# Computational Representation Theory – Lecture V

#### Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

#### Group Theory and Computational Methods ICTS-TIFR, Bangalore, 05 – 14 November 2016



#### Presentations

#### e Homomorphisms and Endomorphisms



Throughout this lecture, let *F* be a field and  $\mathfrak{A}$  a finite-dimensional *F*-algebra.

 $J(\mathfrak{A})$ : Jacobson radical of  $\mathfrak{A}$ i.e. the annihilator of the simple  $\mathfrak{A}$ -modules i.e. the intersection of the maximal right ideals of  $\mathfrak{A}$ 

mod-12: category of finite-dimensional right 21-modules

 $F\langle X_1, \ldots, X_n \rangle$ : free associative *F*-algebra in  $X_1, \ldots, X_n$ 

 $F\langle X_1, \ldots, X_n \rangle$ : free associative *F*-algebra in  $X_1, \ldots, X_n$ 

For  $R \subset F\langle X_1, \ldots, X_n \rangle$  write

$$\langle X_1,\ldots,X_n \mid R \rangle := F \langle X_1,\ldots,X_n \rangle / I,$$

where *I* is the two-sided ideal generated by *R*.

 $F\langle X_1, \ldots, X_n \rangle$ : free associative *F*-algebra in  $X_1, \ldots, X_n$ 

For  $R \subset F\langle X_1, \dots, X_n \rangle$  write  $\langle X_1, \dots, X_n \mid R \rangle := F\langle X_1, \dots, X_n \rangle / I$ ,

where *I* is the two-sided ideal generated by *R*.

Example:  $\langle X_1, X_2 \mid X_1^2, X_2^2, X_1X_2 - X_2X_1 \rangle \cong F(C_2 \times C_2).$ 

 $F\langle X_1, \ldots, X_n \rangle$ : free associative *F*-algebra in  $X_1, \ldots, X_n$ 

For  $R \subset F\langle X_1, \dots, X_n \rangle$  write  $\langle X_1, \dots, X_n \mid R \rangle := F\langle X_1, \dots, X_n \rangle / I.$ 

where I is the two-sided ideal generated by R.

Example:  $\langle X_1, X_2 | X_1^2, X_2^2, X_1X_2 - X_2X_1 \rangle \cong F(C_2 \times C_2).$ 

 $\mathfrak{A}$  is finitely presented if  $\mathfrak{A} \cong \langle X_1, \ldots, X_n \mid R \rangle$  for some finite *R*.

Suppose that *F* is finite, char(*F*) = *p*, and let  $\mathfrak{A} \leq F^{d \times d}$  be a matrix algebra generated by  $A_1, \ldots, A_l$ .

Suppose that *F* is finite, char(*F*) = *p*, and let  $\mathfrak{A} \leq F^{d \times d}$  be a matrix algebra generated by  $A_1, \ldots, A_l$ .

Carlson and Matthews have developed and implemented an algorithm that computes

• a finite presentation for  $\mathfrak{A}$ ,

Suppose that *F* is finite, char(*F*) = *p*, and let  $\mathfrak{A} \leq F^{d \times d}$  be a matrix algebra generated by  $A_1, \ldots, A_l$ .

Carlson and Matthews have developed and implemented an algorithm that computes

- $\bullet$  a finite presentation for  $\mathfrak{A}$ ,
- ${f 0}$  a matrix algebra isomorphic to the basic algebra of  ${\mathfrak A}$ ,

Suppose that *F* is finite, char(*F*) = *p*, and let  $\mathfrak{A} \leq F^{d \times d}$  be a matrix algebra generated by  $A_1, \ldots, A_l$ .

Carlson and Matthews have developed and implemented an algorithm that computes

- a finite presentation for  $\mathfrak{A}$ ,
- ${f 0}$  a matrix algebra isomorphic to the basic algebra of  ${\mathfrak A}$ ,
- $\bullet$  the Cartan matrix and the dimension of  $\mathfrak{A}$ .

Suppose that *F* is finite, char(*F*) = *p*, and let  $\mathfrak{A} \leq F^{d \times d}$  be a matrix algebra generated by  $A_1, \ldots, A_l$ .

Carlson and Matthews have developed and implemented an algorithm that computes

- a finite presentation for  $\mathfrak{A}$ ,
- ${f 0}$  a matrix algebra isomorphic to the basic algebra of  ${\mathfrak A}$ ,
- $\bullet$  the Cartan matrix and the dimension of  $\mathfrak{A}$ .

**Applications:** Homomorphisms from  $\mathfrak{A}$ , cohomology, see also Lecture 4.

Let  $S_1, \ldots, S_r$  denote the simple  $\mathfrak{A}$ -modules (up to isomorphism).

Let  $S_1, \ldots, S_r$  denote the simple  $\mathfrak{A}$ -modules (up to isomorphism).

 $\mathfrak{A}/J(\mathfrak{A}) \cong \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_r$  with homogeneous components  $\mathfrak{A}_i$ ;

Let  $S_1, \ldots, S_r$  denote the simple  $\mathfrak{A}$ -modules (up to isomorphism).

 $\mathfrak{A}/J(\mathfrak{A}) \cong \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_r$  with homogeneous components  $\mathfrak{A}_i$ ; the  $\mathfrak{A}_i$  are full matrix algebras over finite extension fields  $K_i$  of F.

Let  $S_1, \ldots, S_r$  denote the simple  $\mathfrak{A}$ -modules (up to isomorphism).

 $\mathfrak{A}/J(\mathfrak{A}) \cong \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_r$  with homogeneous components  $\mathfrak{A}_i$ ; the  $\mathfrak{A}_i$  are full matrix algebras over finite extension fields  $K_i$  of F.

In fact  $\mathfrak{A}_i$  is the image of the action homomorphism

$$\varphi_i : \mathfrak{A} \to \operatorname{End}_F(S_i).$$

 $\mathfrak{A}_i$ ,  $\varphi_i$  and  $K_i$  are constructed with the MeatAxe.

Let  $S_1, \ldots, S_r$  denote the simple  $\mathfrak{A}$ -modules (up to isomorphism).

 $\mathfrak{A}/J(\mathfrak{A}) \cong \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_r$  with homogeneous components  $\mathfrak{A}_i$ ; the  $\mathfrak{A}_i$  are full matrix algebras over finite extension fields  $K_i$  of F.

In fact  $\mathfrak{A}_i$  is the image of the action homomorphism

$$\varphi_i : \mathfrak{A} \to \operatorname{End}_F(S_i).$$

 $\mathfrak{A}_i$ ,  $\varphi_i$  and  $K_i$  are constructed with the MeatAxe.

There is a subalgebra  $\mathfrak{A}'$  of  $\mathfrak{A}$  with  $\mathfrak{A}' \cap J(\mathfrak{A}) = 0$ , so that  $\mathfrak{A}' \cong \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_r$ .

Let  $S_1, \ldots, S_r$  denote the simple  $\mathfrak{A}$ -modules (up to isomorphism).

 $\mathfrak{A}/J(\mathfrak{A}) \cong \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_r$  with homogeneous components  $\mathfrak{A}_i$ ; the  $\mathfrak{A}_i$  are full matrix algebras over finite extension fields  $K_i$  of F.

In fact  $\mathfrak{A}_i$  is the image of the action homomorphism

 $\varphi_i : \mathfrak{A} \to \operatorname{End}_F(S_i).$ 

 $\mathfrak{A}_i$ ,  $\varphi_i$  and  $K_i$  are constructed with the MeatAxe.

