HOMOMORPHISMS

Let V ,W ∈ mod-A.

Recall: An A-homomorphism from V to W is a linear map
ϕ : V →W , such that

(vϕ)a = (va)ϕ (1)

for all v ∈ V , a ∈ A.

HomA(V ,W ): set of A-homomorphism from V to W

Application (Lux and Szőke): Let V and W be
indecomposable, and let ϕ1, . . . , ϕn be a basis of HomA(V ,W ).
Then: V and W are isomorphic, if and only if one of the ϕi is an
isomorphism.
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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

COMPUTING HOMOMORPHISMS, I

HomA(V ,W ) can be computed: Equation (1) leads to a system
of linear equations.

Let A = F 〈a1, . . . , al〉 as F -algebra, dim(V ) = m, dim(W ) = n,
and let the action of A on V be given by A1, . . . ,Al ∈ F m×m and
on W by B1, . . . ,Bl ∈ F n×n.

Then

HomA(V ,W ) ∼= {U ∈ F m×n | AiU = UBi for all 1 ≤ i ≤ l}. (2)

Taking the entries of U as unknowns, (2) is a system of lmn
equations in mn unknowns.

This was the first approach taken be G. Schneider in 1990. It is
restricted to small values of l ,m,n.
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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

COMPUTING HOMOMORPHISMS, II

C. Leedham-Green and J. Cannon develop an algorithm that
performs better, implemented in MAGMA by M. Smith.

Lux and Szőke reduce the number of unknowns by using a
(short) presentation of V .

Suppose V = 〈Y1, . . . ,Yr | R 〉 with R finite, i.e. V is given by a
finite presentation.

Then

HomA(V ,W ) ∼= {ψ ∈ HomA(FMA(Y1, . . . ,Yr ),W ) | R ⊆ Ker(ψ)}.
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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

COMPUTING HOMOMORPHISMS, III

Simplest case: V = 〈Y | R 〉 is cyclic.

Let w1, . . . ,wn be a basis of W .
Let ψ ∈ HomA(YA,W ) be defined by Yψ =

∑n
j=1 ujwj with

unknown coefficients uj .
Let s = Ya ∈ R for some a ∈ A. Suppose that

wja =
n∑

k=1

ajkwk ,

i.e. A = (ajk ) ∈ F n×n is the matrix of the action of a on W .
Then sψ = 0, yields the n equations

n∑
j=1

ujajk = 0 for all k = 1, . . . ,n.
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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

DIRECT DECOMPOSITIONS

Let V ∈ mod-A. Put E := EndA(V ) := HomA(V ,V ) (this is an
F -algebra, the endomorphism ring of V ).

Suppose
V = V1 ⊕ V2 ⊕ · · · ⊕ Vl ,

with non-zero A-submodules Vi .
Let πi ∈ E denote the projection to Vi .
Then π2

i = πi , i.e., πi is an idempotent in E.
The left ideal Eπi may be identified with HomA(V ,Vi).

PROPOSITION (FITTING CORRESPONDENCE)
1 E = Eπ1 ⊕ Eπ2 ⊕ · · · ⊕ Eπl .
2 Vi

∼= Vj as A-modules, if and only if Eπi
∼= Eπj as left ideals.

3 Vi is indecomposable if and only if πi is primitive.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE V



PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

DIRECT DECOMPOSITIONS

Let V ∈ mod-A. Put E := EndA(V ) := HomA(V ,V ) (this is an
F -algebra, the endomorphism ring of V ).
Suppose

V = V1 ⊕ V2 ⊕ · · · ⊕ Vl ,

with non-zero A-submodules Vi .

Let πi ∈ E denote the projection to Vi .
Then π2

i = πi , i.e., πi is an idempotent in E.
The left ideal Eπi may be identified with HomA(V ,Vi).

PROPOSITION (FITTING CORRESPONDENCE)
1 E = Eπ1 ⊕ Eπ2 ⊕ · · · ⊕ Eπl .
2 Vi

∼= Vj as A-modules, if and only if Eπi
∼= Eπj as left ideals.

3 Vi is indecomposable if and only if πi is primitive.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE V



PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

DIRECT DECOMPOSITIONS

Let V ∈ mod-A. Put E := EndA(V ) := HomA(V ,V ) (this is an
F -algebra, the endomorphism ring of V ).
Suppose

V = V1 ⊕ V2 ⊕ · · · ⊕ Vl ,

with non-zero A-submodules Vi .
Let πi ∈ E denote the projection to Vi .
Then π2

i = πi , i.e., πi is an idempotent in E.

