
Last Time

Finitely Presented groups 

Quotient algorithms — give homomorphisms 

Pre-images under homomorphisms give subgroups. 



Representing Subgroups

Work with homomorphisms to represent subgroup U<G 
as pair (φ,Uφ) with φ:G→P for a (finite, permutation) 
group P. Can do well 

 Normalizer, (Normal) closure 
 Intersection (Embed in direct product) 
 Subgroup of Subgroup (Embed in wreath product) 
 pre-images of arbitrary subgroups



gap> s:=Intersection(k,k2);
Group(<fp, no generators known>)
gap> Index(g,s);
126647579520 
gap> q:=DefiningQuotientHomomorphism(s);
[ a, b, c ] -> 
[ (1,260,241)(2,240,177)(3,91,130)(4,234,203)
gap> p:=Image(q);
<permutation group of size 126647579520 with 3 generators>
gap> m:=MaximalSubgroupClassReps(p);;List(m,x->Index(p,x));
[ 114, 6328, 6441, 30058, 30058, 266, 1045, […]
gap> u:=PreImage(q,m[4]);
Group(<fp, no generators known>)
gap> Index(g,u);
30058
gap> AbelianInvariants(u);
[ 2 ]
gap> AbelianInvariants(m[4]);
[ 2 ]



Subgroups And Coset Tables
Vice versa, if we have a subgroup U<G, given by 
generators, we want to find the index [G:U], or even 
better the permutation action of G on the cosets of U. 

If U is trivial, this determines |G| — test for order! 

Tool: Coset table. Columns correspond generators of G 
and inverses, rows are cosets of U. Entry in row i, 
generator a is number of coset image ia. 

Will also allow us to construct presentations for subgroups.



The process of coset enumeration (Todd-Coxeter method) 

builds the coset table by defining cosets systematically as 
images, and deducing equality based on relators and 
subgroup generators. 

It is the one of the first (1936) articles in CGT — at that time 
the calculation was performed by hand on paper. 

Besides coset table, use two kinds of auxillary tables: 

One per relator (rows for every coset), one per subgroup 
generator (only one row).

Coset Enumeration
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Because of impossibility results 
this cannot be an algorithm 
with predictable runtime. 
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Coset Enumeration

John Todd, 1908-1994 H.S.M. Coxeter, 1907-2003
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Relator And Subgroup Tables

The subgroup and relator tables will be used to ensure: 

• 1s=1 for every generator s of U  (1 is the coset U) 

• xr=x for any coset x and any relator r. (Alternatively: For 
any coset representative g, grg-1 is also a relator. 

We do so by tracing through images of cosets, as soon as 
they are defined in the coset table. (The computer does so  
without need to write down the actual tables.)



Example
Let G=  a,b | a2=b3=(ab)5=1 , 
and U=  a,ab .

a a-1 b b-1

1

1 1
a

Subgroup Tables:

1 1
b-1 a b

a
1 1

a
1 1

bb b

1 1
a a a a ab b b b b

Relator Tables:



Result
Let G=  a,b | a2=b3=(ab)5=1 , 
and U=  a,ab .

a a-1 b b-1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Index 6 

Permutations: 

a→ (2,4)(5,6) 

b→ (1,2,3)(4,5,6)

Coset Reps: 

2=1b 

3=1b-1 

4=1ba 

5=1bab 

6=1bab-1



Remarks
• A consequence (xg=y) can be a coincidence of two cosets 

y,z that were previously considered separate. When 
processing these, typically further coincidences arise. 

• Cosets are considered different unless the conditions 
require equality. 

• If the coset table is complete, it must be correct. 

• We cannot bound runtime. 

• If index is finite, and systematic definitions, will terminate.



Remarks
• A consequence (xg=y) can be a coincidence of two cosets 

y,z that were previously considered separate. When 
processing these, typically further coincidences arise. 

• Cosets are considered different unless the conditions 
require equality. 

• If the coset table is complete, it must be correct. 

• We cannot bound runtime. 

• If index is finite, and systematic definitions, will terminate.

Will terminate eventually, but we don’t 
know if or when as long as it still running. 
Cannot decide whether infinite, or too soon.



Subgroup Presentations

Given coset table for U, select representatives ti for coset i. 

Schreier generator for coset i, generator j is: ti gj( ti gj)−1. 
(Can be trivial if tigj=tk.) 

n cosets, m generators for G, there are n-1 definitions, thus: 
nm-(n-1)=n(m-1)+1 nontrivial Schreier generators. 