There is a subalgebra  $\mathfrak{A}'$  of  $\mathfrak{A}$  with  $\mathfrak{A}' \cap J(\mathfrak{A}) = 0$ , so that  $\mathfrak{A}' \cong \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_r$ .

This subalgebra is also constructed during the algorithm.

Here is a very rough outline of the algorithm:

Compute, with the MeatAxe, a sequence *E<sub>i</sub>* of pairwise orthogonal idempotents of 𝔅 such that

• 
$$\sum_i E_i = \mathbf{1}_{\mathfrak{A}},$$
  
•  $\varphi_j(E_i) = \delta_{ij}\mathbf{1}_{\mathfrak{A}_i}.$ 

Here is a very rough outline of the algorithm:

• Compute, with the MeatAxe, a sequence  $E_i$  of pairwise orthogonal idempotents of  $\mathfrak{A}$  such that

• 
$$\sum_i E_i = \mathbf{1}_{\mathfrak{A}},$$
  
•  $\varphi_j(E_i) = \delta_{ij}\mathbf{1}_{\mathfrak{A}_i}.$ 

• For each *i*, compute, with the MeatAxe, a sequence  $e_{ij}$  of pairwise orthogonal primitive idempotents with  $E_i = \sum_i e_{ij}$ .

Here is a very rough outline of the algorithm:

- Compute, with the MeatAxe, a sequence *E<sub>i</sub>* of pairwise orthogonal idempotents of 𝔅 such that
  - $\sum_{i} E_{i} = 1_{\mathfrak{A}},$ •  $\varphi_{j}(E_{i}) = \delta_{ij} 1_{\mathfrak{A}_{i}}.$
- For each *i*, compute, with the MeatAxe, a sequence  $e_{ij}$  of pairwise orthogonal primitive idempotents with  $E_i = \sum_i e_{ij}$ .
- So Construct elements  $\beta_i \in e_{i1} \mathfrak{A} e_{i1}, \tau_i$  in  $E_i \mathfrak{A} E_i$  such that  $\langle \beta_i, \tau_i \rangle \cong \mathfrak{A}_i$ ; this gives generators for  $\mathfrak{A}'$ .

Here is a very rough outline of the algorithm:

- Compute, with the MeatAxe, a sequence  $E_i$  of pairwise orthogonal idempotents of  $\mathfrak{A}$  such that
  - $\sum_{i} E_{i} = \mathbf{1}_{\mathfrak{A}},$ •  $\varphi_{j}(E_{i}) = \delta_{ij}\mathbf{1}_{\mathfrak{A}_{i}}.$
- For each *i*, compute, with the MeatAxe, a sequence  $e_{ij}$  of pairwise orthogonal primitive idempotents with  $E_i = \sum_i e_{ij}$ .
- So Construct elements  $\beta_i \in e_{i1} \mathfrak{A} e_{i1}, \tau_i$  in  $E_i \mathfrak{A} E_i$  such that  $\langle \beta_i, \tau_i \rangle \cong \mathfrak{A}_i$ ; this gives generators for  $\mathfrak{A}'$ .
- Determine ideal generators for  $J(\mathfrak{A})$ .

Here is a very rough outline of the algorithm:

- Compute, with the MeatAxe, a sequence  $E_i$  of pairwise orthogonal idempotents of  $\mathfrak{A}$  such that
  - $\sum_{i} E_{i} = \mathbf{1}_{\mathfrak{A}},$ •  $\varphi_{j}(E_{i}) = \delta_{ij}\mathbf{1}_{\mathfrak{A}_{i}}.$
- For each *i*, compute, with the MeatAxe, a sequence  $e_{ij}$  of pairwise orthogonal primitive idempotents with  $E_i = \sum_i e_{ij}$ .
- So Construct elements  $\beta_i \in e_{i1} \mathfrak{A} e_{i1}, \tau_i$  in  $E_i \mathfrak{A} E_i$  such that  $\langle \beta_i, \tau_i \rangle \cong \mathfrak{A}_i$ ; this gives generators for  $\mathfrak{A}'$ .
- Determine ideal generators for  $J(\mathfrak{A})$ .
- Oetermine the relations.

Here is a very rough outline of the algorithm:

- Compute, with the MeatAxe, a sequence  $E_i$  of pairwise orthogonal idempotents of  $\mathfrak{A}$  such that
  - $\sum_{i} E_{i} = 1_{\mathfrak{A}},$ •  $\varphi_{j}(E_{i}) = \delta_{ij} 1_{\mathfrak{A}_{i}}.$
- For each *i*, compute, with the MeatAxe, a sequence  $e_{ij}$  of pairwise orthogonal primitive idempotents with  $E_i = \sum_i e_{ij}$ .
- So Construct elements  $\beta_i \in e_{i1} \mathfrak{A} e_{i1}, \tau_i$  in  $E_i \mathfrak{A} E_i$  such that  $\langle \beta_i, \tau_i \rangle \cong \mathfrak{A}_i$ ; this gives generators for  $\mathfrak{A}'$ .
- Determine ideal generators for  $J(\mathfrak{A})$ .
- O Determine the relations.

Put  $e = \sum_{i} e_{i1}$ . Then  $e \mathfrak{A} e$  is the basic algebra of  $\mathfrak{A}$ .

Here is a very rough outline of the algorithm:

- Compute, with the MeatAxe, a sequence *E<sub>i</sub>* of pairwise orthogonal idempotents of 𝔅 such that
  - $\sum_{i} E_{i} = 1_{\mathfrak{A}},$ •  $\varphi_{j}(E_{i}) = \delta_{ij} 1_{\mathfrak{A}_{i}}.$
- For each *i*, compute, with the MeatAxe, a sequence  $e_{ij}$  of pairwise orthogonal primitive idempotents with  $E_i = \sum_i e_{ij}$ .
- So Construct elements  $\beta_i \in e_{i1} \mathfrak{A} e_{i1}, \tau_i$  in  $E_i \mathfrak{A} E_i$  such that  $\langle \beta_i, \tau_i \rangle \cong \mathfrak{A}_i$ ; this gives generators for  $\mathfrak{A}'$ .
- Determine ideal generators for  $J(\mathfrak{A})$ .
- Oetermine the relations.

Put  $e = \sum_{i} e_{i1}$ . Then  $e \mathfrak{A} e$  is the basic algebra of  $\mathfrak{A}$ .

Determine matrix representation of  $e \mathfrak{A} e$  on  $F^{1 \times d} e$ .

- Choose  $E \in \mathfrak{A}$  at random.
- e For *i* from 2 to *r* do:
  - Compute minimal polynomial  $\mu_i$  of  $\varphi_i(E)$ ;
  - Replace *E* by  $E\mu_i(E)$ . (This is still in  $\mathfrak{A}$ .)
- Solution Now  $\varphi_i(E) = 0$  for all  $2 \le i \le r$ .

- Choose  $E \in \mathfrak{A}$  at random.
- For *i* from 2 to *r* do:
  - Compute minimal polynomial  $\mu_i$  of  $\varphi_i(E)$ ;
  - Replace *E* by  $E\mu_i(E)$ . (This is still in  $\mathfrak{A}$ .)
- Solution Now  $\varphi_i(E) = 0$  for all  $2 \le i \le r$ .
- If  $\varphi_1(E)$  is not invertible, go back to Step 1.

