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CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

NOTATION

Throughout this lecture, G denotes a finite group and F a field.

Also, A denotes a finite-dimensional F -algebra,
J(A) the Jacobson radical of A
(i.e., the intersection of the maximal right ideals of A).

mod-A: category of finite-dimensional right A-modules
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CONDENSATION: MOTIVATION

The MeatAxe can reduce representations of degree up to
200 000 over F2.

Over larger fields, only smaller degrees are feasible.

To overcome this problem, Condensation is used (Thackray,
Parker, ca. 1980).
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CONDENSATION: THEORY [J. A. GREEN 1980]

Let e ∈ A an idempotent, i.e., 0 6= e = e2 (a projection).

Get exact functor: mod-A→ mod-eAe, V 7→ Ve.

If S ∈ mod-A is simple, then Se = 0 or simple.

Let S1, . . . ,Sn be the simple A-modules (up to isomorphism).

Suppose that S1e 6= 0, . . . ,Sme 6= 0, Sm+1e = · · · = Sne = 0.

Then S1e, . . . ,Sme are exactly the simple eAe-modules (up to
isomorphism).

As the Condensation functor is exact, it sends a composition
series of V ∈ mod-A to a composition series of Ve ∈ mod-eAe.
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CONDENSATION: MORITA EQUIVALENCE

If Se 6= 0 for all simple S ∈ mod-A, then Condensation is an
equivalence of categories, i.e. A and eAe are Morita
equivalent.

An indecomposable direct summand of AA is called a PIM.

(A PIM in the sense of Lecture 2 is the Brauer character of a
PIM of FG, extended by 0 from Gp′ to G.)

A projective A-module is a direct sum of PIMs.

A finite-dimensional F -algebra B is Morita equivalent to A, if
B ∼= EndA(Q) for a projective module Q of A containing every
PIM of A (up to isomorphism) as a direct summand.

Morita equivalent algebras have “the same” representations.
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CONDENSATION: IDEMPOTENTS

Let H ≤ G with char(F ) - |H|.

Then

e := eH :=
1
|H|

∑
x∈H

x ∈ FG

is a suitable idempotent.

Other idempotents can be used, e.g.,

e =
1
|H|

∑
x∈H

λ(x−1)x ∈ FG,

where λ : H → F ∗ is a homomorphism (Noeske, 2005).
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CONDENSATION: PERMUTATION MODULES, I

Let e := eH = 1/|H|
∑

x∈H be as above.

Let V be the permutation FG-module w.r.t. an action of G on
the finite set Ω. Then Ve is the set of H-fixed points in V .

Task: Given g ∈ G, determine the action of ege on Ve,

without the explicit computation of the action of g on V .

THEOREM (THACKRAY AND PARKER, 1981)
This can be done!
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CONDENSATION: PERMUTATION MODULES, II

Let Ω1, . . . ,Ωm be the H-orbits on Ω.

The orbits sums Ω̂j :=
∑

ω∈Ωj
ω ∈ V form a basis of Ve.

W.r.t. this basis, the (i , j)-entry aij of the matrix of ege on Ve
equals

aij =
1
|Ωj |
|Ωig ∩ Ωj |.
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ENUMERATION OF LONG ORBITS

To perform these computations, we need to be able to
1 compute Ωj and |Ωj |, 1 ≤ j ≤ m,

2 decide ω ∈ Ωj? for given ω ∈ Ω and 1 ≤ j ≤ m.

In actual applications, |Ω| ≈ 1015, so the elements of Ω can not
be stored in memory.

Parker and Wilson suggested Direct Condensation methods;
these were later extended and implemented by Cooperman,
Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the H-orbits Ωj by suborbits of
subgroups U ≤ H. Iterate this idea.

Details depend on the realisation of the action on Ω.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

ENUMERATION OF LONG ORBITS

To perform these computations, we need to be able to
1 compute Ωj and |Ωj |, 1 ≤ j ≤ m,
2 decide ω ∈ Ωj? for given ω ∈ Ω and 1 ≤ j ≤ m.

In actual applications, |Ω| ≈ 1015, so the elements of Ω can not
be stored in memory.

Parker and Wilson suggested Direct Condensation methods;
these were later extended and implemented by Cooperman,
Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the H-orbits Ωj by suborbits of
subgroups U ≤ H. Iterate this idea.

