Coclass theory

Go to Automorphisms

▶ Go to End

Heiko Dietrich (heiko.dietrich@monash.edu)

Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results
Resources					
				Cognited Mental LONDON MATHEMATICAL SOCIETY MONO NEW SERIES + 27	GRAPHS
The structure of groups C. R. Leedham-Green, S. M Oxford Science Publication	of prime-po AcKay is (2002)	ower ord	ler	The Structure Groups of	of
and some recent papers on	coclass gra	phs		Prime Power Or	der

(Eick, Leedham-Green, Newman, O'Brien, D.)

Classifying *p*-groups by order

Recall:

order	#	order	#
1	1	128	2,328
2	1	256	56,092
4	2	512	10,494,213
8	5	1024	49,487,365,422
16	14	2048	>1,774,274,116,992,170
32	51		
64	267		

"The precise structure of *p*-groups is too complex for the human intellect." (Leedham-Green & McKay 2002)

Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results
Maximal class					

Maximal class

A p-group G of order p^n has maximal class if it has nilpotency class n-1.

- Groups of maximal class have been investigated in detail. (Wiman 1954, Blackburn 1958, Leedham-Green & McKay 1976–1984, Fernández-Alcober 1995, Vera-López et al. 1995–2008)
- The 2- and 3-groups of maximal class are classified.
 (Blackburn: Description by finitely many parametrised presentations.)
- The 5-groups of maximal class are investigated in detail. (Leedham-Green & McKay, Newman 1990, D., Eick & Feichtenschlager 2007)
- For $p \ge 7$ such a classification is open.

Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results
Coclass					

Maximal class is an important special case in coclass theory:

Coclass

A p-group G of order p^n and nilpotency class c has coclass n - c.

Thus:

• the *p*-groups of maximal class are the *p*-groups of coclass 1,

o coclass is an isomorphism invariant.

Strategy: Investigate the *p*-groups of a fixed coclass. (Leedham-Green & Newman 1980)

Leedham-Green & Newman proposed five **Coclass Conjectures A–E** on the structure of the p-groups of a fixed coclass. Their proof was a first milestone in **coclass theory** and provided a deep insight in the structure of p-groups.

Coclass Theo	ory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results	
Coclass							
Coclass Conje	ctures						
Theorem A:	There is a to of coclass class 2 and	function $f(p)$ r has a norm index at mo	(p,r) such mal subgost $f(p,r)$	that every p group of nilg ^).	p-group potency		
Theorem B:	There is a solution of coclass of	function $g(p)$	(r) such d length	that every p at most $g(p$	p-group, r).		
Theorem C:	Every pro- _ł (= inverse l	group of co imit of finite	oclass r p-groups	is solvable. of coclass r .)		
Theorem D:	There are of infinite pro	only finitely $-p$ groups of	many isc coclass	omorphism t r.	ypes of		
Theorem E:	There are of solvable inf	only finitely inite pro- p g	many isc groups of	morphism t coclass r .	ypes of		
(Leedham-Green	(Leedham-Green 1994, Shalev 1994)						

Coclass	Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results
Coclass	graph					

Main approach since 1999: analyse the coclass graph $\mathcal{G}(p,r)$.

Vertices: Isomorphism type reps of finite *p*-groups of coclass *r*.

Edges: $G \to H$ if and only if $G \cong H/\gamma_{cl(H)}(H)$; then |H| = p|G|.

Examples:

Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results
oclass graph					

The infinite paths in $\mathcal{G}(p, r)$:

• There is 1-to-1 correspondence between the **infinite pro**-p groups of coclass r (up to isom.) and the *maximal* infinite paths in $\mathcal{G}(p, r)$.

It follows from the Coclass Theorems:

- The infinite paths are *well-understood* and finite in number!
- Only finitely many groups are not connected to an infinite path.