- Choose  $E \in \mathfrak{A}$  at random.
- For *i* from 2 to *r* do:
  - Compute minimal polynomial  $\mu_i$  of  $\varphi_i(E)$ ;
  - Replace *E* by  $E\mu_i(E)$ . (This is still in  $\mathfrak{A}$ .)
- Solution Now  $\varphi_i(E) = 0$  for all  $2 \le i \le r$ .
- If  $\varphi_1(E)$  is not invertible, go back to Step 1.
- Sompute the minimal polynomial μ of φ<sub>1</sub>(E).
  Note μ = ν + a with 0 ≠ a ∈ F and ν has no constant term.

- Choose  $E \in \mathfrak{A}$  at random.
- For *i* from 2 to *r* do:
  - Compute minimal polynomial  $\mu_i$  of  $\varphi_i(E)$ ;
  - Replace *E* by  $E\mu_i(E)$ . (This is still in  $\mathfrak{A}$ .)
- Solution Now  $\varphi_i(E) = 0$  for all  $2 \le i \le r$ .
- If  $\varphi_1(E)$  is not invertible, go back to Step 1.
- Sompute the minimal polynomial μ of φ<sub>1</sub>(E).
  Note μ = ν + a with 0 ≠ a ∈ F and ν has no constant term.
- Replace *E* by  $-\nu(E)/a$ ; now  $\varphi_1(E) = \mathbf{1}_{\mathfrak{A}_1}$ .
- Now  $\varphi_j(E^2 E) = 0$  for all j, i.e.  $E^2 E \in J(\mathfrak{A})$ .

- Choose  $E \in \mathfrak{A}$  at random.
- For *i* from 2 to *r* do:
  - Compute minimal polynomial  $\mu_i$  of  $\varphi_i(E)$ ;
  - Replace *E* by  $E\mu_i(E)$ . (This is still in  $\mathfrak{A}$ .)
- Solution Now  $\varphi_i(E) = 0$  for all  $2 \le i \le r$ .
- If  $\varphi_1(E)$  is not invertible, go back to Step 1.
- Sompute the minimal polynomial μ of φ<sub>1</sub>(E).
  Note μ = ν + a with 0 ≠ a ∈ F and ν has no constant term.
- Replace *E* by  $-\nu(E)/a$ ; now  $\varphi_1(E) = \mathbf{1}_{\mathfrak{A}_1}$ .
- Now  $\varphi_j(E^2 E) = 0$  for all j, i.e.  $E^2 E \in J(\mathfrak{A})$ .
- If  $E^2 E \neq 0$ , replace *E* by  $E^p$ ; then  $(E^p)^2 E^p = (E^2 E)^p$ .
- **9** Repeat until  $E^2 = E$ ; put  $E_1 := E$ . ( $J(\mathfrak{A})$  is nilpotent.)

- Choose  $E \in \mathfrak{A}$  at random.
- e For *i* from 2 to *r* do:
  - Compute minimal polynomial  $\mu_i$  of  $\varphi_i(E)$ ;
  - Replace *E* by  $E\mu_i(E)$ . (This is still in  $\mathfrak{A}$ .)
- Solution Now  $\varphi_i(E) = 0$  for all  $2 \le i \le r$ .
- If  $\varphi_1(E)$  is not invertible, go back to Step 1.
- Sompute the minimal polynomial μ of φ<sub>1</sub>(E).
  Note μ = ν + a with 0 ≠ a ∈ F and ν has no constant term.
- Replace E by  $-\nu(E)/a$ ; now  $\varphi_1(E) = 1_{\mathfrak{A}_1}$ .
- Now  $\varphi_j(E^2 E) = 0$  for all j, i.e.  $E^2 E \in J(\mathfrak{A})$ .
- If  $E^2 E \neq 0$ , replace *E* by  $E^p$ ; then  $(E^p)^2 E^p = (E^2 E)^p$ .
- **9** Repeat until  $E^2 = E$ ; put  $E_1 := E$ . ( $J(\mathfrak{A})$  is nilpotent.)
- **(**) Continue with  $(1_{\mathfrak{A}} E_1)\mathfrak{A}(1_{\mathfrak{A}} E_1)$ .

## **PRESENTATIONS FOR MODULES**

For a finite set  $Y_1, \ldots, Y_m$  put

$$\mathsf{FM}_{\mathfrak{A}}(Y_1,\ldots,Y_m) := \text{free right }\mathfrak{A}\text{-module } \bigoplus_{i=1}^m Y_i\mathfrak{A}.$$

**PRESENTATIONS FOR MODULES** 

For a finite set  $Y_1, \ldots, Y_m$  put

$$\mathsf{FM}_{\mathfrak{A}}(Y_1,\ldots,Y_m) := \text{free right }\mathfrak{A}\text{-module } \bigoplus_{i=1}^m Y_i\mathfrak{A}.$$

For  $R \subset \mathsf{FM}_{\mathfrak{A}}(Y_1, \ldots, Y_m)$  write

$$\langle Y_1,\ldots,Y_m \mid R \rangle := \mathsf{FM}_{\mathfrak{A}}(Y_1,\ldots,Y_m)/W,$$

where W is the submodule generated by R.

**PRESENTATIONS FOR MODULES** 

For a finite set  $Y_1, \ldots, Y_m$  put

$$\mathsf{FM}_{\mathfrak{A}}(Y_1,\ldots,Y_m) := \text{free right }\mathfrak{A}\text{-module } \bigoplus_{i=1}^m Y_i\mathfrak{A}.$$

For  $R \subset \mathsf{FM}_\mathfrak{A}(Y_1, \ldots, Y_m)$  write

$$\langle Y_1,\ldots,Y_m \mid R \rangle := \mathsf{FM}_{\mathfrak{A}}(Y_1,\ldots,Y_m)/W,$$

where W is the submodule generated by R.

An  $\mathfrak{A}$ -module *V* is finitely presented if  $V \cong \langle Y_1, \ldots, Y_m | R \rangle$  for some finite *R*.

### THE VECTOR ENUMERATOR

Let  $\mathfrak{A} = \langle X_1, \dots, X_n \mid R \rangle$  be finitely presented, and let  $V = \langle Y_1, \dots, Y_m \mid R' \rangle$  be a finite presentation for the  $\mathfrak{A}$ -module *V*.

### THE VECTORENUMERATOR

Let  $\mathfrak{A} = \langle X_1, \dots, X_n \mid R \rangle$  be finitely presented, and let  $V = \langle Y_1, \dots, Y_m \mid R' \rangle$  be a finite presentation for the  $\mathfrak{A}$ -module *V*.

#### THEOREM (LABONTÉ, LINTON)

There is an algorithm, the VectorEnumerator, which terminates, if and only if V is finite-dimensional. In this case, the VectorEnumerator returns an F-basis  $\mathcal{B}$  of V, and representing matrices for  $X_i$  w.r.t.  $\mathcal{B}$ .
### THE VECTORENUMERATOR

Let  $\mathfrak{A} = \langle X_1, \dots, X_n \mid R \rangle$  be finitely presented, and let  $V = \langle Y_1, \dots, Y_m \mid R' \rangle$  be a finite presentation for the  $\mathfrak{A}$ -module *V*.

#### THEOREM (LABONTÉ, LINTON)

There is an algorithm, the VectorEnumerator, which terminates, if and only if V is finite-dimensional. In this case, the VectorEnumerator returns an F-basis  $\mathcal{B}$  of V, and representing matrices for  $X_i$  w.r.t.  $\mathcal{B}$ .

Taking  $V = \langle Y | \emptyset \rangle$ , The VectorEnumerator computes the (right) regular representation of  $\mathfrak{A}$ .

## THE VECTORENUMERATOR

Let  $\mathfrak{A} = \langle X_1, \dots, X_n \mid R \rangle$  be finitely presented, and let  $V = \langle Y_1, \dots, Y_m \mid R' \rangle$  be a finite presentation for the  $\mathfrak{A}$ -module *V*.

