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Lecture 4: Steenrod algebra
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X=S’vStvsS! or X=T?2?
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Cup Product

A X = X x X, x— (x,x)

A,: CX — C(X x X)

Hom(C, X, Z) < Hom(C.(X x X),Z)

HPTA(X,Z) + HPTI(X x X,Z) + HP(X,Z) x HY(X,Z)

xUy « (x,y)



The cohomology ring

H*(X,Z) = P H"(X,Z)
n>0

is a graded commutative ring:

xUy=(-1)Pyux
for x € HP(X,Z), y € HI(X,Z).



We’'ll consider the special case: X = EG/G

For BG = EG/G the first n degrees of

H*(BG,Z)
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contracting homotopy.
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We'll consider the special case: X = EG/G and F =7Z/pZ

For BG = EG/G the first n degrees of

H*(BG,T)

is calculated from n -+ 1 terms of a free [F G-resolution with
contracting homotopy.

For a fundamental group G = w1 X of any space X there is a ring
homomorphism

H*(BG,F) —s H*(X,F)
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Diagonal map A: C,(BG) — C.(BG x BG)

The homomorphism ¢: G = G x G,g +— g x g induces a
¢-equivariant chain map of free resolutions

C3(EG) — C3(EG X EG)

CQ(EG) — C2(EG X EG)

Cl(EG) —— Cl(EG X EG)

Co(EG) —— Co(EG X EG)

and A: C(EG) ®z6 Z — C.(EG x EG) ®z6 Z



Cartan-Eilenberg double coset formula

For finite G and F = Z/pZ

H*(Sylp(G), FF)
is the subalgebra of
H*(G,TF)

consisting of the ‘stable elements’.



Poincaré series

For a finite group G and F = Z/pZ define

P(t) =) apt"

n>0

with

a, =dim(H"(G,F)) .



Example (E, Green, King)

For the third Conway group Coz the cohomology ring
H*(CO3,F2)

has Poincaré series

f(t)
P(t) = (1— 8)(1 — t22)(1 — t14)(1 — £)

where f(t) is the monic polynomial of degree 45 with coefficients
1,1,1,1,2,3,3,4,4,6,7,8,9, 10, 10, 11, 13, 12, 14, 15, 13,
13, 15, 14, 12, 13, 11, 10, 10,9, 8, 7,6, 4,4,3,3,2,1, 1, 1, 1.



Example (E, Green, King)

Faolxq,- -+, x16)

H* Fy) =
(CO37 2) (r]_:O,"',r7]_:0)

where 3 < deg(x;) < 13 and deg(r;) < 33.
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Example (E, Green, King)

. Falxi, -, x16)
H ) =
(CO37 2) (I’1=0,'-' ,I’7]_:0)

where 3 < deg(x;) < 13 and deg(r;) < 33.

This answers a question of Dave Benson: is this cohomology ring
Cohen-Macaulay?

Yes: it has Krull dimension 4 and depth 4.



Simpler Example

: _ Flx.y, 2]
P = Gy =)

where deg(x) = deg(y) = 1,deg(z) =2



Simpler Example

Fix, y, 2]
(v =y?)
where deg(x) = deg(y) = 1,deg(z) =2

H*(Dose, F) =

gap> Mod2CohomologyRingPresentation(DihedralGroup(512));
Graded algebra GF(2)[ x_1, x_2, x_3 1 / [ x_1*x_2+x_2"2
] with indeterminate degrees [ 1, 1, 2 ]
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Mod-2 cohomology rings of small 2-groups

® G < 32: cohomology rings and many (but not all) Steenrod
operations computed by Rusin (1989).

® G = 64 : cohomology rings computed by Jon Carlson (2003).

® G =32 : more (but not all) Steenrod operations computed by
Thanh (2011).

O G =128 : cohomology rings computed by Green and King
(2011).
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The computation has two parts

@ It was shown by Len Evens and others that H*(G,F>) is a
finitely presented algebra. So we can compute a presentation
from sufficiently many terms of a free IFG-resolution of F.

® But we don't have realistic bounds on the number of terms of
the resolution that we need.



Computing a free FG-resolution for a finite p-group G

Ro: --+—2>R,—-Ri1—> =Ry



Computing a free FG-resolution for a finite p-group G

Ro: --+—2>R,—-Ri1—> =Ry

e set Ry = FG,



Computing a free FG-resolution for a finite p-group G

Ro: --+—2>R,—-Ri1—> =Ry

e set Ry = FG,
o define dy: FG — F, X \zg — L)g,



Computing a free FG-resolution for a finite p-group G
Ro: --+—2>R,—-Ri1—> =Ry

e set Ry = FG,
e define dy: FG — F, X \,g — X )g,

Then recursively



Computing a free FG-resolution for a finite p-group G

Ro: --+—2>R,—-Ri1—> =Ry

e set Ry = FG,
e define dy: FG — F, X \,g — X )g,
Then recursively

e determine ker d, using gaussian elimination,



Computing a free FG-resolution for a finite p-group G

Ro: --+—2>R,—-Ri1—> =Ry

e set Ry = FG,
e define dy: FG — F, X \,g — X )g,

Then recursively
e determine ker d, using gaussian elimination,

e determine a subset {vi,--- vx} C ker d, whose FG-span
equals ker dp,



Computing a free FG-resolution for a finite p-group G

Ro: --+—2>R,—-Ri1—> =Ry

e set Ry = FG,
e define dy: FG — F, X \,g — X )g,

Then recursively
e determine ker d, using gaussian elimination,

e determine a subset {vi,--- vx} C ker d, whose FG-span
equals ker dp,

o set Rp11 = (FG)X,



Computing a free FG-resolution for a finite p-group G

Ro: --+—2>R,—-Ri1—> =Ry

e set Ry = FG,
e define dy: FG — F, X \,g — X )g,

Then recursively
e determine ker d, using gaussian elimination,
e determine a subset {vi,--- vx} C ker d, whose FG-span
equals ker dp,
o set Rp11 = (FG)X,
o define d,i1: (FG)* — R, by sending the ith free generator to
Vi.



Computing a free FG-resolution for a finite p-group G

Ro: --+—2>R,—-Ri1—> =Ry

e set Ry = FG,
e define dy: FG — F, X \,g — X )g,

Then recursively

e determine ker d, using gaussian elimination,

e determine a subset {vi,--- vx} C ker d, whose FG-span
equals ker dp,

o set Rp11 = (FG)X,

o define d,i1: (FG)* — R, by sending the ith free generator to
Vi.

e construct F-linear contracting homomorphisms h: R, — Rp41
using linear algebra.



Computing a free FG-resolution for a finite p-group G

Ro: --+—2>R,—-Ri1—> =Ry

e set Ry = FG,
e define dy: FG — F, X \,g — X )g,

Then recursively

e determine ker d, using gaussian elimination,

e determine a subset {vi,--- vx} C ker d, whose FG-span
equals ker d,,

o set Rp11 = (FG)X,

o define d,i1: (FG)* — R, by sending the ith free generator to
Vi.

e construct F-linear contracting homomorphisms h: R, — Rp41
using linear algebra.
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Computing generators for an FG-module M C FG
The Radical of M is the submodule

Rad(M)={v—g-v:veM,ge G}

Rad(M) is the F-span of vectors v — g - v where v runs over a
basis of M and g runs over a generating set of G.

Any basis for the vector space M/Rad(M) corresponds to a
minimal generating set of the module M.
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Size of computation determined by:

e order of G.
e growth(G) = min{s € N: lim,_, w =0}.

Theorem [Quillen]
growth(G) = rank of largest elementary abelian subgroup of G.

e degrees of ring generators and relations
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Complete set of generators and relators for the ring H*(G,TF)

are found using Len Evens’ proof that H*(G,F) is finitely
presented if G is finite.

Example G = quaternion group of order 8



Complete set of generators and relators for the ring H*(G,TF)

are found using Len Evens’ proof that H*(G,F) is finitely
presented if G is finite.

Example G = quaternion group of order 8

N— Qg — Q
N:Z(G):C2, Q:C2><C2



Wall’s resolution

RS = P Dpq: Dpg =R} @z RS
pt+q=n
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Lyndon-Hochschild-Serre spectral sequence

0
Epq = Dpq ®rc F, E° = @ Epq

d®: E° — E°

0 0 0 0
E32 E22 E12 E02
0 0 0 0
E31 E21 Ell EOl
dO



Lyndon-Hochschild-Serre spectral sequence

E' = H(E®)



Lyndon-Hochschild-Serre spectral sequence

E' = H(E®)
dt: E' — F1
E3 E 27 Ego
dl
E5 Ex Ely Ey

1 1 1 1
E30 E20 ElO EOO



Lyndon-Hochschild-Serre spectral sequence

E? = H(EY)

d?: E? — E?

2 2 2 2
E32 E22 E12 E02
d2
2 2 2 2
E31 E21 Ell EOl

2 2 2 2
E30 E20 ElO EOO



Lyndon-Hochschild-Serre spectral sequence

E? = H(E') = H*(Q,F) ® H*(N,TF)

d?: E? — E? a derivation

2 2 2 2
E32 E22 E12 E02
d2
2 2 2 2
E31 E21 Ell EOl

2 2 2 2
E30 E20 ElO EOO



Lyndon-Hochschild-Serre spectral sequence
EN — H(En—l)

d": E" — E" a derivation

E3 Ex Ef, g



Lyndon-Hochschild-Serre spectral sequence
EN — H(En—l)

d": E" — E" a derivation
Grobner bases yield H™1(E™).

E3 E% Ef, Eg



Lyndon-Hochschild-Serre spectral sequence
E"=H(E")
d": E" — E" a derivation

Grobner bases yield H™*1(E™). At some point E" = E"*1; minimal
generators/relations for E” and H*(G,F) have same degrees

E3 E% S Eg



For the quaternion group G
E4 o FOO

has presentation with generators and relators of degree < 4.



For the quaternion group G
E4 o FOO

has presentation with generators and relators of degree < 4.

A presentation for H*(G,F) can be read from five terms of a free
[F G-resolution of F.
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® Sq° is the identity homomorphism.

® Sq' = [ is equal to the Bockstein homomorphism.
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Steenrod operations (I = Z/27)
Sq': H"(X,F) — H™(X,F) (i >0)

® Sq° is the identity homomorphism.

® Sq' = [ is equal to the Bockstein homomorphism.

® Sq'(x) = xUx if x is a homogeneous element of degree i.

® S5q'(x) = 0 if x is a homogeneous element of degree < i.

© Sq'(x +y) = Sq'(x) + Sq'(y).

® Sq'(xUy) = 33j_o S (x) U Sq(y).

@ Sq'(f*(x)) = F*(Sq'(x)) for the cohomology homomorphism
f* induced by any map f: X — X'.

(
(
(
(

(8]
[2/2] b—c—-1
Sanqb = E < >Sq"’ b_CSqC

a—2c
c=0



Example: X = BG with G = D3,
gap> CohomologicalData(DihedralGroup(64),9);

Group order: 64
Group number: 52
Group description: D64

Cohomology generators
Degree 1: a, b
Degree 2: c

Cohomology relations
1: axb+b~2

Poincare series
(1) /(x"2-2%x+1)

Steenrod squares
Sq~1(c)=c*a



Ingredients of the construction

G =(z|z22=1)



Ingredients of the construction

G =(zl22=1) RCE*C =RC®;RC



Ingredients of the construction

C2 — <Z|Z2 — 1> RGXG RG ®7 RG RC2><G RC2 ®7 RG
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Ingredients of the construction
G =(z122=1) RE**=RC®;RE RZ*C=RCw;RE
Gy x G acts on RE*C by
(z.8) (g'ef ®g"e]) = (—1)"gg" e} @ gg'ef
¢ R2*C 5 REC 0 el s el @ e
RS — Homzg(RS,Z),u—~ T
Z), UV — TU;V

Homy,6 (RS, Z)®@Homyg (RS, Z) — Homyg (RS,

TU;7(C) = U Vpig(f ®c)



Theorem

The operation
Homzg(RE) — Homzg (RS, 1), T —TU; T
induces a homomorphism
Sqi: H™(G,Zy) — H*"~(G, Zy).
The homomorphism
Sq' = Sqn_i: H"(G,Z2) — H™ (G, Zy)

is independent of the choices in ¢, and satisfies the required
properties.