Number of infinite paths in $\mathcal{G}(p, r)$:

• p arbitrary and r = 1 (Blackburn): 1

- p = 2 and r = 2, 3 (Newman & O'Brien): 5, 54
- p = 3 and r = 2, 3, 4 (Eick): 16, $\geq 1271, \geq 137299952383$

General structure of coclass graphs

 $\mathcal{G}(p,r)$ can be partitioned into a finite subgraph and finitely many infinite trees each having a unique infinite path starting at its root. These trees are the **coclass trees** of $\mathcal{G}(p,r)$.

Let \mathcal{T} be a coclass tree in $\mathcal{G}(p,r)$ with corresponding pro-p group S: • The groups $S_n = S/\gamma_n(S)$ with $n \ge u$ form the **mainline** of \mathcal{T} . • The finite subtrees \mathcal{B}_n are the **branches** of \mathcal{T} .

The graph $\mathcal{G}(2,2)$

The five coclass trees of $\mathcal{G}(2,2)$: (Newman & O'Brien 1996)

- The branches are isomorphic with periodicity 1 and 2, respectively.
- The roots have order $2^6, 2^6, 2^4, 2^4$, and 2^5 , respectively.
- There are 19 groups which do not lie in any of these trees.

For arbitrary *r***:** branches of trees in $\mathcal{G}(2, r)$ have bounded depths. This does not hold for odd primes, except (p, r) = (3, 1).

Heiko Dietrich (heiko.dietrich@monash.edu)

Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results			
Based on significant computation with the p -group generation algorithm:								
Central Conjecture • $\mathcal{G}(p,r)$ can be described	oed by a finit	e subgra	aph and <i>perio</i>	odic patterns.				
• The <i>p</i> -groups of cocla	ass r can be	classified	d.					

(~> description by finitely many parametrised presentations)

Example: the groups in $\mathcal{G}(2,1)$ of order $2^n \ge 16$

$$D_{2^{n}} = \operatorname{Pc}\langle a, b \mid a^{2^{n-1}} = b^{2} = 1, a^{b} = a^{-1} \rangle,$$

$$SD_{2^{n}} = \operatorname{Pc}\langle a, b \mid a^{2^{n-1}} = b^{2} = 1, a^{b} = a^{2^{n-2}-1} \rangle,$$

$$Q_{2^{n}} = \operatorname{Pc}\langle a, b \mid a^{2^{n-1}} = 1, b^{2} = a^{2^{n-2}}, a^{b} = a^{-1} \rangle.$$

Known results:

- The Central Conjecture is proved for p = 2. (Newman & O'Brien 1999, du Sautoy 2001, Eick & Leedham-Green 2008)
- Applications for p = 2: Some invariants of the groups can be described in a uniform way. (Eick 2006, 2008)
- For odd primes: Only partial results are known.

 \mathcal{T} coclass tree with branches $\mathcal{B}_u, \mathcal{B}_{u+1}, \ldots$ The **pruned branch** $\mathcal{B}_n(k)$ is the subtree of \mathcal{B}_n induced by groups of depth at most k in \mathcal{B}_n .

Theorem (du Sautoy 2001, Eick & Leedham-Green 2008) There exist integers $f = f(\mathcal{T}, k)$ and $d = d(\mathcal{T})$ such that for all $n \ge f$

 $\mathcal{B}_n(k) \cong \mathcal{B}_{n+d}(k).$

Eick & Leedham-Green determined d, an upper bound for f, and proved: **Theorem (Eick & Leedham-Green 2008)**

The infinitely many groups in $\mathcal{B}_n(k)$, $n \ge u$, can be described by finitely many parametrised presentations.

These theorems prove the Central Conjecture for p = 2; they are **not** sufficient to prove it for odd primes.

Heiko Dietrich (heiko.dietrich@monash.edu)

OC	366	heory
		2

Maximal Class

Coclass

Periodicity II

For odd primes:

Some coclass trees contain sequences of branches $\mathcal{B}_i, \mathcal{B}_{i+d}, \mathcal{B}_{i+2d}, \ldots$ with strictly increasing depths.

Problem:

Describe the growth of these branches.