#### THEOREM (LABONTÉ, LINTON)

There is an algorithm, the VectorEnumerator, which terminates, if and only if V is finite-dimensional. In this case, the VectorEnumerator returns an F-basis  $\mathcal{B}$  of V, and representing matrices for  $X_i$  w.r.t.  $\mathcal{B}$ .

Taking  $V = \langle Y | \emptyset \rangle$ , The VectorEnumerator computes the (right) regular representation of  $\mathfrak{A}$ .

The VectorEnumerator is a linear version of the Todd-Coxeter algorithm for finitely presented groups.

Let  $M := (m_{ij})_{1 \le i,j \le r}$  be a symmetric matrix with  $m_{ij} \in \mathbb{Z}$  satisfying  $m_{ii} = 1$  and  $m_{ij} > 1$  for  $i \ne j$ .

Let  $M := (m_{ij})_{1 \le i,j \le r}$  be a symmetric matrix with  $m_{ij} \in \mathbb{Z}$  satisfying  $m_{ii} = 1$  and  $m_{ij} > 1$  for  $i \ne j$ .

The group

$${\it W}:={\it W}(m_{ij}):=ig\langle s_1,\ldots,s_r\mid (s_is_j)^{m_{ij}}=1ig
angle_{{
m group}}\,,$$

is called the Coxeter group of M, the elements  $s_1, \ldots, s_r$  are the Coxeter generators of W.

Let  $M := (m_{ij})_{1 \le i,j \le r}$  be a symmetric matrix with  $m_{ij} \in \mathbb{Z}$  satisfying  $m_{ii} = 1$  and  $m_{ij} > 1$  for  $i \ne j$ .

The group

$${\it W}:={\it W}({\it m}_{\it ij}):=ig\langle {\it s}_1,\ldots,{\it s}_r\mid ({\it s}_{\it i}{\it s}_{\it j})^{{\it m}_{\it ij}}=1ig
angle_{
m group},$$

is called the Coxeter group of M, the elements  $s_1, \ldots, s_r$  are the Coxeter generators of W.

The relations  $(s_i s_j)^{m_{ij}} = 1$   $(i \neq j)$  are called braid relations.

Let  $M := (m_{ij})_{1 \le i,j \le r}$  be a symmetric matrix with  $m_{ij} \in \mathbb{Z}$  satisfying  $m_{ii} = 1$  and  $m_{ij} > 1$  for  $i \ne j$ .

The group

$${\it W}:={\it W}({\it m}_{\it ij}):=ig\langle {\it s}_1,\ldots,{\it s}_r\mid ({\it s}_{\it i}{\it s}_{\it j})^{{\it m}_{\it ij}}=1ig
angle_{
m group},$$

is called the Coxeter group of M, the elements  $s_1, \ldots, s_r$  are the Coxeter generators of W.

The relations  $(s_i s_j)^{m_{ij}} = 1$   $(i \neq j)$  are called braid relations.

In view of  $s_i^2 = 1$ , they can be written as  $s_i s_j s_i \cdots = s_j s_i s_j \cdots$ 

Let  $M := (m_{ij})_{1 \le i,j \le r}$  be a symmetric matrix with  $m_{ij} \in \mathbb{Z}$  satisfying  $m_{ii} = 1$  and  $m_{ij} > 1$  for  $i \ne j$ .

The group

$${\it W}:={\it W}({\it m}_{\it ij}):=ig\langle {\it s}_1,\ldots,{\it s}_r\mid ({\it s}_{\it i}{\it s}_{\it j})^{{\it m}_{\it ij}}=1ig
angle_{
m group},$$

is called the Coxeter group of M, the elements  $s_1, \ldots, s_r$  are the Coxeter generators of W.

The relations  $(s_i s_j)^{m_{ij}} = 1$   $(i \neq j)$  are called braid relations.

In view of  $s_i^2 = 1$ , they can be written as  $s_i s_j s_i \cdots = s_j s_i s_j \cdots$ 

The finite real reflection groups are Coxeter groups.

Let  $M := (m_{ij})_{1 \le i,j \le r}$  be a symmetric matrix with  $m_{ij} \in \mathbb{Z}$  satisfying  $m_{ii} = 1$  and  $m_{ij} > 1$  for  $i \ne j$ .

The group

$${\it W}:={\it W}({\it m}_{\it ij}):=ig\langle {\it s}_1,\ldots,{\it s}_r\mid ({\it s}_{\it i}{\it s}_{\it j})^{{\it m}_{\it ij}}=1ig
angle_{
m group},$$

is called the Coxeter group of M, the elements  $s_1, \ldots, s_r$  are the Coxeter generators of W.

The relations  $(s_i s_i)^{m_{ij}} = 1$   $(i \neq j)$  are called braid relations.

In view of  $s_i^2 = 1$ , they can be written as  $s_i s_j s_i \cdots = s_j s_i s_j \cdots$ 

The finite real reflection groups are Coxeter groups.

E.g. 
$$S_n = \langle s_1, \dots, s_{n-1} | s_i^2, (s_i s_{i+1})^3, (s_i s_j)^2 \text{ for } |i-j| > 1 \rangle.$$

Let *W* be a Coxeter group with Coxeter matrix  $(m_{ij})$ .

Let *W* be a Coxeter group with Coxeter matrix  $(m_{ij})$ . For  $q \in F$ , the algebra

$$\mathcal{H}_{F,q}(\mathcal{W}) := \left\langle \mathit{T}_{s_1}, \ldots, \mathit{T}_{s_r} \mid \mathit{T}_{s_i}^2 = q\mathsf{1} + (q-\mathsf{1})\mathit{T}_{s_i}, ext{ braid rel's } 
ight
angle_{F ext{-alg.}}$$

is the Iwahori-Hecke algebra of W over F with parameter q.

Let *W* be a Coxeter group with Coxeter matrix  $(m_{ij})$ . For  $q \in F$ , the algebra

$$H_{F,q}(W) := \left\langle \mathit{T}_{s_1}, \ldots, \mathit{T}_{s_r} \mid \mathit{T}_{s_i}^2 = q\mathsf{1} + (q-\mathsf{1})\mathit{T}_{s_i}, ext{ braid rel's } 
ight
angle_{F ext{-alg.}}$$

is the **Iwahori-Hecke algebra** of *W* over *F* with parameter *q*. Braid rel's:  $T_{s_i}T_{s_j}T_{s_i}\cdots = T_{s_j}T_{s_i}T_{s_j}\cdots (m_{ij} \text{ factors on each side})$ 

Let *W* be a Coxeter group with Coxeter matrix  $(m_{ij})$ . For  $q \in F$ , the algebra

$$\mathcal{H}_{F,q}(\mathcal{W}) := \left\langle \mathit{T}_{s_1}, \ldots, \mathit{T}_{s_r} \mid \mathit{T}_{s_i}^2 = q\mathsf{1} + (q-\mathsf{1})\mathit{T}_{s_i}, ext{ braid rel's } 
ight
angle_{F ext{-alg.}}$$

is the **Iwahori-Hecke algebra** of *W* over *F* with parameter *q*. Braid rel's:  $T_{s_i}T_{s_j}T_{s_i}\cdots = T_{s_j}T_{s_i}T_{s_j}\cdots (m_{ij} \text{ factors on each side})$ 

#### Fact

 $H_{F,q}(W)$  has **finite** dimension |W|.