We can rewrite any element of G that lies in subgroup as 
word in Schreier generators, let ρ be this rewriting.



Subgroup Presentations

Given coset table for U, select representatives ti for coset i. 

Schreier generator for coset i, generator j is: ti gj( ti gj)−1. 
(Can be trivial if tigj=tk.) 

n cosets, m generators for G, there are n-1 definitions, thus: 
nm-(n-1)=n(m-1)+1 nontrivial Schreier generators. 

We can rewrite any element of G that lies in subgroup as 
word in Schreier generators, let ρ be this rewriting.

Rewriting: 
Given a word in one generator set, express it into 
another generator set by following a set of substring 
replacement. 
The proof of SCHREIER’s theorem describes such a 
process. For example, if 1a=2 and 2b=1, using t1=id: 

_ab=t1a_b=t1at2-1t2b=s1at2b_=s1at2bt1-1=s1as2b



For any relator r of G, any coset rep. ti, clearly 1=tir ti -1∈U. 

Theorem: A presentation for U in Schreier generators is 
given by: 

⟨ si,j nontrivial | ρ(ti rk ti-1), 1≦i≦n, 1≦j≦m⟩ 

Proof: Clearly all these relations are identity. Take an 
arbitrary relation w=1 in G, then can write as product of 
conjugates of relators, each factor has form r g. 

Write g=ti-1q, q∈U. Then r g=q-1tirti -1q=(ti rk ti-1)q. 

Note: Variant (Modified Todd-Coxeter) gives presentation 
in user-selected generators, often worse looking result.

Reidemeister’s Theorem

Kurt Reidemeister, 1893-1971



For any relator r of G, any coset rep. ti, clearly 1=tir ti -1∈U. 

Theorem: A presentation for U in Schreier generators is 
given by: 

⟨ si,j nontrivial | ρ(ti rk ti-1), 1≦i≦n, 1≦j≦m⟩ 

Proof: Clearly all these relations are identity. Take an 
arbitrary relation w=1 in G, then can write as product of 
conjugates of relators, each factor has form r g. 

Write g=ti-1q, q∈U. Then r g=q-1tirti -1q=(ti rk ti-1)q. 

Note: Variant (Modified Todd-Coxeter) gives presentation 
in user-selected generators, often worse looking result.

Reidemeister’s Theorem

This is sloppy notation! Formally distinguish between elements 
of free group, elements of G, and symbols for new presentation.
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In Practice
Store in augmented coset table the accumulated Schreier 
generators that would give element (not just coset) 
equality. (For every entry that is not a coset definition.)

a a-1 b b-1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Coset Reps: 
t1=1 
t2=b 

t3=b-1 

t4=ba 

t5=bab 

t6=bab-1

Schreier Generators: 
c=t1at1-1=a 
d=t2bt3-1=b3 
e=t3at3-1=b-1ab 
f=t4at2-1=baab-1 
g=t5at6-1=bababa-1b-1 
h=t5bt6-1=babbba-1b-1 
i=t6at5-1=bab-1ab-1a-1b-1

Read Later



1 c c -1

2 f -1 d
3 e e -1 d -1

4 f
5 g i -1 h
6 i g -1 h -1
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Example, Continued
Now trace through every relator, at every coset (i.e. 
conjugate relators) and collect Schreier generators.

a2 b3 (ab)5

1 c2 d cgfde
2 f d gfdec
3 e2 d ecgfd
4 f h fdecg
5 gi h gfdec
6 ig h (ih)5

1 c c -1

2 f -1 d
3 e e -1 d -1

4 f
5 g i -1 h
6 i g -1 h -1

a a-1 b b-1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Read Later
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Now trace through every relator, at every coset (i.e. 
conjugate relators) and collect Schreier generators.
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= ⟨c,e,g | c2, e2, cge, g -5 ⟩ = ⟨c,e| c2, e2, (ec )5 ⟩

1 c c -1

2 f -1 d
3 e e -1 d -1

4 f
5 g i -1 h
6 i g -1 h -1

a a-1 b b-1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Dihedral group of order 10: 

= ⟨c,d| c2, d5, dc -1dc -1 ⟩ with d=ec,  

thus cd -1 =dc -1 =dc 

Group G has order 60.