Conjecture (based on experiments for $\mathcal{G}(5,1)$ and $\mathcal{G}(3,2)$)

If e and n are large enough, then for every group G at depth e in \mathcal{B}_n there exists a group H at depth e - d in \mathcal{B}_{n-d} such that $\mathcal{D}(G) \cong \mathcal{D}(H)$.

This conjecture is rather *vague* and only very little is known; some important results for $\mathcal{G}(p, 1)$ exist.

Coclass Theory

Maximal Class

Coclass

Coclass Graph

Central Conjecture

Some results

Conjecture W

Conjecture W (Eick, Leedham-Green, Newman, O'Brien 2013) Find a such that $\mathcal{R}(h) \simeq \mathcal{R}_{int}(h)$ for all i

Fix k and ℓ such that $\mathcal{B}_{\ell}(k) \cong \mathcal{B}_{\ell+jd}(k)$ for all j. Let $\overline{K} \in \mathcal{B}_{\ell}$ be the group corresponding to $K \in \mathcal{B}_{\ell+jd}$. There is a map ν from the groups at depth k in \mathcal{B}_{ℓ} to the groups at depth k-d in \mathcal{B}_{ℓ} such that the picture holds... in particular, $\mathcal{D}(G) \cong \mathcal{D}(H)$

Heiko Dietrich (heiko.dietrich@monash.edu)

Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results

Important subtree: skeleton groups

Let \mathcal{T} be a coclass tree in $\mathcal{G}(p,r)$, with associated pro-p group S.

Problem: the branches of \mathcal{T} are usually pretty "thick" and "wide".

Skeleton groups (for split pro-p groups)

Let $S = P \ltimes T$ with $T \cong (\mathbb{Z}_p^d, +)$ and uniserial series $T = T_0 > T_1 > T_2 > \ldots$ Let $\gamma \colon T \land T \twoheadrightarrow T_n$ be P-module hom and $m \ge n$ such that $\gamma(T_n \land T) \le T_m$. Let $T_{\gamma,m} = (T/T_m, \circ)$ with $(a + T_m) \circ (b + T_m) = a + b + \frac{1}{2}\gamma(a \land b) + T_m$; then $C_{\gamma,m} = P \ltimes T_{\gamma,m}$ is the skeleton group defined by γ and m.

Theorem (Leedham-Green 1994)

If G is in \mathcal{T} , then there is $N \leq G$ with order bounded by r and p, such that G/N is a "skeleton group"; the structure of skeleton groups is easier to understand, and the "skeleton of \mathcal{T} " is a significant subtree of \mathcal{T} .

Shalev ("Problem 3", 1994): Classify the 5-groups of maximal class.

The graph $\mathcal{G}(5,1)$ has a unique coclass tree $\mathcal{T}(5)$; write $\mathcal{T}_k = \mathcal{B}_k(k-4)$.

Theorem (D. 2010)

The pruned branches \mathcal{T}_k of $\mathcal{T}(5)$ can be described by a finite subgraph and the periodicities of type I & II. The groups in these pruned branches can be classified by finitely many parametrised presentations with ≤ 2 integer parameters.

Conjecture: The difference $\mathcal{B}_{10+4x} \setminus \mathcal{T}_{10+4x}$ is the green part.

Heiko Dietrich (heiko.dietrich@monash.edu)

$\mathcal{G}(5,1)$: Periodicity classes

The origins of the periodicity classes in T_i with $14 \le i \le 17$:

Heiko Dietrich (heiko.dietrich@monash.edu)

Skip stuff

The graph $\mathcal{G}(3,2)$

Theorem (Eick, Leedham-Green, Newman, O'Brien 2013) Conjecture W holds for the skeletons in $\mathcal{G}(3,2)$.

Moreover:

- $\circ~\mathcal{G}(3,2)$ has 16 coclass trees, but only 4 have unbounded depths
- some coclass trees admit both, subsequences of branches of bounded depths and subsequences of branches of unbounded depths
- occurrence of "exceptional isomorphisms" between skeleton groups
- the "twigs" are described conjecturally

Coclass

$\mathcal{G}(3,2)$: skeletons

Skeletons of the split pro-3 group:

$\mathcal{G}(3,2)$: skeletons

Skeletons of the three non-split pro-3 groups; skeleton only exists if class of root is congruent 0 modulo 3:

Know periodicity results

Most results and conjectures are motivated by **computer experiments**, in particular, with the *p*-group generation algorithm.