Let *W* be a Coxeter group with Coxeter matrix  $(m_{ij})$ . For  $q \in F$ , the algebra

$$H_{F,q}(W) := \left\langle \mathit{T}_{s_1}, \ldots, \mathit{T}_{s_r} \mid \mathit{T}_{s_i}^2 = q\mathbf{1} + (q-1)\mathit{T}_{s_i}, ext{ braid rel's } 
ight
angle_{F ext{-alg.}}$$

is the **Iwahori-Hecke algebra** of *W* over *F* with parameter *q*. Braid rel's:  $T_{s_i}T_{s_j}T_{s_i}\cdots = T_{s_j}T_{s_i}T_{s_j}\cdots (m_{ij} \text{ factors on each side})$ 

#### Fact

 $H_{F,q}(W)$  has **finite** dimension |W|.

These Iwahori-Hecke algebras play a crucial role in the representation theory of finite groups of Lie type.

Let *W* be a Coxeter group with Coxeter matrix  $(m_{ij})$ . For  $q \in F$ , the algebra

$$\mathcal{H}_{F,q}(\mathcal{W}) := \left\langle \mathit{T}_{s_1}, \ldots, \mathit{T}_{s_r} \mid \mathit{T}_{s_i}^2 = q\mathsf{1} + (q-\mathsf{1})\mathit{T}_{s_i}, ext{ braid rel's } 
ight
angle_{F ext{-alg.}}$$

is the **Iwahori-Hecke algebra** of *W* over *F* with parameter *q*. Braid rel's:  $T_{s_i}T_{s_j}T_{s_i}\cdots = T_{s_j}T_{s_i}T_{s_j}\cdots (m_{ij} \text{ factors on each side})$ 

#### Fact

 $H_{F,q}(W)$  has **finite** dimension |W|.

These Iwahori-Hecke algebras play a crucial role in the representation theory of finite groups of Lie type. If  $F = \mathbb{Q}(\mathbf{u})$  for an indeterminate  $\mathbf{u}$ , then  $H_{F,\mathbf{u}}$  is called the generic Iwahori-Hecke algebra associated to W.

A complex reflection group is a finite group *W* generated by pseudo reflections in  $GL_d(\mathbb{C})$ .

A complex reflection group is a finite group *W* generated by pseudo reflections in  $GL_d(\mathbb{C})$ .

A pseudo reflection is an element of  $GL_d(\mathbb{C})$  of finite order with fixed space of dimension d - 1.

A complex reflection group is a finite group *W* generated by pseudo reflections in  $GL_d(\mathbb{C})$ .

A pseudo reflection is an element of  $GL_d(\mathbb{C})$  of finite order with fixed space of dimension d - 1.

Shephard and Todd classified the irreducible complex reflection groups. Apart from a (3-parameter) infinite family there are 34 exceptional groups.

A complex reflection group is a finite group *W* generated by pseudo reflections in  $GL_d(\mathbb{C})$ .

A pseudo reflection is an element of  $GL_d(\mathbb{C})$  of finite order with fixed space of dimension d - 1.

Shephard and Todd classified the irreducible complex reflection groups. Apart from a (3-parameter) infinite family there are 34 exceptional groups.

Many of them have a Coxeter like presentation, e.g.

$$G_{25} = \langle r, s, t \mid r^3 = s^3 = t^3 = 1, rsr = srs, sts = tst, rt = tr \rangle.$$

A complex reflection group is a finite group *W* generated by pseudo reflections in  $GL_d(\mathbb{C})$ .

A pseudo reflection is an element of  $GL_d(\mathbb{C})$  of finite order with fixed space of dimension d - 1.

Shephard and Todd classified the irreducible complex reflection groups. Apart from a (3-parameter) infinite family there are 34 exceptional groups.

Many of them have a Coxeter like presentation, e.g.

$$G_{25} = \langle r, s, t | r^3 = s^3 = t^3 = 1, rsr = srs, sts = tst, rt = tr \rangle.$$

One can thus associate a Hecke algebra to them, called Cyclotomic Hecke Algebra (Ariki, Koike; Broué, Malle).

W finite complex reflection group, given by a Coxeter like presentation on S (order + braid relations)

W finite complex reflection group, given by a Coxeter like presentation on S (order + braid relations)

Let  $\mathbf{u} := (u_{s,j} \mid s \in S, 0 \le j \le |s| - 1)$  be a vector of indeterminates,  $F := \mathbb{Q}(\mathbf{u})$  rational function field.

W finite complex reflection group, given by a Coxeter like presentation on S (order + braid relations)

Let  $\mathbf{u} := (u_{s,j} \mid s \in S, 0 \le j \le |s| - 1)$  be a vector of indeterminates,  $F := \mathbb{Q}(\mathbf{u})$  rational function field.

$$H_{F,\mathbf{u}} := \langle T_s, s \in S \mid \text{ braid relations}, \prod_{j=0}^{|s|-1} (T_s - u_{s,j}) \rangle$$

is the cyclotomic Hecke algebra associated to (W, S).

W finite complex reflection group, given by a Coxeter like presentation on S (order + braid relations)

Let  $\mathbf{u} := (u_{s,j} \mid s \in S, 0 \le j \le |s| - 1)$  be a vector of indeterminates,  $F := \mathbb{Q}(\mathbf{u})$  rational function field.

$$H_{F,\mathbf{u}} := \langle T_s, s \in S \mid \text{ braid relations}, \prod_{j=0}^{|s|-1} (T_s - u_{s,j}) 
angle$$

is the cyclotomic Hecke algebra associated to (W, S). Conjecture (Broué, Malle, Rouquier): dim $H_{F,u} = |W|$ .

W finite complex reflection group, given by a Coxeter like presentation on S (order + braid relations)

Let  $\mathbf{u} := (u_{s,j} \mid s \in S, 0 \le j \le |s| - 1)$  be a vector of indeterminates,  $F := \mathbb{Q}(\mathbf{u})$  rational function field.

$$H_{F,\mathbf{u}} := \langle T_s, s \in S \mid \text{ braid relations}, \prod_{j=0}^{|s|-1} (T_s - u_{s,j}) 
angle$$

is the cyclotomic Hecke algebra associated to (W, S).

**Conjecture** (Broué, Malle, Rouquier): dim $H_{F,u} = |W|$ .

Jürgen Müller proved this for some exceptional cyclotomic Hecke algebras using the VectorEnumerator over  $\mathbb{Q}(\mathbf{u})$ .

W finite complex reflection group, given by a Coxeter like presentation on S (order + braid relations)

Let  $\mathbf{u} := (u_{s,j} \mid s \in S, 0 \le j \le |s| - 1)$  be a vector of indeterminates,  $F := \mathbb{Q}(\mathbf{u})$  rational function field.

$$H_{F,\mathbf{u}} := \langle T_s, s \in S \mid \text{ braid relations}, \prod_{j=0}^{|s|-1} (T_s - u_{s,j}) 
angle$$

is the cyclotomic Hecke algebra associated to (W, S).

**Conjecture** (Broué, Malle, Rouquier): dim $H_{F,u} = |W|$ .

Jürgen Müller proved this for some exceptional cyclotomic Hecke algebras using the VectorEnumerator over  $\mathbb{Q}(\mathbf{u})$ .

Ivan Marin and collaborators proved many more instances.

Let  $V, W \in \text{mod-}\mathfrak{A}$ .

Let  $V, W \in \text{mod-}\mathfrak{A}$ .

Recall: An  $\mathfrak{A}$ -homomorphism from V to W is a linear map  $\varphi: V \to W$ , such that

$$(\mathbf{v}\varphi)\mathfrak{a} = (\mathbf{v}\mathfrak{a})\varphi \tag{1}$$

for all  $v \in V$ ,  $\mathfrak{a} \in \mathfrak{A}$ .