Details depend on the realisation of the action on Ω.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

ENUMERATION OF LONG ORBITS

To perform these computations, we need to be able to
1 compute Ωj and |Ωj |, 1 ≤ j ≤ m,
2 decide ω ∈ Ωj? for given ω ∈ Ω and 1 ≤ j ≤ m.

In actual applications, |Ω| ≈ 1015, so the elements of Ω can not
be stored in memory.

Parker and Wilson suggested Direct Condensation methods;
these were later extended and implemented by Cooperman,
Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the H-orbits Ωj by suborbits of
subgroups U ≤ H. Iterate this idea.

Details depend on the realisation of the action on Ω.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

ENUMERATION OF LONG ORBITS

To perform these computations, we need to be able to
1 compute Ωj and |Ωj |, 1 ≤ j ≤ m,
2 decide ω ∈ Ωj? for given ω ∈ Ω and 1 ≤ j ≤ m.

In actual applications, |Ω| ≈ 1015, so the elements of Ω can not
be stored in memory.

Parker and Wilson suggested Direct Condensation methods;
these were later extended and implemented by Cooperman,
Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the H-orbits Ωj by suborbits of
subgroups U ≤ H. Iterate this idea.

Details depend on the realisation of the action on Ω.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

ENUMERATION OF LONG ORBITS

To perform these computations, we need to be able to
1 compute Ωj and |Ωj |, 1 ≤ j ≤ m,
2 decide ω ∈ Ωj? for given ω ∈ Ω and 1 ≤ j ≤ m.

In actual applications, |Ω| ≈ 1015, so the elements of Ω can not
be stored in memory.

Parker and Wilson suggested Direct Condensation methods;
these were later extended and implemented by Cooperman,
Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the H-orbits Ωj by suborbits of
subgroups U ≤ H.

Iterate this idea.

Details depend on the realisation of the action on Ω.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

ENUMERATION OF LONG ORBITS

To perform these computations, we need to be able to
1 compute Ωj and |Ωj |, 1 ≤ j ≤ m,
2 decide ω ∈ Ωj? for given ω ∈ Ω and 1 ≤ j ≤ m.

In actual applications, |Ω| ≈ 1015, so the elements of Ω can not
be stored in memory.

Parker and Wilson suggested Direct Condensation methods;
these were later extended and implemented by Cooperman,
Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the H-orbits Ωj by suborbits of
subgroups U ≤ H. Iterate this idea.

Details depend on the realisation of the action on Ω.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

ENUMERATION OF LONG ORBITS

To perform these computations, we need to be able to
1 compute Ωj and |Ωj |, 1 ≤ j ≤ m,
2 decide ω ∈ Ωj? for given ω ∈ Ω and 1 ≤ j ≤ m.

In actual applications, |Ω| ≈ 1015, so the elements of Ω can not
be stored in memory.

Parker and Wilson suggested Direct Condensation methods;
these were later extended and implemented by Cooperman,
Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the H-orbits Ωj by suborbits of
subgroups U ≤ H. Iterate this idea.

Details depend on the realisation of the action on Ω.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

TENSOR PRODUCTS AND INDUCED MODULES

Let V and W be two FG-modules.
Task: Given g ∈ G, determine the action of ege on (V ⊗W )e,

without the explicit computation of the action of g on V ⊗W .

THEOREM (LUX AND WIEGELMANN, 1997)
This can be done!

Let M be a subgroup of G and let W be an FM-module.
The induced module is the FG-module W ⊗FM FG.
Task: Given g ∈ G, determine action of ege on (W ⊗FM FG)e,
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AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

HOMOMORPHISM SPACES

Let M be a subgroup of G, W an FM-module and V an
FG-FM-bimodule.

Then HomFM(V ,W ) is a right FG-module:

v(ϕg) := (gv)ϕ, v ∈ V , ϕ ∈ HomFM(V ,W ),g ∈ G.

EXAMPLES

1 HomFM(FG,F ) ∼= permutation module corresponding to
permutation action of G on Ω := M\G.

2 HomF (V ∗,W ) ∼= V ⊗W for V ,W ∈ mod-FG.
(V ∗ = HomF (V ,F ).)

3 HomFM(FG,W ) ∼= W ⊗FM FG.

Lux, Neunhöffer, Noeske develop general Condensation
programs for such homomorphism spaces.
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CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

CONDENSATION: SOME APPLICATIONS

Benson, Conway, Parker, Thackray, Thompson, 1980:
Existence of J4.

