Computational Representation Theory – Lecture IV

Gerhard Hiss

Lehrstuhl D für Mathematik RWTH Aachen University

Group Theory and Computational Methods ICTS-TIFR, Bangalore, 05 – 14 November 2016

Condensation

An Example: The Fischer Group Fi₂₃ Modulo 2

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV

Throughout this lecture, G denotes a finite group and F a field.

Throughout this lecture, G denotes a finite group and F a field.

Also, \mathfrak{A} denotes a finite-dimensional *F*-algebra, $J(\mathfrak{A})$ the Jacobson radical of \mathfrak{A}

Throughout this lecture, G denotes a finite group and F a field.

Also, \mathfrak{A} denotes a finite-dimensional *F*-algebra, $J(\mathfrak{A})$ the Jacobson radical of \mathfrak{A} (i.e., the intersection of the maximal right ideals of \mathfrak{A}).

Throughout this lecture, G denotes a finite group and F a field.

Also, \mathfrak{A} denotes a finite-dimensional *F*-algebra, $J(\mathfrak{A})$ the Jacobson radical of \mathfrak{A} (i.e., the intersection of the maximal right ideals of \mathfrak{A}).

mod-21: category of finite-dimensional right 21-modules

CONDENSATION: MOTIVATION

The MeatAxe can reduce representations of degree up to 200 000 over $\mathbb{F}_2.$

CONDENSATION: MOTIVATION

The MeatAxe can reduce representations of degree up to 200 000 over \mathbb{F}_2 .

Over larger fields, only smaller degrees are feasible.

CONDENSATION: MOTIVATION

The MeatAxe can reduce representations of degree up to 200 000 over \mathbb{F}_2 .

Over larger fields, only smaller degrees are feasible.

To overcome this problem, Condensation is used (Thackray, Parker, ca. 1980).

Let $e \in \mathfrak{A}$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Let $e \in \mathfrak{A}$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get exact functor: $mod-\mathfrak{A} \to mod-\mathfrak{e}\mathfrak{A} e, V \mapsto V e$.

Let $e \in \mathfrak{A}$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get exact functor: $mod-\mathfrak{A} \to mod-e\mathfrak{A}e$, $V \mapsto Ve$.

If $S \in \text{mod-}\mathfrak{A}$ is simple, then Se = 0 or simple.

Let $e \in \mathfrak{A}$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get exact functor: $\text{mod-}\mathfrak{A} \to \text{mod-}e\mathfrak{A}e, V \mapsto Ve$.

If $S \in \text{mod-}\mathfrak{A}$ is simple, then Se = 0 or simple.

Let S_1, \ldots, S_n be the simple \mathfrak{A} -modules (up to isomorphism).

Let $e \in \mathfrak{A}$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get exact functor: $\text{mod-}\mathfrak{A} \to \text{mod-}e\mathfrak{A}e, V \mapsto Ve$.

If $S \in \text{mod-}\mathfrak{A}$ is simple, then Se = 0 or simple.

Let S_1, \ldots, S_n be the simple \mathfrak{A} -modules (up to isomorphism).

Suppose that $S_1 e \neq 0, \ldots, S_m e \neq 0, S_{m+1} e = \cdots = S_n e = 0$.

Let $e \in \mathfrak{A}$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get exact functor: $\text{mod-}\mathfrak{A} \to \text{mod-}e\mathfrak{A}e, V \mapsto Ve$.

If $S \in \text{mod-}\mathfrak{A}$ is simple, then Se = 0 or simple.

Let S_1, \ldots, S_n be the simple \mathfrak{A} -modules (up to isomorphism).

Suppose that $S_1 e \neq 0, \ldots, S_m e \neq 0, S_{m+1} e = \cdots = S_n e = 0$.

Then S_1e, \ldots, S_me are exactly the simple $e \mathfrak{A}e$ -modules (up to isomorphism).

Let $e \in \mathfrak{A}$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get exact functor: $\text{mod-}\mathfrak{A} \to \text{mod-}e\mathfrak{A}e, V \mapsto Ve$.

If $S \in \text{mod-}\mathfrak{A}$ is simple, then Se = 0 or simple.

Let S_1, \ldots, S_n be the simple \mathfrak{A} -modules (up to isomorphism).

Suppose that $S_1 e \neq 0, \ldots, S_m e \neq 0$, $S_{m+1} e = \cdots = S_n e = 0$.