Let  $V, W \in \text{mod-}\mathfrak{A}$ .

Recall: An  $\mathfrak{A}$ -homomorphism from V to W is a linear map  $\varphi: V \to W$ , such that

$$(\mathbf{v}\varphi)\mathfrak{a} = (\mathbf{v}\mathfrak{a})\varphi \tag{1}$$

for all  $v \in V$ ,  $\mathfrak{a} \in \mathfrak{A}$ .

Hom<sub> $\mathfrak{A}$ </sub>(*V*, *W*): set of  $\mathfrak{A}$ -homomorphism from *V* to *W* 

Let  $V, W \in \text{mod-}\mathfrak{A}$ .

Recall: An  $\mathfrak{A}$ -homomorphism from V to W is a linear map  $\varphi: V \to W$ , such that

$$(\mathbf{v}\varphi)\mathfrak{a} = (\mathbf{v}\mathfrak{a})\varphi \tag{1}$$

for all  $v \in V$ ,  $\mathfrak{a} \in \mathfrak{A}$ .

Hom<sub> $\mathfrak{A}$ </sub>(*V*, *W*): set of  $\mathfrak{A}$ -homomorphism from *V* to *W* 

**Application** (Lux and Szőke): Let *V* and *W* be indecomposable, and let  $\varphi_1, \ldots, \varphi_n$  be a basis of Hom<sub> $\mathfrak{A}$ </sub>(*V*, *W*).

Let  $V, W \in \text{mod-}\mathfrak{A}$ .

Recall: An  $\mathfrak{A}$ -homomorphism from V to W is a linear map  $\varphi: V \to W$ , such that

$$(\mathbf{v}\varphi)\mathfrak{a} = (\mathbf{v}\mathfrak{a})\varphi \tag{1}$$

for all  $v \in V$ ,  $\mathfrak{a} \in \mathfrak{A}$ .

Hom<sub> $\mathfrak{A}$ </sub>(*V*, *W*): set of  $\mathfrak{A}$ -homomorphism from *V* to *W* 

**Application** (Lux and Szőke): Let *V* and *W* be indecomposable, and let  $\varphi_1, \ldots, \varphi_n$  be a basis of  $\text{Hom}_{\mathfrak{A}}(V, W)$ . Then: *V* and *W* are isomorphic, if and only if one of the  $\varphi_i$  is an isomorphism.

Hom<sub> $\mathfrak{A}$ </sub>(*V*, *W*) can be computed: Equation (1) leads to a system of linear equations.

Hom<sub> $\mathfrak{A}$ </sub>(*V*, *W*) can be computed: Equation (1) leads to a system of linear equations.

Let  $\mathfrak{A} = F\langle \mathfrak{a}_1, \ldots, \mathfrak{a}_l \rangle$  as *F*-algebra, dim(*V*) = *m*, dim(*W*) = *n*, and let the action of  $\mathfrak{A}$  on *V* be given by  $A_1, \ldots, A_l \in F^{m \times m}$  and on *W* by  $B_1, \ldots, B_l \in F^{n \times n}$ .

Hom<sub> $\mathfrak{A}$ </sub>(*V*, *W*) can be computed: Equation (1) leads to a system of linear equations.

Let  $\mathfrak{A} = F\langle \mathfrak{a}_1, \ldots, \mathfrak{a}_l \rangle$  as *F*-algebra, dim(*V*) = *m*, dim(*W*) = *n*, and let the action of  $\mathfrak{A}$  on *V* be given by  $A_1, \ldots, A_l \in F^{m \times m}$  and on *W* by  $B_1, \ldots, B_l \in F^{n \times n}$ .

Then

 $\operatorname{Hom}_{\mathfrak{A}}(V,W) \cong \{U \in F^{m \times n} \mid A_i U = UB_i \text{ for all } 1 \le i \le l\}.$ (2)

Hom<sub> $\mathfrak{A}$ </sub>(*V*, *W*) can be computed: Equation (1) leads to a system of linear equations.

Let  $\mathfrak{A} = F\langle \mathfrak{a}_1, \ldots, \mathfrak{a}_l \rangle$  as *F*-algebra, dim(*V*) = *m*, dim(*W*) = *n*, and let the action of  $\mathfrak{A}$  on *V* be given by  $A_1, \ldots, A_l \in F^{m \times m}$  and on *W* by  $B_1, \ldots, B_l \in F^{n \times n}$ .

Then

$$\operatorname{Hom}_{\mathfrak{A}}(V,W) \cong \{U \in F^{m \times n} \mid A_i U = UB_i \text{ for all } 1 \le i \le l\}.$$
(2)

Taking the entries of U as unknowns, (2) is a system of *Imn* equations in *mn* unknowns.

Hom<sub> $\mathfrak{A}$ </sub>(*V*, *W*) can be computed: Equation (1) leads to a system of linear equations.

Let  $\mathfrak{A} = F\langle \mathfrak{a}_1, \ldots, \mathfrak{a}_l \rangle$  as *F*-algebra, dim(*V*) = *m*, dim(*W*) = *n*, and let the action of  $\mathfrak{A}$  on *V* be given by  $A_1, \ldots, A_l \in F^{m \times m}$  and on *W* by  $B_1, \ldots, B_l \in F^{n \times n}$ .

Then

$$\operatorname{Hom}_{\mathfrak{A}}(V,W) \cong \{U \in F^{m \times n} \mid A_i U = UB_i \text{ for all } 1 \le i \le l\}.$$
(2)

Taking the entries of U as unknowns, (2) is a system of *Imn* equations in *mn* unknowns.

This was the first approach taken be G. Schneider in 1990. It is restricted to small values of I, m, n.

C. Leedham-Green and J. Cannon develop an algorithm that performs better, implemented in MAGMA by M. Smith.
C. Leedham-Green and J. Cannon develop an algorithm that performs better, implemented in MAGMA by M. Smith.

Lux and Szőke reduce the number of unknowns by using a (short) presentation of V.

C. Leedham-Green and J. Cannon develop an algorithm that performs better, implemented in MAGMA by M. Smith.

Lux and Szőke reduce the number of unknowns by using a (short) presentation of *V*.

Suppose  $V = \langle Y_1, ..., Y_r | R \rangle$  with *R* finite, i.e. *V* is given by a finite presentation.

C. Leedham-Green and J. Cannon develop an algorithm that performs better, implemented in MAGMA by M. Smith.

Lux and Szőke reduce the number of unknowns by using a (short) presentation of V.

Suppose  $V = \langle Y_1, ..., Y_r | R \rangle$  with *R* finite, i.e. *V* is given by a finite presentation.

Then

 $\operatorname{Hom}_{\mathfrak{A}}(V,W) \cong \{\psi \in \operatorname{Hom}_{\mathfrak{A}}(\operatorname{FM}_{\mathfrak{A}}(Y_{1},\ldots,Y_{r}),W) \mid R \subseteq \operatorname{Ker}(\psi)\}.$ 

Simplest case:  $V = \langle Y | R \rangle$  is cyclic.

Simplest case:  $V = \langle Y | R \rangle$  is cyclic. Let  $w_1, \ldots, w_n$  be a basis of W.

Simplest case:  $V = \langle Y | R \rangle$  is cyclic. Let  $w_1, \ldots, w_n$  be a basis of W. Let  $\psi \in \text{Hom}_{\mathfrak{A}}(Y\mathfrak{A}, W)$  be defined by  $Y\psi = \sum_{j=1}^n u_j w_j$  with unknown coefficients  $u_j$ .