Read Later



In GAP

gap> g:=f/ParseRelators(f,”a3,b5,(ab)2”);;
gap> u:=Subgroup(g,[g.1,g.1^g.2]);;Index(g,u);
6
gap> hom:=IsomorphismFpGroup(u);
[<[[1,1]]|a>,<[[1,-1,2,-1]]|a^-1*b^-1*a^-1*b>]->[F1,F2]
gap> RelatorsOfFpGroup(Image(hom));
[ F1^2, (F2^-1*F1)^2, F2^5 ]
gap> hom:=IsomorphismFpGroupByGenerators(u,
          GeneratorsOfGroup(u));
[ a, b^-1*a*b ] -> [ F1, F2 ]
gap> RelatorsOfFpGroup(Image(hom));

The easiest way too handle this process of rewriting a 
presentation for a subgroup is to use functions 
IsomorphismFpGroup, respectively (for user generators) 
IsomorphismFpGroupByGenerators that both produce 
homomorphisms to new fp groups.
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6
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          GeneratorsOfGroup(u));
[ a, b^-1*a*b ] -> [ F1, F2 ]
gap> RelatorsOfFpGroup(Image(hom));

The easiest way too handle this process of rewriting a 
presentation for a subgroup is to use functions 
IsomorphismFpGroup, respectively (for user generators) 
IsomorphismFpGroupByGenerators that both produce 
homomorphisms to new fp groups.

What on Earth is this? 
The algorithm does not multiply out words, but stores straight 
line programs: 1,-1,2,-1 is gen11*gen2-1. These are elements stored 
as straight line programs  and printing as program|word. For all 
practical purposes, treat them like an ordinary element.



In GAP

gap> g:=f/ParseRelators(f,”a3,b5,(ab)2”);;
gap> u:=Subgroup(g,[g.1,g.1^g.2]);;Index(g,u);
6
gap> hom:=IsomorphismFpGroup(u);
[<[[1,1]]|a>,<[[1,-1,2,-1]]|a^-1*b^-1*a^-1*b>]->[F1,F2]
gap> RelatorsOfFpGroup(Image(hom));
[ F1^2, (F2^-1*F1)^2, F2^5 ]
gap> hom:=IsomorphismFpGroupByGenerators(u,
          GeneratorsOfGroup(u));
[ a, b^-1*a*b ] -> [ F1, F2 ]
gap> RelatorsOfFpGroup(Image(hom));

The easiest way too handle this process of rewriting a 
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Simplification
The result of rewriting is often messy and contains “stupid” 
generators that e.g. duplicate others. Thus reduce 
heuristically by applying Tietze Transformations: 

Add/Delete relator that is word in other relators 
Add/Delete generator that occurs only in one relator 

(In fact GAP already does some initial simplification on its 
own, before even returning the homomorphism.) 

IsomorphismSimplifiedFpGroup does so more boldly.



Calculating Group Order

To determine a groups order, rewrite the presentation to a 
subgroup (e.g. Low Index, Quotient pre-image of 
subgroup, generated by some elements) and use this. 

Maybe iterate. 

In particular: Cyclic subgroup, generated by one element 
— presentations in one generator are easy. 

If group is finite this will eventually terminate.



Finding Presentations For Group

For a (permutation) group G, find a presentation: 

1. Investigate multiplication structure, find some relators, 
prove that they define no larger group. 

2. Take homomorphism from free group, compute kernel 
generators via stabilizer chain. 

3. Combine presentations of normal subgroup and factor 
group (similar to how a pc presentation works).



Simple Nonabelian Factors
Use Classification of Finite Simple Groups: 

Cyclic: done. 

Alternating: Presentation on (1,2,3,4,…n), (1,3,2,4,5,…,n) 
(odd n, variant for even n) from COXETER, MOSER book. 

Sporadic: Ad-hoc presentations found by hand. 

Lie Type (e.g. GL for finite fields): STEINBERG presentations. 
These are not short in the storage size of a generating set. 



Short Presentations
For complexity analysis — if the presentation grows too 
much, evaluating a presentation will take too much time 
— a lot of recent work has gone towards finding short 
presentations of groups of Lie type: 

Lie Type of rank >1 (STEINBERG 1962, BABAI, GOODMAN, 
KANTOR, LUKS, PÁLFY, 1997) 
PSL2(q) (TODD 1936) 

Suzuki groups (SUZUKI 1964) 
PSU3(q) (H., SERESS 2001) 

Only the Ree groups 2G2(q) remain    ...



4

Permutation 
And Matrix 

Groups



Testing Random Stabilizer Chains

Can compute a stabilizer chain quickly by random methods. 

