
Last Time

Finitely Presented groups

Quotient algorithms — give homomorphisms

Pre-images under homomorphisms give subgroups.

Representing Subgroups

Work with homomorphisms to represent subgroup U<G
as pair (φ,Uφ) with φ:G→P for a (finite, permutation)
group P. Can do well

 Normalizer, (Normal) closure
 Intersection (Embed in direct product)
 Subgroup of Subgroup (Embed in wreath product)
 pre-images of arbitrary subgroups

gap> s:=Intersection(k,k2);
Group(<fp, no generators known>)
gap> Index(g,s);
126647579520
gap> q:=DefiningQuotientHomomorphism(s);
[a, b, c] ->
[(1,260,241)(2,240,177)(3,91,130)(4,234,203)
gap> p:=Image(q);
<permutation group of size 126647579520 with 3 generators>
gap> m:=MaximalSubgroupClassReps(p);;List(m,x->Index(p,x));
[114, 6328, 6441, 30058, 30058, 266, 1045, […]
gap> u:=PreImage(q,m[4]);
Group(<fp, no generators known>)
gap> Index(g,u);
30058
gap> AbelianInvariants(u);
[2]
gap> AbelianInvariants(m[4]);
[2]

Subgroups And Coset Tables
Vice versa, if we have a subgroup U<G, given by
generators, we want to find the index [G:U], or even
better the permutation action of G on the cosets of U.

If U is trivial, this determines |G| — test for order!

Tool: Coset table. Columns correspond generators of G
and inverses, rows are cosets of U. Entry in row i,
generator a is number of coset image ia.

Will also allow us to construct presentations for subgroups.

The process of coset enumeration (Todd-Coxeter method)

builds the coset table by defining cosets systematically as
images, and deducing equality based on relators and
subgroup generators.

It is the one of the first (1936) articles in CGT — at that time
the calculation was performed by hand on paper.

Besides coset table, use two kinds of auxillary tables:

One per relator (rows for every coset), one per subgroup
generator (only one row).

Coset Enumeration

The process of coset enumeration (Todd-Coxeter method)

builds the coset table by defining cosets systematically as
images, and deducing equality based on relators and
subgroup generators.

It is the one of the first (1936) articles in CGT — at that time
the calculation was performed by hand on paper.

Besides coset table, use two kinds of auxillary tables:

One per relator (rows for every coset), one per subgroup
generator (only one row).

Coset Enumeration

Because of impossibility results
this cannot be an algorithm
with predictable runtime.

The process of coset enumeration (Todd-Coxeter method)

builds the coset table by defining cosets systematically as
images, and deducing equality based on relators and
subgroup generators.

It is the one of the first (1936) articles in CGT — at that time
the calculation was performed by hand on paper.

Besides coset table, use two kinds of auxillary tables:

One per relator (rows for every coset), one per subgroup
generator (only one row).

Coset Enumeration

John Todd, 1908-1994 H.S.M. Coxeter, 1907-2003

The process of coset enumeration (Todd-Coxeter method)

builds the coset table by defining cosets systematically as
images, and deducing equality based on relators and
subgroup generators.

It is the one of the first (1936) articles in CGT — at that time
the calculation was performed by hand on paper.

Besides coset table, use two kinds of auxillary tables:

One per relator (rows for every coset), one per subgroup
generator (only one row).

Coset Enumeration

Relator And Subgroup Tables

The subgroup and relator tables will be used to ensure:

• 1s=1 for every generator s of U (1 is the coset U)

• xr=x for any coset x and any relator r. (Alternatively: For
any coset representative g, grg-1 is also a relator.

We do so by tracing through images of cosets, as soon as
they are defined in the coset table. (The computer does so
without need to write down the actual tables.)

Example
Let G= a,b | a2=b3=(ab)5=1 ,
and U= a,ab .

a a-1 b b-1

1

1 1
a

Subgroup Tables:

1 1
b-1 a b

a
1 1

a
1 1

bb b

1 1
a a a a ab b b b b

Relator Tables:

Result
Let G= a,b | a2=b3=(ab)5=1 ,
and U= a,ab .

a a-1 b b-1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Index 6

Permutations:

a→ (2,4)(5,6)

b→ (1,2,3)(4,5,6)

Coset Reps:

2=1b

3=1b-1

4=1ba

5=1bab

6=1bab-1

Remarks
• A consequence (xg=y) can be a coincidence of two cosets

y,z that were previously considered separate. When
processing these, typically further coincidences arise.