Thackray, 1981:
2-modular character table of McL.
Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997:
Brauer tree of Th modulo 19.
dim(V ) = 976 841 775, dim(Ve) = 1403.

Müller, Neunhöffer, Röhr, Wilson, 2002:
Brauer trees of Ly modulo 37 and 67.
dim(V ) = 1 113 229 656.

More applications later.
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CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

THE BASIC ALGEBRA

DEFINITION

A finite-dimensional F -algebra B is called basic, if

BB = Q1 ⊕Q2 ⊕ · · · ⊕Qn

with PIMs Qi such that Qi 6∼= Qj for 1 ≤ i 6= j ≤ n.

Alternatively, if B/J(B) is a direct sum of division algebras.

FACTS

Let P1, . . . ,Pn be the PIMs of A (up to isomorphism). Then
B := EndA(P1 ⊕ · · · ⊕ Pn) is a basic algebra Morita equivalent
to A, the basic algebra of A.

This is the smallest algebra Morita equivalent to A.
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MORITA EQUIVALENT ALGEBRAS

If dim(A) is large, it may be too difficult to construct the basic
algebra of A explicitly.

Klaus Lux uses Condensation to construct algebras of feasible
dimensions, Morita equivalent to (blocks of) group algebras FG.
Need idempotent e ∈ FG with Se 6= 0 for all simple
FG-modules S (or all simple modules in a block).
This can be checked with the modular character table of G, if
e = eH for some H ≤ G with char(F ) - |H|.
Example: Principal block B0 of HS modulo 5, |H| = 192.
dim(B0) = 15 364 500, dim(eHB0eH) = 767.
See KLAUS LUX, Faithful Condensation for Sporadic Groups,
(http://math.arizona.edu/˜klux/habil.html).
Applications: Cartan matrices for group algebras, cohomology
computations.
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CONDENSATION: HISTORY
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THE GENERATION PROBLEM

We investigate Ve through the MeatAxe, using matrices of
generators of eFGe.

QUESTION (THE GENERATION PROBLEM)
How can eFGe be generated with “a few” elements?

If E ⊆ FG with F〈E〉 = FG, then in general F〈eEe〉 � eFGe.

Let C := F 〈eEe〉 ≤ eFGe.
Instead of Ve we consider the C-module Ve|C.

We can draw conclusions on V from Ve, but not from Ve|C.
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GENERATION AND MATCHING

THEOREM (F. NOESKE, 2005)
Let H E N ≤ G. If T is a set of double coset representatives of
N\G/N and N a set of generators of N, then we have for
e = eH :

eFGe = F 〈eNe,eTe〉

as F-algebras.

More sophisticated results by Noeske on generation are
available, but have not found applications yet.

Matching Problem: Let e,e′ ∈ FG be idempotents. Suppose
S,S′ ∈ mod-FG are simple, and we know Se and S′e′. Can we
decide if S ∼= S′? Yes! (Noeske, 2008)
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CONDENSING PROJECTIVE MODULES

Not a new idea, but now feasible through
improved Condensation techniques
programs by Jon Carlson for matrix algebras (see next
lecture)

If P = eFG is projective, then EndFG(P) = eFGe = Pe, and
“generation” can be checked. E.g. dim(EndFG(P)) known.

EXAMPLE (G = Th, p = 5)
1 (Done in 2007 with Jon Carlson):

P = eHFG, for H = 3xG2(3), dim(P) = 7 124 544 000,
dimF (EndFG(P)) = 788 some progress

2 (Envisaged):
dim(Q) = 43 957 879 875, dimF (EndFG(Q)) = 21 530
 almost finish Th modulo 5
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CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

THE FISCHER GROUP Fi23

Let G denote the Fischer group Fi23.

This is a sporadic simple group of order

4 089 470 473 293 004 800.

G has a maximal subgroup M of index 31 671, isomorphic to
2.Fi22, the double cover of the Fischer group Fi22.

In joint work with Max Neunhöffer and F. Noeske we have
computed the 2-modular character table of G.
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CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

SOME REPRESENTATIONS OF Fi23

In the following, let F = F2, the field with 2 elements.

Let Ω := M\G and let V denote the corresponding permutation
module over F (thus dimF (V ) = 31 671).