If we are unlucky, the chain describes a set that is too small. 

Calculate a presentation for this group (From Composition 
Series and presentations for simple factors, combine) 

If we were unlucky, the resulting presentation describes a 
smaller group. 

Detect this by evaluating the presentation on G. If it is too 
tight (or anything failed) we know stabilizer chain was wrong. 

Otherwise we have certified the stabilizer chain to be correct!



Almost Linear Time Stab.Chain
1. Compute stabilizer chain, using  only random 
subproducts of Schreier generators. (Quick) 

2. Determine composition series. (see below) 

3. (Short — for good complexity) presentation for whole 
group, from composition factors. (Rewrite in original 
generators.) 

4. If anything failed, or group does not satisfy presentation, 
the random calculation failed — add further random 
Schreier generators. Otherwise proven correct.



Towards Composition Series

Thus need composition series. 
Want to construct a composition series 
G=G0>G1>…>Gk=〈1〉, that is  Gi+1⊲ Gi and 

Gi/Gi+1 simple. 
Use homomorphism kernels to split; Either:  

Find a homomorphism φ on G with 
“smaller” (by size or required effort) image.                                                   
Recurse to image, kernel. Or: 
Prove that G is simple.



The resulting data structure is called a Composition Tree. 

Natural Source of Homomorphisms: Group Actions, in 
particular from permutation action. 
(Same concept for other groups but different actions.) 
If intransitive: Action on one orbit.

Composition Tree

G with ⇤
. &

N = ker⇤  G F = Image(⇤)
with ⇥ with �

. & . &
ker⇥  N Image(⇥) ker �  F Image(�)



1 2

34

Blocks (AKA imprimitivity)
G acting (transitively) on Ω, a block system is a G-invariant 
partition B of Ω, i.e. Ω = ∪B ∈ B  B but Bi∩Bj=∅. Thus G also 
acts on B. 



Basic facts: 
• All blocks have the same size. 
• Trivial block systems: {Ω} and singleton sets. If only these 

two: G primitive (otherwise imprimitive). 
• Block systems are in bijection with subgroups StabG(ω) ≤ S 
≤ G, S is stabilizer of block with ω.  

• If N⊲G the orbits of N form a block system.

Blocks (AKA imprimitivity)
G acting (transitively) on Ω, a block system is a G-invariant 
partition B of Ω, i.e. Ω = ∪B ∈ B  B but Bi∩Bj=∅. Thus G also 
acts on B. 



Primitive Groups
If no blocks, G is primitive. The O'NAN-SCOTT theorem 
describes the possible structure. 

Key component: The Socle Soc(G), subgroup generated by 
all minimal normal subgroups. 

Lemma:   Soc(G) is direct product of minimal normal 
subgroups. 

Proof:   Take M ≤ Soc(G), M⊲G maximal with this 
property. If M≠Soc(G) there exists N⊲G, minimally 
normal, N ≮M. Thus M∩N= 1  and M,N =M×N ≤ 
Soc(G) is larger, Contradiction.

SCOTT 
1979

Leonard Scott, *1942 Michael O’Nan, *1943



Primitive Groups
If no blocks, G is primitive. The O'NAN-SCOTT theorem 
describes the possible structure. 

Key component: The Socle Soc(G), subgroup generated by 
all minimal normal subgroups. 

Lemma:   Soc(G) is direct product of minimal normal 
subgroups. 

Proof:   Take M ≤ Soc(G), M⊲G maximal with this 
property. If M≠Soc(G) there exists N⊲G, minimally 
normal, N ≮M. Thus M∩N= 1  and M,N =M×N ≤ 
Soc(G) is larger, Contradiction.



Actions To Get Composition Tree

 If intransitive, act on orbit. Otherwise: 

 If imprimitive, act on blocks (as sets). Otherwise: 

 If primitive, socle not simple: act on socle factors. 
Otherwise: 

 If not simple: Out(S) is small, solvable. Otherwise: 

 Constructive recognition (isomorphism) to simple 
group. (Use CFSG!).   Later.



In GAP
When working with permutations groups, knowing a 
groups order speeds up calculations immensely! 

There is CompositionSeries (also DerivedSeries, 
ElementaryAbelianSeries, …) and DisplayCompositionSeries. 

Blocks(group,domain,action) finds a block system 
(also: IsPrimitive), AllBlocks finds representatives for 
all block systems. 