Then S_1e, \ldots, S_me are exactly the simple $e \mathfrak{A}e$ -modules (up to isomorphism).

As the Condensation functor is exact, it sends a composition series of $V \in \text{mod-}\mathfrak{A}$ to a composition series of $Ve \in \text{mod-}e\mathfrak{A}e$.

If $Se \neq 0$ for all simple $S \in \text{mod-}\mathfrak{A}$, then Condensation is an equivalence of categories, i.e. \mathfrak{A} and $e\mathfrak{A}e$ are Morita equivalent.

If $Se \neq 0$ for all simple $S \in \text{mod-}\mathfrak{A}$, then Condensation is an equivalence of categories, i.e. \mathfrak{A} and $e\mathfrak{A}e$ are Morita equivalent.

An indecomposable direct summand of $\mathfrak{A}_{\mathfrak{A}}$ is called a PIM.

If $Se \neq 0$ for all simple $S \in \text{mod-}\mathfrak{A}$, then Condensation is an equivalence of categories, i.e. \mathfrak{A} and $e\mathfrak{A}e$ are Morita equivalent.

An indecomposable direct summand of $\mathfrak{A}_{\mathfrak{A}}$ is called a PIM.

(A PIM in the sense of Lecture 2 is the Brauer character of a PIM of *FG*, extended by 0 from $G_{p'}$ to *G*.)

If $Se \neq 0$ for all simple $S \in \text{mod-}\mathfrak{A}$, then Condensation is an equivalence of categories, i.e. \mathfrak{A} and $e\mathfrak{A}e$ are Morita equivalent.

An indecomposable direct summand of $\mathfrak{A}_{\mathfrak{A}}$ is called a PIM.

(A PIM in the sense of Lecture 2 is the Brauer character of a PIM of *FG*, extended by 0 from $G_{p'}$ to *G*.)

A projective \mathfrak{A} -module is a direct sum of PIMs.

If $Se \neq 0$ for all simple $S \in \text{mod-}\mathfrak{A}$, then Condensation is an equivalence of categories, i.e. \mathfrak{A} and $e\mathfrak{A}e$ are Morita equivalent.

An indecomposable direct summand of $\mathfrak{A}_{\mathfrak{A}}$ is called a PIM.

(A PIM in the sense of Lecture 2 is the Brauer character of a PIM of *FG*, extended by 0 from $G_{p'}$ to *G*.)

A projective \mathfrak{A} -module is a direct sum of PIMs.

A finite-dimensional *F*-algebra \mathfrak{B} is Morita equivalent to \mathfrak{A} , if $\mathfrak{B} \cong \operatorname{End}_{\mathfrak{A}}(Q)$

If $Se \neq 0$ for all simple $S \in \text{mod-}\mathfrak{A}$, then Condensation is an equivalence of categories, i.e. \mathfrak{A} and $e\mathfrak{A}e$ are Morita equivalent.

An indecomposable direct summand of $\mathfrak{A}_{\mathfrak{A}}$ is called a PIM.

(A PIM in the sense of Lecture 2 is the Brauer character of a PIM of *FG*, extended by 0 from $G_{p'}$ to *G*.)

A projective \mathfrak{A} -module is a direct sum of PIMs.

A finite-dimensional *F*-algebra \mathfrak{B} is Morita equivalent to \mathfrak{A} , if $\mathfrak{B} \cong \operatorname{End}_{\mathfrak{A}}(Q)$ for a projective module Q of \mathfrak{A} containing every PIM of \mathfrak{A} (up to isomorphism) as a direct summand.

If $Se \neq 0$ for all simple $S \in \text{mod-}\mathfrak{A}$, then Condensation is an equivalence of categories, i.e. \mathfrak{A} and $e\mathfrak{A}e$ are Morita equivalent.

An indecomposable direct summand of $\mathfrak{A}_{\mathfrak{A}}$ is called a PIM.

(A PIM in the sense of Lecture 2 is the Brauer character of a PIM of *FG*, extended by 0 from $G_{p'}$ to *G*.)

A projective \mathfrak{A} -module is a direct sum of PIMs.

A finite-dimensional *F*-algebra \mathfrak{B} is Morita equivalent to \mathfrak{A} , if $\mathfrak{B} \cong \operatorname{End}_{\mathfrak{A}}(Q)$ for a projective module Q of \mathfrak{A} containing every PIM of \mathfrak{A} (up to isomorphism) as a direct summand.