• Cosets are considered different unless the conditions
require equality.

• If the coset table is complete, it must be correct.

• We cannot bound runtime.

• If index is finite, and systematic definitions, will terminate.

Remarks
• A consequence (xg=y) can be a coincidence of two cosets

y,z that were previously considered separate. When
processing these, typically further coincidences arise.

• Cosets are considered different unless the conditions
require equality.

• If the coset table is complete, it must be correct.

• We cannot bound runtime.

• If index is finite, and systematic definitions, will terminate.

Will terminate eventually, but we don’t
know if or when as long as it still running.
Cannot decide whether infinite, or too soon.

Subgroup Presentations

Given coset table for U, select representatives ti for coset i.

Schreier generator for coset i, generator j is: ti gj(ti gj)−1.
(Can be trivial if tigj=tk.)

n cosets, m generators for G, there are n-1 definitions, thus:
nm-(n-1)=n(m-1)+1 nontrivial Schreier generators.

We can rewrite any element of G that lies in subgroup as
word in Schreier generators, let ρ be this rewriting.

Subgroup Presentations

Given coset table for U, select representatives ti for coset i.

Schreier generator for coset i, generator j is: ti gj(ti gj)−1.
(Can be trivial if tigj=tk.)

n cosets, m generators for G, there are n-1 definitions, thus:
nm-(n-1)=n(m-1)+1 nontrivial Schreier generators.

We can rewrite any element of G that lies in subgroup as
word in Schreier generators, let ρ be this rewriting.

Rewriting:
Given a word in one generator set, express it into
another generator set by following a set of substring
replacement.
The proof of SCHREIER’s theorem describes such a
process. For example, if 1a=2 and 2b=1, using t1=id:

_ab=t1a_b=t1at2-1t2b=s1at2b_=s1at2bt1-1=s1as2b

For any relator r of G, any coset rep. ti, clearly 1=tir ti -1∈U.

Theorem: A presentation for U in Schreier generators is
given by:

⟨ si,j nontrivial | ρ(ti rk ti-1), 1≦i≦n, 1≦j≦m⟩

Proof: Clearly all these relations are identity. Take an
arbitrary relation w=1 in G, then can write as product of
conjugates of relators, each factor has form r g.

Write g=ti-1q, q∈U. Then r g=q-1tirti -1q=(ti rk ti-1)q.

Note: Variant (Modified Todd-Coxeter) gives presentation
in user-selected generators, often worse looking result.

Reidemeister’s Theorem

Kurt Reidemeister, 1893-1971

For any relator r of G, any coset rep. ti, clearly 1=tir ti -1∈U.

Theorem: A presentation for U in Schreier generators is
given by:

⟨ si,j nontrivial | ρ(ti rk ti-1), 1≦i≦n, 1≦j≦m⟩

Proof: Clearly all these relations are identity. Take an
arbitrary relation w=1 in G, then can write as product of
conjugates of relators, each factor has form r g.

Write g=ti-1q, q∈U. Then r g=q-1tirti -1q=(ti rk ti-1)q.

Note: Variant (Modified Todd-Coxeter) gives presentation
in user-selected generators, often worse looking result.

Reidemeister’s Theorem

This is sloppy notation! Formally distinguish between elements
of free group, elements of G, and symbols for new presentation.

For any relator r of G, any coset rep. ti, clearly 1=tir ti -1∈U.

Theorem: A presentation for U in Schreier generators is
given by:

⟨ si,j nontrivial | ρ(ti rk ti-1), 1≦i≦n, 1≦j≦m⟩

Proof: Clearly all these relations are identity. Take an
arbitrary relation w=1 in G, then can write as product of
conjugates of relators, each factor has form r g.

Write g=ti-1q, q∈U. Then r g=q-1tirti -1q=(ti rk ti-1)q.

Note: Variant (Modified Todd-Coxeter) gives presentation
in user-selected generators, often worse looking result.