Same Idea For Matrix Groups

For Matrix groups (and others) the stabilizer chain 
approach can be infeasible because of long orbits. 

Thus use same approach of homomorphisms to 
decompose the group and get a composition series as 
basic data structure. 



To repeat strategy from permutation groups, need actions for 
matrix groups. For example (MeatAxe) action on submodule 
or quotient module. 

Need actions for irreducible groups:

Matrix Actions

Permutation Matrix

intransitive reducible

imprimitive induced

Permutation of basis vectors



To repeat strategy from permutation groups, need actions for 
matrix groups. For example (MeatAxe) action on submodule 
or quotient module. 

Need actions for irreducible groups:

Matrix Actions

Permutation Matrix

intransitive reducible

imprimitive induced

Permutation of basis vectors

Matrix wreath product: A is of 
dimension m, B permutes n 
points. A≀B in dimension n·m, 
Each copy of A is diagonal 
block, B permutes blocks.



To repeat strategy from permutation groups, need actions for 
matrix groups. For example (MeatAxe) action on submodule 
or quotient module. 

Need actions for irreducible groups:

Matrix Actions

Permutation Matrix

intransitive reducible

imprimitive induced

Permutation of basis vectors Tensor products

Permutation Matrix

intransitive tensor product

imprimitive tensor wreath

Space whose basis is 
labelled with formal 
products b⊗c, compatible 
action on both parts.



To repeat strategy from permutation groups, need actions for 
matrix groups. For example (MeatAxe) action on submodule 
or quotient module. 

Need actions for irreducible groups:

Matrix Actions

Permutation Matrix

intransitive reducible

imprimitive induced

Permutation of basis vectors Tensor products

Permutation Matrix

intransitive tensor product

imprimitive tensor wreath

Space whose basis is 
labelled with formal 
products b⊗c, compatible 
action on both parts.

Analog to O’NAN-SCOTT, ASCHBACHER’s theorem describes 
geometric reductions for matrix groups.



Aschbacher’s Theorem
Matrix group over finite fields fall in classes: 

1) Reducible 
2) Induced 
3) Up to scalars, in smaller dimension over larger field. 
4) Tensor product of non isomorphic submodules 
5) Up to scalars, write over smaller field 
6) Normalizing an extraspecial group 
7) Tensor Wreath product 
8) Stabilizing bilinear form (Sp, O, U) 
9) Almost simple (ie. T ≤ G≤Aut(T ) )

ASCHBACHER 
1984



Matrix Group Recognition
Research project in CGT over last 15-20 years: 

Develop algorithms that will recognize the different 
classes and produce homomorphisms. 

If (almost) simple, recognize the group — isomorphism 
(type and actual bijective map) to natural representation. 

Presentations for simple group give generators of 
kernels. Get composition tree. 

In Las-Vegas (random selections+verification) poly. time. 

Implementations recently available.
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Matrix Group Recognition
Research project in CGT over last 15-20 years: 

Develop algorithms that will recognize the different 
classes and produce homomorphisms. 

If (almost) simple, recognize the group — isomorphism 
(type and actual bijective map) to natural representation. 

Presentations for simple group give generators of 
kernels. Get composition tree. 

In Las-Vegas (random selections+verification) poly. time. 

Implementations recently available.

Derek Holt Ákos Seress, 1958-2013Max Neunhöffer



Base Case: Simple Groups
After the reductions of ASCHBACHER’s theorem we have an 
almost simple group. Due to SCHREIERs conjecture G’’’ is 
simple and [G:G’’’] small. WLOG G simple, no reduction. 

Assumption: We know G (we know the simple groups). 

Find an isomorphism (called constructive recognition from G 

to the natural representation of the simple group (An as 
permutations, PSL as matrices up to scalars, …). 

Then use known information from the literature (or 
stabilizer chain methods…) to obtain the result.



(Constructive) Recognition
First identify the type of G by looking at order statistics. 

But G might be in some (horrible) matrix representation. 

The elements of the natural representation act as matrices 
or permutations. 

Build these from scratch by acting on suitable objects that 
correspond to the underlying geometry/combinatorics. 

E.g. transvections v ↦ v+ t in place of vectors. Identify such 

elements from orders (also of products).



Model: Black-Box Groups

Conceptually this utilizes the model of a black-box group: 

Can form products, inverses 

Can test for equality 

Upper bound on group order. 

To enable homomorphisms, find kernels, remember how 
elements were formed as products of generators.