Using the MeatAxe we found: V contains composition factors
1,782,1 494,3 588,19 940 (denoted by their degrees).
(This took about 4 days of CPU time in 8 GB main memory.)

Using Condensation we analysed the ten tensor products:

782⊗ 782,782⊗ 1 494, . . . ,19 940⊗ 19 940.

Note: dimF (19 940⊗ 19 940) = 367 603 600.
One such matrix over F2 would need ≈ 18 403 938 GB.
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CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

THE CONDENSATION FOR Fi23

1 We took H ≤ G, |H| = 39 = 19 683.

2 We found that eFGe and FG are Morita equivalent (a
posteriori).

3 dimF (19 940⊗ 19 940)e = 25 542.

One such matrix over F2 needs ≈ 77.8 MB.

About 1 week of CPU time to compute the action of one
element ege on (19 940⊗ 19 940)e.

4 Every irreducible FG-module (of the principal 2-block)
occurs in 19 940⊗ 19 940.
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THE IRREDUCIBLE BRAUER CHARACTERS OF Fi23

The results of the Condensation and further computations with
Brauer characters using GAP and MOC gave all the irreducible
2-modular characters of G.

Degrees of the irreducible 2-modular characters of Fi23:
1, 782, 1 494, 3 588,

19 940, 57 408, 79 442, 94 588,
94 588, 583 440, 724 776, 979 132,

1 951 872, 1 997 872, 1 997 872, 5 812 860,
7 821 240, 8 280 208, 17 276 520, 34 744 192,

73 531 392, 97 976 320, 166 559 744, 504 627 200,
504 627 200.

Using similar methods, Görgen and Lux have recently
computed the irreducible characters of Fi23 over F3.
(Largest condensed module:184 644,
largest module found: 34 753 159.)

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

THE IRREDUCIBLE BRAUER CHARACTERS OF Fi23

The results of the Condensation and further computations with
Brauer characters using GAP and MOC gave all the irreducible
2-modular characters of G.

Degrees of the irreducible 2-modular characters of Fi23:
1, 782, 1 494, 3 588,

19 940, 57 408, 79 442, 94 588,
94 588, 583 440, 724 776, 979 132,

1 951 872, 1 997 872, 1 997 872, 5 812 860,
7 821 240, 8 280 208, 17 276 520, 34 744 192,

73 531 392, 97 976 320, 166 559 744, 504 627 200,
504 627 200.

Using similar methods, Görgen and Lux have recently
computed the irreducible characters of Fi23 over F3.
(Largest condensed module:184 644,
largest module found: 34 753 159.)

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

THE IRREDUCIBLE BRAUER CHARACTERS OF Fi23

The results of the Condensation and further computations with
Brauer characters using GAP and MOC gave all the irreducible
2-modular characters of G.

Degrees of the irreducible 2-modular characters of Fi23:
1, 782, 1 494, 3 588,

19 940, 57 408, 79 442, 94 588,
94 588, 583 440, 724 776, 979 132,

1 951 872, 1 997 872, 1 997 872, 5 812 860,
7 821 240, 8 280 208, 17 276 520, 34 744 192,

73 531 392, 97 976 320, 166 559 744, 504 627 200,
504 627 200.

Using similar methods, Görgen and Lux have recently
computed the irreducible characters of Fi23 over F3.
(Largest condensed module:184 644,
largest module found: 34 753 159.)

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

REFERENCES

1 D. F. HOLT, B. EICK AND E. A. O’BRIEN, Handbook of
Computational Group Theory, Chapman & Hall/CRC, 2005.

2 K. LUX, Algorithmic methods in modular representation
theory, Habilitationsschrift, RWTH Aachen University,
1997.

3 K. LUX AND H. PAHLINGS, Representations of Groups.
A computational approach. Cambridge University Press,
2010.

4 J. MÜLLER, M. NEUNHÖFFER AND R. WILSON,
Enumerating big orbits and an application: B acting on the
cosets of Fi23, J. Algebra 314, 2007, 75–96.

5 F. NOESKE, Morita-Äquivalenzen in der algorithmischen
Darstellungstheorie, Dissertation, RWTH Aachen
University, 2005.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV



CONDENSATION
AN EXAMPLE: THE FISCHER GROUP Fi23 MODULO 2

Thank you for your attention!
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