Reidemeister’s Theorem

In Practice
Store in augmented coset table the accumulated Schreier
generators that would give element (not just coset)
equality. (For every entry that is not a coset definition.)

a a-1 b b-1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Coset Reps:
t1=1
t2=b

t3=b-1

t4=ba

t5=bab

t6=bab-1

Schreier Generators:
c=t1at1-1=a
d=t2bt3-1=b3
e=t3at3-1=b-1ab
f=t4at2-1=baab-1
g=t5at6-1=bababa-1b-1
h=t5bt6-1=babbba-1b-1
i=t6at5-1=bab-1ab-1a-1b-1

Read Later

1 c c -1

2 f -1 d
3 e e -1 d -1

4 f
5 g i -1 h
6 i g -1 h -1

In Practice
Store in augmented coset table the accumulated Schreier
generators that would give element (not just coset)
equality. (For every entry that is not a coset definition.)

a a-1 b b-1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Coset Reps:
t1=1
t2=b

t3=b-1

t4=ba

t5=bab

t6=bab-1

Schreier Generators:
c=t1at1-1=a
d=t2bt3-1=b3
e=t3at3-1=b-1ab
f=t4at2-1=baab-1
g=t5at6-1=bababa-1b-1
h=t5bt6-1=babbba-1b-1
i=t6at5-1=bab-1ab-1a-1b-1

Read Later

Example, Continued
Now trace through every relator, at every coset (i.e.
conjugate relators) and collect Schreier generators.

a2 b3 (ab)5

1 c2 d cgfde
2 f d gfdec
3 e2 d ecgfd
4 f h fdecg
5 gi h gfdec
6 ig h (ih)5

1 c c -1

2 f -1 d
3 e e -1 d -1

4 f
5 g i -1 h
6 i g -1 h -1

a a-1 b b-1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Read Later

Example, Continued
Now trace through every relator, at every coset (i.e.
conjugate relators) and collect Schreier generators.

a2 b3 (ab)5

1 c2 d cgfde
2 f d gfdec
3 e2 d ecgfd
4 f h fdecg
5 gi h gfdec
6 ig h (ih)5

U=⟨c,d,e,f,g,h,i | c2, d, cgfde, f, e2, h, gi, ig, (ih)5 ⟩

= ⟨c,e,g | c2, e2, cge, g -5 ⟩ = ⟨c,e| c2, e2, (ec)5 ⟩

1 c c -1

2 f -1 d
3 e e -1 d -1

4 f
5 g i -1 h
6 i g -1 h -1

a a-1 b b-1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Read Later

Example, Continued
Now trace through every relator, at every coset (i.e.
conjugate relators) and collect Schreier generators.

a2 b3 (ab)5

1 c2 d cgfde
2 f d gfdec
3 e2 d ecgfd
4 f h fdecg
5 gi h gfdec
6 ig h (ih)5

U=⟨c,d,e,f,g,h,i | c2, d, cgfde, f, e2, h, gi, ig, (ih)5 ⟩

= ⟨c,e,g | c2, e2, cge, g -5 ⟩ = ⟨c,e| c2, e2, (ec)5 ⟩

1 c c -1

2 f -1 d
3 e e -1 d -1

4 f
5 g i -1 h
6 i g -1 h -1

a a-1 b b-1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Dihedral group of order 10:

= ⟨c,d| c2, d5, dc -1dc -1 ⟩ with d=ec,

thus cd -1 =dc -1 =dc

Group G has order 60.

Read Later

In GAP

gap> g:=f/ParseRelators(f,”a3,b5,(ab)2”);;
gap> u:=Subgroup(g,[g.1,g.1^g.2]);;Index(g,u);
6
gap> hom:=IsomorphismFpGroup(u);
[<[[1,1]]|a>,<[[1,-1,2,-1]]|a^-1*b^-1*a^-1*b>]->[F1,F2]
gap> RelatorsOfFpGroup(Image(hom));
[F1^2, (F2^-1*F1)^2, F2^5]
gap> hom:=IsomorphismFpGroupByGenerators(u,
 GeneratorsOfGroup(u));
[a, b^-1*a*b] -> [F1, F2]
gap> RelatorsOfFpGroup(Image(hom));

The easiest way too handle this process of rewriting a
presentation for a subgroup is to use functions
IsomorphismFpGroup, respectively (for user generators)
IsomorphismFpGroupByGenerators that both produce
homomorphisms to new fp groups.