Simplest case:  $V = \langle Y | R \rangle$  is cyclic. Let  $w_1, \ldots, w_n$  be a basis of W. Let  $\psi \in \text{Hom}_{\mathfrak{A}}(Y\mathfrak{A}, W)$  be defined by  $Y\psi = \sum_{j=1}^n u_j w_j$  with unknown coefficients  $u_j$ .

Let  $s = Y \mathfrak{a} \in R$  for some  $\mathfrak{a} \in \mathfrak{A}$ . Suppose that

$$w_j\mathfrak{a}=\sum_{k=1}^n a_{jk}w_k,$$

i.e.  $A = (a_{jk}) \in F^{n \times n}$  is the matrix of the action of  $\mathfrak{a}$  on W.

Simplest case:  $V = \langle Y | R \rangle$  is cyclic. Let  $w_1, \ldots, w_n$  be a basis of W. Let  $\psi \in \text{Hom}_{\mathfrak{A}}(Y\mathfrak{A}, W)$  be defined by  $Y\psi = \sum_{j=1}^n u_j w_j$  with unknown coefficients  $u_j$ .

Let  $s = Y \mathfrak{a} \in R$  for some  $\mathfrak{a} \in \mathfrak{A}$ . Suppose that

$$w_j\mathfrak{a}=\sum_{k=1}^n a_{jk}w_k,$$

i.e.  $A = (a_{jk}) \in F^{n \times n}$  is the matrix of the action of a on W. Then  $s\psi = 0$ , yields the *n* equations

$$\sum_{j=1}^{n} u_j a_{jk} = 0 \qquad \text{for all } k = 1, \dots, n.$$

Let  $V \in \text{mod-}\mathfrak{A}$ . Put  $\mathfrak{E} := \text{End}_{\mathfrak{A}}(V) := \text{Hom}_{\mathfrak{A}}(V, V)$  (this is an *F*-algebra, the endomorphism ring of *V*).

Let  $V \in \text{mod-}\mathfrak{A}$ . Put  $\mathfrak{E} := \text{End}_{\mathfrak{A}}(V) := \text{Hom}_{\mathfrak{A}}(V, V)$  (this is an *F*-algebra, the endomorphism ring of *V*).

Suppose

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_l,$$

with non-zero  $\mathfrak{A}$ -submodules  $V_i$ .

Let  $V \in \text{mod-}\mathfrak{A}$ . Put  $\mathfrak{E} := \text{End}_{\mathfrak{A}}(V) := \text{Hom}_{\mathfrak{A}}(V, V)$  (this is an *F*-algebra, the endomorphism ring of *V*).

Suppose

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_l,$$

with non-zero  $\mathfrak{A}$ -submodules  $V_i$ .

Let  $\pi_i \in \mathfrak{E}$  denote the projection to  $V_i$ . Then  $\pi_i^2 = \pi_i$ , i.e.,  $\pi_i$  is an idempotent in  $\mathfrak{E}$ .

Let  $V \in \text{mod-}\mathfrak{A}$ . Put  $\mathfrak{E} := \text{End}_{\mathfrak{A}}(V) := \text{Hom}_{\mathfrak{A}}(V, V)$  (this is an *F*-algebra, the endomorphism ring of *V*).

Suppose

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_l,$$

with non-zero  $\mathfrak{A}$ -submodules  $V_i$ .

Let  $\pi_i \in \mathfrak{E}$  denote the projection to  $V_i$ . Then  $\pi_i^2 = \pi_i$ , i.e.,  $\pi_i$  is an idempotent in  $\mathfrak{E}$ .

The left ideal  $\mathfrak{E}_{\pi_i}$  may be identified with  $\operatorname{Hom}_{\mathfrak{A}}(V, V_i)$ .

Let  $V \in \text{mod-}\mathfrak{A}$ . Put  $\mathfrak{E} := \text{End}_{\mathfrak{A}}(V) := \text{Hom}_{\mathfrak{A}}(V, V)$  (this is an *F*-algebra, the endomorphism ring of *V*).

Suppose

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_l,$$

with non-zero  $\mathfrak{A}$ -submodules  $V_i$ .

Let  $\pi_i \in \mathfrak{E}$  denote the projection to  $V_i$ . Then  $\pi_i^2 = \pi_i$ , i.e.,  $\pi_i$  is an idempotent in  $\mathfrak{E}$ .

The left ideal  $\mathfrak{E}_{\pi_i}$  may be identified with  $\operatorname{Hom}_{\mathfrak{A}}(V, V_i)$ .

#### **PROPOSITION (FITTING CORRESPONDENCE)**

 $\bullet \ \mathfrak{E} = \mathfrak{E}\pi_1 \oplus \mathfrak{E}\pi_2 \oplus \cdots \oplus \mathfrak{E}\pi_l.$ 

**2**  $V_i \cong V_j$  as  $\mathfrak{A}$ -modules, if and only if  $\mathfrak{E}\pi_i \cong \mathfrak{E}\pi_j$  as left ideals.

• V<sub>i</sub> is indecomposable if and only if  $\pi_i$  is primitive.

K. Lux and M. Szőke: algorithm to find the indecomposable components  $V_i$  of  $V \in \text{mod-}\mathfrak{A}$ .

K. Lux and M. Szőke: algorithm to find the indecomposable components  $V_i$  of  $V \in \text{mod-}\mathfrak{A}$ .

Put  $\mathfrak{E} := \operatorname{End}_{\mathfrak{A}}(V)$ , write  $\bar{} : \mathfrak{E} \to \mathfrak{E}/J(\mathfrak{E}) =: \overline{\mathfrak{E}}$  (natural map).

K. Lux and M. Szőke: algorithm to find the indecomposable components  $V_i$  of  $V \in \text{mod-}\mathfrak{A}$ .

Put  $\mathfrak{E} := \operatorname{End}_{\mathfrak{A}}(V)$ , write  $\bar{}: \mathfrak{E} \to \mathfrak{E}/J(\mathfrak{E}) =: \overline{\mathfrak{E}}$  (natural map).

Suppose  $\overline{\mathfrak{E}} = S_1 \oplus \cdots \oplus S_n$  is the decomposition of  $\overline{\mathfrak{E}}$  into simple left ideals.

K. Lux and M. Szőke: algorithm to find the indecomposable components  $V_i$  of  $V \in \text{mod-}\mathfrak{A}$ .

Put  $\mathfrak{E} := \operatorname{End}_{\mathfrak{A}}(V)$ , write  $\bar{}: \mathfrak{E} \to \mathfrak{E}/J(\mathfrak{E}) =: \overline{\mathfrak{E}}$  (natural map).

Suppose  $\overline{\mathfrak{E}} = S_1 \oplus \cdots \oplus S_n$  is the decomposition of  $\overline{\mathfrak{E}}$  into simple left ideals.

Let  $\varepsilon'_i \in \mathfrak{E}$  be non-nilpotent with  $\bar{\mathfrak{E}}\bar{\varepsilon}'_i = S_i$ ,  $1 \leq i \leq n$ .

K. Lux and M. Szőke: algorithm to find the indecomposable components  $V_i$  of  $V \in \text{mod-}\mathfrak{A}$ .

Put  $\mathfrak{E} := \operatorname{End}_{\mathfrak{A}}(V)$ , write  $\bar{}: \mathfrak{E} \to \mathfrak{E}/J(\mathfrak{E}) =: \overline{\mathfrak{E}}$  (natural map).