The left ideal Eπi may be identified with HomA(V ,Vi).

PROPOSITION (FITTING CORRESPONDENCE)
1 E = Eπ1 ⊕ Eπ2 ⊕ · · · ⊕ Eπl .
2 Vi

∼= Vj as A-modules, if and only if Eπi
∼= Eπj as left ideals.

3 Vi is indecomposable if and only if πi is primitive.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE V



PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

DIRECT DECOMPOSITIONS

Let V ∈ mod-A. Put E := EndA(V ) := HomA(V ,V ) (this is an
F -algebra, the endomorphism ring of V ).
Suppose

V = V1 ⊕ V2 ⊕ · · · ⊕ Vl ,

with non-zero A-submodules Vi .
Let πi ∈ E denote the projection to Vi .
Then π2

i = πi , i.e., πi is an idempotent in E.
The left ideal Eπi may be identified with HomA(V ,Vi).

PROPOSITION (FITTING CORRESPONDENCE)
1 E = Eπ1 ⊕ Eπ2 ⊕ · · · ⊕ Eπl .
2 Vi

∼= Vj as A-modules, if and only if Eπi
∼= Eπj as left ideals.

3 Vi is indecomposable if and only if πi is primitive.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE V



PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

DIRECT DECOMPOSITIONS

Let V ∈ mod-A. Put E := EndA(V ) := HomA(V ,V ) (this is an
F -algebra, the endomorphism ring of V ).
Suppose

V = V1 ⊕ V2 ⊕ · · · ⊕ Vl ,

with non-zero A-submodules Vi .
Let πi ∈ E denote the projection to Vi .
Then π2

i = πi , i.e., πi is an idempotent in E.
The left ideal Eπi may be identified with HomA(V ,Vi).

PROPOSITION (FITTING CORRESPONDENCE)
1 E = Eπ1 ⊕ Eπ2 ⊕ · · · ⊕ Eπl .
2 Vi

∼= Vj as A-modules, if and only if Eπi
∼= Eπj as left ideals.

3 Vi is indecomposable if and only if πi is primitive.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE V



PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

LUX AND SZŐKE’S ALGORITHM: BACKGROUND

K. Lux and M. Szőke: algorithm to find the indecomposable
components Vi of V ∈ mod-A.

Put E := EndA(V ), write ¯ : E→ E/J(E) =: Ē (natural map).

Suppose Ē = S1 ⊕ · · · ⊕ Sn is the decomposition of Ē into
simple left ideals.

Let ε′i ∈ E be non-nilpotent with Ēε̄′i = Si , 1 ≤ i ≤ n.

Then for suitable powers εi of ε′i the following are satisfied:
1 Ēε̄i = Si ,
2 Eεi is a left PIM of E,
3 E = Eε1 ⊕ · · · ⊕ Eεn.

Thus V = Vi ⊕ · · · ⊕ Vn with the indecomposables Vi = Vεi .
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Suppose Ē = S1 ⊕ · · · ⊕ Sn is the decomposition of Ē into
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PRESENTATIONS
HOMOMORPHISMS AND ENDOMORPHISMS

LUX AND SZŐKE’S ALGORITHM: OUTLINE

Here is an outline of the Lux-Szőke’s algorithm:

1 Compute E in its left regular representation.

2 Determine the composition factors of E.
3 Compute a basis for J(E).
4 Compute C1, . . . , Cn ⊆ E such that C̄i is a basis for Si .
5 Choose ε′i ∈ Ci non-nilpotent.
6 Find εi by powering up ε′i .

Remarks: 1–4 can be achieved with the MeatAxe.

Ci necessarily contains a non-nilpotent element.

εi = ε′i
m if Ker(ε′i

m) = Ker(ε′i
2m).
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4 Compute C1, . . . , Cn ⊆ E such that C̄i is a basis for Si .
5 Choose ε′i ∈ Ci non-nilpotent.
6 Find εi by powering up ε′i .

Remarks: 1–4 can be achieved with the MeatAxe.

Ci necessarily contains a non-nilpotent element.

εi = ε′i
m if Ker(ε′i

m) = Ker(ε′i
2m).
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RELATED TOPICS

More advanced topics, which I did not present in this series of
lectures include:

1 Wedderburn decomposition of group algebras

2 Integral representations and lattices (representations of
groups over the integers or rings of algebraic integers,
lattices, . . . )

3 Cohomology (low degree cohomology of groups,
cohomology rings, module varieties, . . . )

4 Representations of algebras given by quivers with relations
5 Representations of Lie algebras
6 Invariant theory
7 . . .
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Thank you for your attention!
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