In GAP

gap> g:=f/ParseRelators(f,”a3,b5,(ab)2”);;
gap> u:=Subgroup(g,[g.1,g.1^g.2]);;Index(g,u);
6
gap> hom:=IsomorphismFpGroup(u);
[<[[1,1]]|a>,<[[1,-1,2,-1]]|a^-1*b^-1*a^-1*b>]->[F1,F2]
gap> RelatorsOfFpGroup(Image(hom));
[F1^2, (F2^-1*F1)^2, F2^5]
gap> hom:=IsomorphismFpGroupByGenerators(u,
 GeneratorsOfGroup(u));
[a, b^-1*a*b] -> [F1, F2]
gap> RelatorsOfFpGroup(Image(hom));

The easiest way too handle this process of rewriting a
presentation for a subgroup is to use functions
IsomorphismFpGroup, respectively (for user generators)
IsomorphismFpGroupByGenerators that both produce
homomorphisms to new fp groups.

What on Earth is this?
The algorithm does not multiply out words, but stores straight
line programs: 1,-1,2,-1 is gen11*gen2-1. These are elements stored
as straight line programs and printing as program|word. For all
practical purposes, treat them like an ordinary element.

In GAP

gap> g:=f/ParseRelators(f,”a3,b5,(ab)2”);;
gap> u:=Subgroup(g,[g.1,g.1^g.2]);;Index(g,u);
6
gap> hom:=IsomorphismFpGroup(u);
[<[[1,1]]|a>,<[[1,-1,2,-1]]|a^-1*b^-1*a^-1*b>]->[F1,F2]
gap> RelatorsOfFpGroup(Image(hom));
[F1^2, (F2^-1*F1)^2, F2^5]
gap> hom:=IsomorphismFpGroupByGenerators(u,
 GeneratorsOfGroup(u));
[a, b^-1*a*b] -> [F1, F2]
gap> RelatorsOfFpGroup(Image(hom));

The easiest way too handle this process of rewriting a
presentation for a subgroup is to use functions
IsomorphismFpGroup, respectively (for user generators)
IsomorphismFpGroupByGenerators that both produce
homomorphisms to new fp groups.

Simplification
The result of rewriting is often messy and contains “stupid”
generators that e.g. duplicate others. Thus reduce
heuristically by applying Tietze Transformations:

Add/Delete relator that is word in other relators
Add/Delete generator that occurs only in one relator

(In fact GAP already does some initial simplification on its
own, before even returning the homomorphism.)

IsomorphismSimplifiedFpGroup does so more boldly.

Calculating Group Order

To determine a groups order, rewrite the presentation to a
subgroup (e.g. Low Index, Quotient pre-image of
subgroup, generated by some elements) and use this.

Maybe iterate.

In particular: Cyclic subgroup, generated by one element
— presentations in one generator are easy.

If group is finite this will eventually terminate.

Finding Presentations For Group

For a (permutation) group G, find a presentation:

1. Investigate multiplication structure, find some relators,
prove that they define no larger group.

2. Take homomorphism from free group, compute kernel
generators via stabilizer chain.

3. Combine presentations of normal subgroup and factor
group (similar to how a pc presentation works).

Simple Nonabelian Factors
Use Classification of Finite Simple Groups:

Cyclic: done.

Alternating: Presentation on (1,2,3,4,…n), (1,3,2,4,5,…,n)
(odd n, variant for even n) from COXETER, MOSER book.

Sporadic: Ad-hoc presentations found by hand.

Lie Type (e.g. GL for finite fields): STEINBERG presentations.
These are not short in the storage size of a generating set.

Short Presentations
For complexity analysis — if the presentation grows too
much, evaluating a presentation will take too much time
— a lot of recent work has gone towards finding short
presentations of groups of Lie type:

Lie Type of rank >1 (STEINBERG 1962, BABAI, GOODMAN,
KANTOR, LUKS, PÁLFY, 1997)
PSL2(q) (TODD 1936)

Suzuki groups (SUZUKI 1964)
PSU3(q) (H., SERESS 2001)

Only the Ree groups 2G2(q) remain ...

4

Permutation
And Matrix

Groups

Testing Random Stabilizer Chains

Can compute a stabilizer chain quickly by random methods.

If we are unlucky, the chain describes a set that is too small.

Calculate a presentation for this group (From Composition
Series and presentations for simple factors, combine)

If we were unlucky, the resulting presentation describes a
smaller group.

Detect this by evaluating the presentation on G. If it is too
tight (or anything failed) we know stabilizer chain was wrong.

Otherwise we have certified the stabilizer chain to be correct!

Almost Linear Time Stab.Chain
1. Compute stabilizer chain, using only random
subproducts of Schreier generators. (Quick)

2. Determine composition series. (see below)

3. (Short — for good complexity) presentation for whole
group, from composition factors. (Rewrite in original
generators.)

4. If anything failed, or group does not satisfy presentation,
the random calculation failed — add further random
Schreier generators. Otherwise proven correct.

Towards Composition Series

Thus need composition series.
Want to construct a composition series
G=G0>G1>…>Gk=〈1〉, that is Gi+1⊲ Gi and

Gi/Gi+1 simple.
Use homomorphism kernels to split; Either:

Find a homomorphism φ on G with
“smaller” (by size or required effort) image.
Recurse to image, kernel. Or:
Prove that G is simple.

The resulting data structure is called a Composition Tree.

Natural Source of Homomorphisms: Group Actions, in
particular from permutation action.
(Same concept for other groups but different actions.)
If intransitive: Action on one orbit.

Composition Tree

G with ⇤
. &

N = ker⇤  G F = Image(⇤)
with ⇥ with �

. & . &
ker⇥  N Image(⇥) ker �  F Image(�)

1 2

34

Blocks (AKA imprimitivity)
G acting (transitively) on Ω, a block system is a G-invariant
partition B of Ω, i.e. Ω = ∪B ∈ B B but Bi∩Bj=∅. Thus G also
acts on B.

Basic facts:
• All blocks have the same size.
• Trivial block systems: {Ω} and singleton sets. If only these

two: G primitive (otherwise imprimitive).
• Block systems are in bijection with subgroups StabG(ω) ≤ S
≤ G, S is stabilizer of block with ω.

• If N⊲G the orbits of N form a block system.

Blocks (AKA imprimitivity)
G acting (transitively) on Ω, a block system is a G-invariant
partition B of Ω, i.e. Ω = ∪B ∈ B B but Bi∩Bj=∅. Thus G also
acts on B.

Primitive Groups
If no blocks, G is primitive. The O'NAN-SCOTT theorem
describes the possible structure.

Key component: The Socle Soc(G), subgroup generated by
all minimal normal subgroups.

Lemma: Soc(G) is direct product of minimal normal
subgroups.

Proof: Take M ≤ Soc(G), M⊲G maximal with this
property. If M≠Soc(G) there exists N⊲G, minimally
normal, N ≮M. Thus M∩N= 1 and M,N =M×N ≤
Soc(G) is larger, Contradiction.

SCOTT
1979

Leonard Scott, *1942 Michael O’Nan, *1943

Primitive Groups
If no blocks, G is primitive. The O'NAN-SCOTT theorem
describes the possible structure.

Key component: The Socle Soc(G), subgroup generated by
all minimal normal subgroups.

Lemma: Soc(G) is direct product of minimal normal
subgroups.

Proof: Take M ≤ Soc(G), M⊲G maximal with this
property. If M≠Soc(G) there exists N⊲G, minimally
normal, N ≮M. Thus M∩N= 1 and M,N =M×N ≤
Soc(G) is larger, Contradiction.

Actions To Get Composition Tree

 If intransitive, act on orbit. Otherwise:

 If imprimitive, act on blocks (as sets). Otherwise:

 If primitive, socle not simple: act on socle factors.
Otherwise:

 If not simple: Out(S) is small, solvable. Otherwise:

 Constructive recognition (isomorphism) to simple
group. (Use CFSG!). Later.

In GAP
When working with permutations groups, knowing a
groups order speeds up calculations immensely!

There is CompositionSeries (also DerivedSeries,
ElementaryAbelianSeries, …) and DisplayCompositionSeries.

Blocks(group,domain,action) finds a block system
(also: IsPrimitive), AllBlocks finds representatives for
all block systems.

Same Idea For Matrix Groups

For Matrix groups (and others) the stabilizer chain
approach can be infeasible because of long orbits.

Thus use same approach of homomorphisms to
decompose the group and get a composition series as
basic data structure.

To repeat strategy from permutation groups, need actions for
matrix groups. For example (MeatAxe) action on submodule
or quotient module.

Need actions for irreducible groups:

Matrix Actions

Permutation Matrix

intransitive reducible

imprimitive induced

Permutation of basis vectors

To repeat strategy from permutation groups, need actions for
matrix groups. For example (MeatAxe) action on submodule
or quotient module.