Suppose  $\overline{\mathfrak{E}} = S_1 \oplus \cdots \oplus S_n$  is the decomposition of  $\overline{\mathfrak{E}}$  into simple left ideals.

Let  $\varepsilon'_i \in \mathfrak{E}$  be non-nilpotent with  $\overline{\mathfrak{E}}\overline{\varepsilon}'_i = S_i$ ,  $1 \leq i \leq n$ .

Then for suitable powers  $\varepsilon_i$  of  $\varepsilon'_i$  the following are satisfied:

$$\bullet \ \bar{\mathfrak{E}}\bar{\varepsilon}_i=S_i,$$

- **2**  $\mathfrak{E}_{\varepsilon_i}$  is a left PIM of  $\mathfrak{E}$ ,

K. Lux and M. Szőke: algorithm to find the indecomposable components  $V_i$  of  $V \in \text{mod-}\mathfrak{A}$ .

Put  $\mathfrak{E} := \operatorname{End}_{\mathfrak{A}}(V)$ , write  $\bar{}: \mathfrak{E} \to \mathfrak{E}/J(\mathfrak{E}) =: \overline{\mathfrak{E}}$  (natural map).

Suppose  $\overline{\mathfrak{E}} = S_1 \oplus \cdots \oplus S_n$  is the decomposition of  $\overline{\mathfrak{E}}$  into simple left ideals.

Let  $\varepsilon'_i \in \mathfrak{E}$  be non-nilpotent with  $\overline{\mathfrak{E}}\overline{\varepsilon}'_i = S_i$ ,  $1 \leq i \leq n$ .

Then for suitable powers  $\varepsilon_i$  of  $\varepsilon'_i$  the following are satisfied:

$$\bullet \ \bar{\mathfrak{E}}\bar{\varepsilon}_i=S_i,$$

- **2**  $\mathfrak{E}_{\varepsilon_i}$  is a left PIM of  $\mathfrak{E}$ ,
- $e = \mathfrak{E}\varepsilon_1 \oplus \cdots \oplus \mathfrak{E}\varepsilon_n.$

Thus  $V = V_i \oplus \cdots \oplus V_n$  with the indecomposables  $V_i = V \varepsilon_i$ .

Here is an outline of the Lux-Szőke's algorithm:

● Compute € in its left regular representation.

- Compute & in its left regular representation.
- Obtermine the composition factors of E.

- Compute & in its left regular representation.
- Obtermine the composition factors of E.
- Compute a basis for  $J(\mathfrak{E})$ .

- Compute & in its left regular representation.
- ❷ Determine the composition factors of 𝔅.
- Sompute a basis for  $J(\mathfrak{E})$ .
- Compute  $C_1, \ldots, C_n \subseteq \mathfrak{E}$  such that  $\overline{C}_i$  is a basis for  $S_i$ .

- Compute & in its left regular representation.
- ❷ Determine the composition factors of 𝔅.
- Sompute a basis for  $J(\mathfrak{E})$ .
- **9** Compute  $C_1, \ldots, C_n \subseteq \mathfrak{E}$  such that  $\overline{C}_i$  is a basis for  $S_i$ .
- Schoose  $\varepsilon'_i \in C_i$  non-nilpotent.

- Compute & in its left regular representation.
- Determine the composition factors of E.
- Sompute a basis for  $J(\mathfrak{E})$ .
- Compute  $C_1, \ldots, C_n \subseteq \mathfrak{E}$  such that  $\overline{C}_i$  is a basis for  $S_i$ .
- Schoose  $\varepsilon'_i \in C_i$  non-nilpotent.
- Find  $\varepsilon_i$  by powering up  $\varepsilon'_i$ .

Here is an outline of the Lux-Szőke's algorithm:

- Compute & in its left regular representation.
- Obtermine the composition factors of E.
- Sompute a basis for  $J(\mathfrak{E})$ .
- **9** Compute  $C_1, \ldots, C_n \subseteq \mathfrak{E}$  such that  $\overline{C}_i$  is a basis for  $S_i$ .
- Solution Choose  $\varepsilon'_i \in \mathcal{C}_i$  non-nilpotent.
- Find  $\varepsilon_i$  by powering up  $\varepsilon'_i$ .

**Remarks:** 1–4 can be achieved with the MeatAxe.

Here is an outline of the Lux-Szőke's algorithm:

- Compute & in its left regular representation.
- Obtermine the composition factors of E.
- Sompute a basis for  $J(\mathfrak{E})$ .
- **9** Compute  $C_1, \ldots, C_n \subseteq \mathfrak{E}$  such that  $\overline{C}_i$  is a basis for  $S_i$ .
- Schoose  $\varepsilon'_i \in C_i$  non-nilpotent.
- Find  $\varepsilon_i$  by powering up  $\varepsilon'_i$ .

**Remarks:** 1–4 can be achieved with the MeatAxe.

 $C_i$  necessarily contains a non-nilpotent element.

Here is an outline of the Lux-Szőke's algorithm:

- Compute & in its left regular representation.
- Obtermine the composition factors of E.
- Sompute a basis for  $J(\mathfrak{E})$ .
- Compute  $C_1, \ldots, C_n \subseteq \mathfrak{E}$  such that  $\overline{C}_i$  is a basis for  $S_i$ .
- So Choose  $\varepsilon'_i \in C_i$  non-nilpotent.
- Find  $\varepsilon_i$  by powering up  $\varepsilon'_i$ .

**Remarks:** 1–4 can be achieved with the MeatAxe.

 $C_i$  necessarily contains a non-nilpotent element.

$$\varepsilon_i = {\varepsilon'_i}^m$$
 if Ker $({\varepsilon'_i}^m) = \text{Ker}({\varepsilon'_i}^{2m})$ .

More advanced topics, which I did not present in this series of lectures include:

• Wedderburn decomposition of group algebras

- Wedderburn decomposition of group algebras
- Integral representations and lattices (representations of groups over the integers or rings of algebraic integers, lattices, ...)

- Wedderburn decomposition of group algebras
- Integral representations and lattices (representations of groups over the integers or rings of algebraic integers, lattices, ...)
- Cohomology (low degree cohomology of groups, cohomology rings, module varieties, ...)

- Wedderburn decomposition of group algebras
- Integral representations and lattices (representations of groups over the integers or rings of algebraic integers, lattices, ...)
- Cohomology (low degree cohomology of groups, cohomology rings, module varieties, ...)
- Representations of algebras given by quivers with relations

- Wedderburn decomposition of group algebras
- Integral representations and lattices (representations of groups over the integers or rings of algebraic integers, lattices, ...)
- Cohomology (low degree cohomology of groups, cohomology rings, module varieties, ...)
- Representations of algebras given by quivers with relations
- Representations of Lie algebras

- Wedderburn decomposition of group algebras
- Integral representations and lattices (representations of groups over the integers or rings of algebraic integers, lattices, ...)
- Cohomology (low degree cohomology of groups, cohomology rings, module varieties, ...)
- Representations of algebras given by quivers with relations
- Representations of Lie algebras
- Invariant theory
- 0 ...

# REFERENCES

- J. F. CARLSON AND G. MATTHEWS, Generators and relations for matrix algebras, *J. Algebra* 300 (2006), 134–159.
- K. LUX AND M. SZŐKE, Computing Homomorphism Spaces between Modules over Finite Dimensional Algebras, *Experim. Math.* **12** (2003), 91–98.
- K. LUX AND M. SZŐKE, Computing Decompositions of Modules over Finite-Dimensional Algebras, *Experim. Math.* 16 (2007), 1–6.

# Thank you for your attention!

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE V