Coclass theory

Go to Automorphisms

- Go to End

Resources

The structure of groups of prime-power order C. R. Leedham-Green, S. McKay

Oxford Science Publications (2002)
and some recent papers on coclass graphs (Eick, Leedham-Green, Newman, O'Brien, D.)

Classifying p-groups by order

Recall:

order	$\#$
1	1
2	1
4	2
8	5
16	14
32	51
64	267

order	$\#$
128	2,328
256	56,092
512	$10,494,213$
1024	$49,487,365,422$
2048	$>1,774,274,116,992,170$

"The precise structure of p-groups is too complex for the human intellect." (Leedham-Green \& McKay 2002)

Maximal class

Maximal class

A p-group G of order p^{n} has maximal class if it has nilpotency class $n-1$.

- Groups of maximal class have been investigated in detail. (Wiman 1954, Blackburn 1958, Leedham-Green \& McKay 1976-1984, Fernández-Alcober 1995, Vera-López et al. 1995-2008)
- The 2 - and 3 -groups of maximal class are classified. (Blackburn: Description by finitely many parametrised presentations.)
- The 5 -groups of maximal class are investigated in detail. (Leedham-Green \& McKay, Newman 1990, D., Eick \& Feichtenschlager 2007)
- For $p \geq 7$ such a classification is open.

Coclass

Maximal class is an important special case in coclass theory:

Coclass

A p-group G of order p^{n} and nilpotency class c has coclass $n-c$.

Thus:

- the p-groups of maximal class are the p-groups of coclass 1 ,
- coclass is an isomorphism invariant.

Strategy: Investigate the p-groups of a fixed coclass. (Leedham-Green \& Newman 1980)

Leedham-Green \& Newman proposed five Coclass Conjectures A-E on the structure of the p-groups of a fixed coclass. Their proof was a first milestone in coclass theory and provided a deep insight in the structure of p-groups.

Coclass

Coclass Conjectures

Theorem A: There is a function $f(p, r)$ such that every p-group of coclass r has a normal subgroup of nilpotency class 2 and index at most $f(p, r)$.

Theorem B: There is a function $g(p, r)$ such that every p-group of coclass r has derived length at most $g(p, r)$.

Theorem C: Every pro- p group of coclass r is solvable. (= inverse limit of finite p-groups of coclass r.)

Theorem D: There are only finitely many isomorphism types of infinite pro- p groups of coclass r.

Theorem E: There are only finitely many isomorphism types of solvable infinite pro- p groups of coclass r.
(Leedham-Green 1994, Shalev 1994)

Coclass graph

Main approach since 1999: analyse the coclass graph $\mathcal{G}(p, r)$.
Vertices: Isomorphism type reps of finite p-groups of coclass r.
Edges: $\quad G \rightarrow H$ if and only if $G \cong H / \gamma_{\mathrm{cl}(H)}(H)$; then $|H|=p|G|$.

Examples: $\mathcal{G}(2,1) \quad \mathcal{G}(3,1)$

Coclass graph

The infinite paths in $\mathcal{G}(p, r)$:

- There is 1 -to- 1 correspondence between the infinite pro- p groups of coclass r (up to isom.) and the maximal infinite paths in $\mathcal{G}(p, r)$.

It follows from the Coclass Theorems:

- The infinite paths are well-understood and finite in number!
- Only finitely many groups are not connected to an infinite path.

Number of infinite paths in $\mathcal{G}(p, r)$:

- p arbitrary and $r=1$ (Blackburn): 1
- $p=2$ and $r=2,3$ (Newman \& O'Brien): 5,54
- $p=3$ and $r=2,3,4$ (Eick): 16, $\geq 1271, \geq 137299952383$

General structure of coclass graphs

$\mathcal{G}(p, r)$ can be partitioned into a finite subgraph and finitely many infinite trees each having a unique infinite path starting at its root.
These trees are the coclass trees of $\mathcal{G}(p, r)$.