Need actions for irreducible groups:

Matrix Actions

Permutation Matrix

intransitive reducible

imprimitive induced

Permutation of basis vectors

Matrix wreath product: A is of
dimension m, B permutes n
points. A≀B in dimension n·m,
Each copy of A is diagonal
block, B permutes blocks.

To repeat strategy from permutation groups, need actions for
matrix groups. For example (MeatAxe) action on submodule
or quotient module.

Need actions for irreducible groups:

Matrix Actions

Permutation Matrix

intransitive reducible

imprimitive induced

Permutation of basis vectors Tensor products

Permutation Matrix

intransitive tensor product

imprimitive tensor wreath

Space whose basis is
labelled with formal
products b⊗c, compatible
action on both parts.

To repeat strategy from permutation groups, need actions for
matrix groups. For example (MeatAxe) action on submodule
or quotient module.

Need actions for irreducible groups:

Matrix Actions

Permutation Matrix

intransitive reducible

imprimitive induced

Permutation of basis vectors Tensor products

Permutation Matrix

intransitive tensor product

imprimitive tensor wreath

Space whose basis is
labelled with formal
products b⊗c, compatible
action on both parts.

Analog to O’NAN-SCOTT, ASCHBACHER’s theorem describes
geometric reductions for matrix groups.

Aschbacher’s Theorem
Matrix group over finite fields fall in classes:

1) Reducible
2) Induced
3) Up to scalars, in smaller dimension over larger field.
4) Tensor product of non isomorphic submodules
5) Up to scalars, write over smaller field
6) Normalizing an extraspecial group
7) Tensor Wreath product
8) Stabilizing bilinear form (Sp, O, U)
9) Almost simple (ie. T ≤ G≤Aut(T))

ASCHBACHER
1984

Matrix Group Recognition
Research project in CGT over last 15-20 years:

Develop algorithms that will recognize the different
classes and produce homomorphisms.

If (almost) simple, recognize the group — isomorphism
(type and actual bijective map) to natural representation.

Presentations for simple group give generators of
kernels. Get composition tree.

In Las-Vegas (random selections+verification) poly. time.

Implementations recently available.

Matrix Group Recognition
Research project in CGT over last 15-20 years:

Develop algorithms that will recognize the different
classes and produce homomorphisms.

If (almost) simple, recognize the group — isomorphism
(type and actual bijective map) to natural representation.

Presentations for simple group give generators of
kernels. Get composition tree.

In Las-Vegas (random selections+verification) poly. time.

Implementations recently available.

Eamonn O’Brien Charles Leedham-Green

Matrix Group Recognition
Research project in CGT over last 15-20 years:

Develop algorithms that will recognize the different
classes and produce homomorphisms.

If (almost) simple, recognize the group — isomorphism
(type and actual bijective map) to natural representation.

Presentations for simple group give generators of
kernels. Get composition tree.

In Las-Vegas (random selections+verification) poly. time.

Implementations recently available.

Matrix Group Recognition
Research project in CGT over last 15-20 years:

Develop algorithms that will recognize the different
classes and produce homomorphisms.

If (almost) simple, recognize the group — isomorphism
(type and actual bijective map) to natural representation.

Presentations for simple group give generators of
kernels. Get composition tree.

In Las-Vegas (random selections+verification) poly. time.

Implementations recently available.

Derek Holt Ákos Seress, 1958-2013Max Neunhöffer

Base Case: Simple Groups
After the reductions of ASCHBACHER’s theorem we have an
almost simple group. Due to SCHREIERs conjecture G’’’ is
simple and [G:G’’’] small. WLOG G simple, no reduction.

Assumption: We know G (we know the simple groups).

Find an isomorphism (called constructive recognition from G

to the natural representation of the simple group (An as
permutations, PSL as matrices up to scalars, …).

Then use known information from the literature (or
stabilizer chain methods…) to obtain the result.

(Constructive) Recognition
First identify the type of G by looking at order statistics.

But G might be in some (horrible) matrix representation.

The elements of the natural representation act as matrices
or permutations.

Build these from scratch by acting on suitable objects that
correspond to the underlying geometry/combinatorics.

E.g. transvections v ↦ v+ t in place of vectors. Identify such

elements from orders (also of products).

Model: Black-Box Groups

Conceptually this utilizes the model of a black-box group:

Can form products, inverses

Can test for equality

Upper bound on group order.

To enable homomorphisms, find kernels, remember how
elements were formed as products of generators.