Morita equivalent algebras have "the same" representations.

CONDENSATION: IDEMPOTENTS

Let $H \leq G$ with char(F) $\nmid |H|$.

CONDENSATION: IDEMPOTENTS

Let $H \leq G$ with char(F) $\nmid |H|$. Then

$$e := e_H := rac{1}{|H|} \sum_{x \in H} x \in FG$$

is a suitable idempotent.

CONDENSATION: IDEMPOTENTS

Let $H \leq G$ with char(F) $\nmid |H|$. Then

$$e := e_H := rac{1}{|H|} \sum_{x \in H} x \in FG$$

is a suitable idempotent.

Other idempotents can be used, e.g.,

$$e = \frac{1}{|H|} \sum_{x \in H} \lambda(x^{-1}) x \in FG,$$

where $\lambda : H \to F^*$ is a homomorphism (Noeske, 2005).

Let $e := e_H = 1/|H| \sum_{x \in H} be$ as above.

Let $e := e_H = 1/|H| \sum_{x \in H} be$ as above.

Let *V* be the permutation *FG*-module w.r.t. an action of *G* on the finite set Ω . Then *Ve* is the set of *H*-fixed points in *V*.

Let $e := e_H = 1/|H| \sum_{x \in H} be$ as above.

Let *V* be the permutation *FG*-module w.r.t. an action of *G* on the finite set Ω . Then *Ve* is the set of *H*-fixed points in *V*.

Task: Given $g \in G$, determine the action of *ege* on *Ve*,

Let $e := e_H = 1/|H| \sum_{x \in H} be$ as above.

Let *V* be the permutation *FG*-module w.r.t. an action of *G* on the finite set Ω . Then *Ve* is the set of *H*-fixed points in *V*.

Task: Given $g \in G$, determine the action of *ege* on *Ve*,

without the explicit computation of the action of g on V.

Let $e := e_H = 1/|H| \sum_{x \in H} be$ as above.

Let *V* be the permutation *FG*-module w.r.t. an action of *G* on the finite set Ω . Then *Ve* is the set of *H*-fixed points in *V*.

Task: Given $g \in G$, determine the action of *ege* on *Ve*,

without the explicit computation of the action of g on V.

THEOREM (THACKRAY AND PARKER, 1981)

This can be done!

Let $\Omega_1, \ldots, \Omega_m$ be the *H*-orbits on Ω .

Let $\Omega_1, \ldots, \Omega_m$ be the *H*-orbits on Ω .

The orbits sums $\widehat{\Omega_j} := \sum_{\omega \in \Omega_j} \omega \in V$ form a basis of *V*e.

Let $\Omega_1, \ldots, \Omega_m$ be the *H*-orbits on Ω .

The orbits sums $\widehat{\Omega_j} := \sum_{\omega \in \Omega_j} \omega \in V$ form a basis of *Ve*.

W.r.t. this basis, the (i, j)-entry a_{ij} of the matrix of *ege* on *Ve* equals

$$a_{ij} = rac{1}{|\Omega_j|} |\Omega_i g \cap \Omega_j|.$$

ENUMERATION OF LONG ORBITS

To perform these computations, we need to be able to

• compute Ω_j and $|\Omega_j|$, $1 \le j \le m$,

ENUMERATION OF LONG ORBITS

To perform these computations, we need to be able to

- compute Ω_j and $|\Omega_j|$, $1 \le j \le m$,
- **2** decide $\omega \in \Omega_j$? for given $\omega \in \Omega$ and $1 \le j \le m$.

To perform these computations, we need to be able to

• compute
$$\Omega_j$$
 and $|\Omega_j|$, $1 \le j \le m$,

2 decide $\omega \in \Omega_j$? for given $\omega \in \Omega$ and $1 \le j \le m$.

In actual applications, $|\Omega|\approx 10^{15},$ so the elements of Ω can not be stored in memory.

To perform these computations, we need to be able to

• compute
$$\Omega_j$$
 and $|\Omega_j|$, $1 \le j \le m$,

2 decide $\omega \in \Omega_j$? for given $\omega \in \Omega$ and $1 \le j \le m$.

In actual applications, $|\Omega|\approx 10^{15},$ so the elements of Ω can not be stored in memory.