Let \mathcal{T} be a coclass tree in $\mathcal{G}(p, r)$ with corresponding pro- p group S :

- The groups $S_{n}=S / \gamma_{n}(S)$ with $n \geq u$ form the mainline of \mathcal{T}.
- The finite subtrees \mathcal{B}_{n} are the branches of \mathcal{T}.

The graph $\mathcal{G}(2,2)$

The five coclass trees of $\mathcal{G}(2,2)$:
(Newman \& O'Brien 1996)

- The branches are isomorphic with periodicity 1 and 2 , respectively.
- The roots have order $2^{6}, 2^{6}, 2^{4}, 2^{4}$, and 2^{5}, respectively.
- There are 19 groups which do not lie in any of these trees.

For arbitrary r : branches of trees in $\mathcal{G}(2, r)$ have bounded depths.
This does not hold for odd primes, except $(p, r)=(3,1)$.

Two branches in $\mathcal{G}(5,1)$

Based on significant computation with the p-group generation algorithm:

Central Conjecture

- $\mathcal{G}(p, r)$ can be described by a finite subgraph and periodic patterns.
- The p-groups of coclass r can be classified.
(\rightsquigarrow description by finitely many parametrised presentations)

Example: the groups in $\mathcal{G}(2,1)$ of order $2^{n} \geq 16$

$$
\begin{aligned}
D_{2^{n}}=\operatorname{Pc}\left\langle a, b \quad \mid \quad a^{2^{n-1}}=b^{2}=1, a^{b}=a^{-1}\right\rangle, \\
S D_{2^{n}}=\operatorname{Pc}\left\langle a, b \quad \mid \quad a^{2^{n-1}}=b^{2}=1, a^{b}=a^{2^{n-2}-1}\right\rangle, \\
Q_{2^{n}}=\operatorname{Pc}\left\langle a, b \quad \mid \quad a^{2^{n-1}}=1, b^{2}=a^{2^{n-2}}, a^{b}=a^{-1}\right\rangle .
\end{aligned}
$$

Known results:

- The Central Conjecture is proved for $p=2$.
(Newman \& O'Brien 1999, du Sautoy 2001, Eick \& Leedham-Green 2008)
- Applications for $p=2$: Some invariants of the groups can be described in a uniform way. (Eick 2006, 2008)
- For odd primes: Only partial results are known.

Periodicity

\mathcal{T} coclass tree with branches $\mathcal{B}_{u}, \mathcal{B}_{u+1}, \ldots$
The pruned branch $\mathcal{B}_{n}(k)$ is the subtree of \mathcal{B}_{n} induced by groups of depth at most k in \mathcal{B}_{n}.

Theorem (du Sautoy 2001, Eick \& Leedham-Green 2008)
There exist integers $f=f(\mathcal{T}, k)$ and $d=d(\mathcal{T})$ such that for all $n \geq f$

$$
\mathcal{B}_{n}(k) \cong \mathcal{B}_{n+d}(k) .
$$

Eick \& Leedham-Green determined d, an upper bound for f, and proved: Theorem (Eick \& Leedham-Green 2008)
The infinitely many groups in $\mathcal{B}_{n}(k), n \geq u$, can be described by finitely many parametrised presentations.

These theorems prove the Central Conjecture for $p=2$; they are not sufficient to prove it for odd primes.

Periodicity II

For odd primes: Some coclass trees contain sequences of branches $\mathcal{B}_{i}, \mathcal{B}_{i+d}, \mathcal{B}_{i+2 d}, \ldots$ with strictly increasing depths.

Problem:

Describe the growth of these branches.

Conjecture (based on experiments for $\mathcal{G}(5,1)$ and $\mathcal{G}(3,2)$)

If e and n are large enough, then for every group G at depth e in \mathcal{B}_{n} there exists a group H at depth $e-d$ in \mathcal{B}_{n-d} such that $\mathcal{D}(G) \cong \mathcal{D}(H)$.

This conjecture is rather vague and only very little is known; some important results for $\mathcal{G}(p, 1)$ exist.

Conjecture W

Conjecture W (Eick, Leedham-Green, Newman, O'Brien 2013)

Fix k and ℓ such that $\mathcal{B}_{\ell}(k) \cong \mathcal{B}_{\ell+j d}(k)$ for all j.
Let $\bar{K} \in \mathcal{B}_{\ell}$ be the group corresponding to $K \in \mathcal{B}_{\ell+j d}$.
There is a map ν from the groups at depth k in \mathcal{B}_{ℓ} to the groups at depth $k-d$ in \mathcal{B}_{ℓ} such that the picture holds... in particular, $\mathcal{D}(G) \cong \mathcal{D}(H)$

Important subtree: skeleton groups

Let \mathcal{T} be a coclass tree in $\mathcal{G}(p, r)$, with associated pro- p group S.
Problem: the branches of \mathcal{T} are usually pretty "thick" and "wide".

Skeleton groups (for split pro- p groups)

Let $S=P \ltimes T$ with $T \cong\left(\mathbb{Z}_{p}^{d},+\right)$ and uniserial series $T=T_{0}>T_{1}>T_{2}>\ldots$ Let $\gamma: T \wedge T \rightarrow T_{n}$ be P-module hom and $m \geq n$ such that $\gamma\left(T_{n} \wedge T\right) \leq T_{m}$. Let $T_{\gamma, m}=\left(T / T_{m}, \circ\right)$ with $\left(a+T_{m}\right) \circ\left(b+T_{m}\right)=a+b+\frac{1}{2} \gamma(a \wedge b)+T_{m}$; then $C_{\gamma, m}=P \ltimes T_{\gamma, m}$ is the skeleton group defined by γ and m.

Theorem (Leedham-Green 1994)

If G is in \mathcal{T}, then there is $N \unlhd G$ with order bounded by r and p, such that G / N is a "skeleton group"; the structure of skeleton groups is easier to understand, and the "skeleton of \mathcal{T} " is a significant subtree of \mathcal{T}.

The graph $\mathcal{G}(5,1)$

Shalev ("Problem 3", 1994): Classify the 5-groups of maximal class.

The graph $\mathcal{G}(5,1)$ has a unique coclass tree $\mathcal{T}(5)$; write $\mathcal{T}_{k}=\mathcal{B}_{k}(k-4)$.

Theorem (D. 2010)

The pruned branches \mathcal{T}_{k} of $\mathcal{T}(5)$ can be described by a finite subgraph and the periodicities of type I \& II. The groups in these pruned branches can be classified by finitely many parametrised presentations with ≤ 2 integer parameters.

$\mathcal{G}(5,1)$: the trees $\mathcal{T}_{10+4 x}$ with $x \geq 1$

Proved: $\mathcal{T}_{10+4 x}$ consists of the yellow part and copies of the red part:

Conjecture: The difference $\mathcal{B}_{10+4 x} \backslash \mathcal{T}_{10+4 x}$ is the green part.

$\mathcal{G}(5,1)$: the trees $\mathcal{T}_{11+4 x}, \mathcal{T}_{12}, 1 x$, and $\mathcal{T}_{13}+4 x$

$\mathcal{G}(5,1)$: Periodicity classes

The origins of the periodicity classes in \mathcal{T}_{i} with $14 \leq i \leq 17$:

$\begin{array}{ll}\text { "Cyan": } & 1 \text { Parameter } \\ \text { "White": } & 2 \text { Parameters } \\ \text { "Black": } & 1 \text { Parameter (conjectured!) }\end{array}$

The graph $\mathcal{G}(3,2)$

Theorem (Eick, Leedham-Green, Newman, O'Brien 2013)

Conjecture W holds for the skeletons in $\mathcal{G}(3,2)$.