What is known so far:

- periodicity of type I for all graphs $\mathcal{G}(p,r)$,
- significant *local* results on periodicity of type II for the graphs $\mathcal{G}(p,1)$,
- most of $\mathcal{G}(5,1)$ and the skeleton structure of $\mathcal{G}(3,2)$

Comments on periodicity of type II:

- all known results consider pruned branches
- o most results consider only skeleton groups
- $\circ~\mathcal{G}(5,1)$ and $\mathcal{G}(3,2)$ only have branches of finite width
- D. & Eick recently considered $\mathcal{G}(p,1)$ in more detail (2016)

There is still a lot to do – we're working on it ... 🤐

skin stuf

Coclass Theory	Maximal Class	Coclass	Coclass Graph	Central Conjecture	Some results
mouse woosellter and					

Now consider $\mathcal{G}(p,1)$ with $p \geq 7$.

Let \mathcal{T} be the coclass tree with branches \mathcal{B}_j and *bodies* $\mathcal{T}_j = \mathcal{B}_j(j-2p+8)$.

Motivated by the known periodicity results for $\mathcal{G}(p,1)$ and **promising computer** experiments, Bettina Eick and I studied the following subtrees of \mathcal{T} :

Definition

Let \mathcal{B}_{j}^{*} be the subtree of \mathcal{B}_{j} consisting of all groups whose automorphism group order is divisible by p-1. Let \mathcal{S}_{j}^{*} be the subtree of the body \mathcal{T}_{j} consisting of all *skeleton groups* whose automorphism group order is divisible by p-1.

(Note: p-1 is essentially the largest possible p'-part of that aut-group order.)

 Coclass Theory
 Maximal Class
 Coclass
 Coclass Graph
 Central Conjecture

Conjectured structure of S_1^* **for** p = 7, 11

- For p = 7: • depth j - 6• 2 groups $G_{j,1}, G_{j,2}$ at depth 1 • 7-fold ramifications at levels • $2 + 6\mathbb{N}$ in path of $G_{j,1}$ • $4 + 6\mathbb{N}$ in path of $G_{j,2}$ For p = 11: • depth j - 14
 - ullet 4 groups $G_{j,1},\ldots,G_{j,4}$ at depth $oldsymbol{1}$
 - 11-fold ramifications at levels
 - $\{2,4,6\}+10\mathbb{N}$ in path of $G_{j,1}$
 - $\{2,4,8\}+10\mathbb{N}$ in path of $G_{j,2}$
 - $\{2, 6, 8\} + 10\mathbb{N}$ in path of $G_{j,3}$
 - $\{4,6,8\}+10\mathbb{N}$ in path of $G_{j,4}$

Some results

p-groups of maximal class with 'large' aut-group

Let d = p - 1 and $\ell = (p - 3)/2$. Theorem (2016)

- The skeleton \mathcal{S}_n^* has ℓ groups $G_{n,1},\ldots,G_{n,\ell}$ at depth 1.
- Ramifications are always p-fold and occur exactly at depth

$$\{2,4,\ldots,d-2\}\setminus\{d-2i\} + d\mathbb{N}$$

in the path of $G_{n,i}$, for $i = 1, \ldots, \ell$.

The proof is heavily based on number theory and existing results for maximal class groups (19 pages, submitted 2016).

Conjectural description of twigs:

structure of twigs depends only on i, on $(e \mod d)$, and on $(n \mod d)$.

This is the first periodicity result supporting Conjecture W in the context of coclass trees with unbounded width.

The End

The end ...

▶ Go to Coclass

▶ Go to Overview

The End

The End

..... looking back:

- motivation
- 2 pc presentations
- p-quotient algorithm
- *p*-group generation
- isomorphism test
- automorphism groups
- coclass theory