Moreover:

- $\mathcal{G}(3,2)$ has 16 coclass trees, but only 4 have unbounded depths
- some coclass trees admit both, subsequences of branches of bounded depths and subsequences of branches of unbounded depths
- occurrence of "exceptional isomorphisms" between skeleton groups
- the "twigs" are described conjecturally

$\mathcal{G}(3,2)$: skeletons

Skeletons of the split pro-3 group:

Conjectural description of twigs: usually depth 3 and up to 20,000 vertices

$\mathcal{G}(3,2)$: skeletons

Skeletons of the three non-split pro-3 groups;
skeleton only exists if class of root is congruent 0 modulo 3 :

Know periodicity results

Most results and conjectures are motivated by computer experiments, in particular, with the p-group generation algorithm.

What is known so far:

- periodicity of type I for all graphs $\mathcal{G}(p, r)$,
- significant local results on periodicity of type II for the graphs $\mathcal{G}(p, 1)$,
- most of $\mathcal{G}(5,1)$ and the skeleton structure of $\mathcal{G}(3,2)$

Comments on periodicity of type II:

- all known results consider pruned branches
- most results consider only skeleton groups
- $\mathcal{G}(5,1)$ and $\mathcal{G}(3,2)$ only have branches of finite width
- D. \& Eick recently considered $\mathcal{G}(p, 1)$ in more detail (2016)

There is still a lot to do - we're working on it ...

Now consider $\mathcal{G}(p, 1)$ with $p \geq 7$.
Let \mathcal{T} be the coclass tree with branches \mathcal{B}_{j} and bodies $\mathcal{T}_{j}=\mathcal{B}_{j}(j-2 p+8)$.
Motivated by the known periodicity results for $\mathcal{G}(p, 1)$ and promising computer experiments, Bettina Eick and I studied the following subtrees of \mathcal{T} :

Definition

Let \mathcal{B}_{j}^{*} be the subtree of \mathcal{B}_{j} consisting of all groups whose automorphism group order is divisible by $p-1$. Let \mathcal{S}_{j}^{*} be the subtree of the body \mathcal{T}_{j} consisting of all skeleton groups whose automorphism group order is divisible by $p-1$.
(Note: $p-1$ is essentially the largest possible p^{\prime}-part of that aut-group order.)

$\mathcal{G}(7,1)$: the trees \mathcal{B}_{j}^{*} and S_{j}^{*} for $j=10, \ldots, 16$

Conjectured structure of S_{j} for $p=7$

For $p=7$:

- depth $j-6$
- 2 groups $G_{j, 1}, G_{j, 2}$ at depth 1
- 7-fold ramifications at levels
- $2+6 \mathbb{N}$ in path of $G_{j, 1}$
- $4+6 \mathbb{N}$ in path of $G_{j, 2}$

For $p=11$:

- depth $j-14$
- 4 groups $G_{j, 1}, \ldots, G_{j, 4}$ at depth 1
- 11-fold ramifications at levels
- $\{2,4,6\}+10 \mathbb{N}$ in path of $G_{j, 1}$
- $\{2,4,8\}+10 \mathbb{N}$ in path of $G_{j, 2}$
- $\{2,6,8\}+10 \mathbb{N}$ in path of $G_{j, 3}$
- $\{4,6,8\}+10 \mathbb{N}$ in path of $G_{j, 4}$

p-groups of maximal class with 'large' aut-group

Let $d=p-1$ and $\ell=(p-3) / 2$.

Theorem (2016)

- The skeleton \mathcal{S}_{n}^{*} has ℓ groups $G_{n, 1}, \ldots, G_{n, \ell}$ at depth 1 .
- Ramifications are always p-fold and occur exactly at depth

$$
\{2,4, \ldots, d-2\} \backslash\{d-2 i\}+d \mathbb{N}
$$

in the path of $G_{n, i}$, for $i=1, \ldots, \ell$.

The proof is heavily based on number theory and existing results for maximal class groups (19 pages, submitted 2016).

Conjectural description of twigs:

structure of twigs depends only on i, on $(e \bmod d)$, and on $(n \bmod d)$.
This is the first periodicity result supporting Conjecture W in the context of coclass trees with unbounded width.

The end

(1) motivation
(2) pc presentations
(p-quotient algorithm

- p-group generation
- isomorphism test
- automorphism groups
- coclass theory