Parker and Wilson suggested Direct Condensation methods; these were later extended and implemented by Cooperman, Lübeck, Müller and Neunhöffer.

To perform these computations, we need to be able to

• compute
$$\Omega_j$$
 and $|\Omega_j|$, $1 \le j \le m$,

2 decide $\omega \in \Omega_j$? for given $\omega \in \Omega$ and $1 \le j \le m$.

In actual applications, $|\Omega|\approx 10^{15},$ so the elements of Ω can not be stored in memory.

Parker and Wilson suggested Direct Condensation methods; these were later extended and implemented by Cooperman, Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the *H*-orbits Ω_j by suborbits of subgroups $U \leq H$.

To perform these computations, we need to be able to

• compute
$$\Omega_j$$
 and $|\Omega_j|$, $1 \le j \le m$,

2 decide $\omega \in \Omega_j$? for given $\omega \in \Omega$ and $1 \le j \le m$.

In actual applications, $|\Omega|\approx 10^{15},$ so the elements of Ω can not be stored in memory.

Parker and Wilson suggested Direct Condensation methods; these were later extended and implemented by Cooperman, Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the *H*-orbits Ω_j by suborbits of subgroups $U \le H$. Iterate this idea.

To perform these computations, we need to be able to

• compute
$$\Omega_j$$
 and $|\Omega_j|$, $1 \le j \le m$,

2 decide $\omega \in \Omega_j$? for given $\omega \in \Omega$ and $1 \le j \le m$.

In actual applications, $|\Omega|\approx 10^{15},$ so the elements of Ω can not be stored in memory.

Parker and Wilson suggested Direct Condensation methods; these were later extended and implemented by Cooperman, Lübeck, Müller and Neunhöffer.

Principal idea: Enumerate the *H*-orbits Ω_j by suborbits of subgroups $U \le H$. Iterate this idea.

Details depend on the realisation of the action on Ω .

Let V and W be two FG-modules.

Task: Given $g \in G$, determine the action of *ege* on $(V \otimes W)e$,

Let *V* and *W* be two *FG*-modules.

Task: Given $g \in G$, determine the action of *ege* on $(V \otimes W)e$,

without the explicit computation of the action of g on $V \otimes W$.

Let *V* and *W* be two *FG*-modules.

Task: Given $g \in G$, determine the action of *ege* on $(V \otimes W)e$,

without the explicit computation of the action of g on $V \otimes W$.

THEOREM (LUX AND WIEGELMANN, 1997)

This can be done!

Let *V* and *W* be two *FG*-modules.

Task: Given $g \in G$, determine the action of *ege* on $(V \otimes W)e$,

without the explicit computation of the action of g on $V \otimes W$.

THEOREM (LUX AND WIEGELMANN, 1997)

This can be done!

Let M be a subgroup of G and let W be an FM-module.

Let *V* and *W* be two *FG*-modules.

Task: Given $g \in G$, determine the action of *ege* on $(V \otimes W)e$,

without the explicit computation of the action of g on $V \otimes W$.

THEOREM (LUX AND WIEGELMANN, 1997)

This can be done!

Let *M* be a subgroup of *G* and let *W* be an *FM*-module. The induced module is the *FG*-module $W \otimes_{FM} FG$.

Let *V* and *W* be two *FG*-modules.

Task: Given $g \in G$, determine the action of *ege* on $(V \otimes W)e$,

without the explicit computation of the action of g on $V \otimes W$.

THEOREM (LUX AND WIEGELMANN, 1997)

This can be done!

Let M be a subgroup of G and let W be an FM-module.

The induced module is the *FG*-module $W \otimes_{FM} FG$.

Task: Given $g \in G$, determine action of *ege* on $(W \otimes_{FM} FG)e$,

Let *V* and *W* be two *FG*-modules.

Task: Given $g \in G$, determine the action of *ege* on $(V \otimes W)e$,

without the explicit computation of the action of g on $V \otimes W$.

THEOREM (LUX AND WIEGELMANN, 1997)

This can be done!

Let *M* be a subgroup of *G* and let *W* be an *FM*-module. The induced module is the *FG*-module $W \otimes_{FM} FG$. Task: Given $g \in G$, determine action of *ege* on $(W \otimes_{FM} FG)e$, without the explicit computation of the action of *g* on $W \otimes_{FM} FG$.

Let *V* and *W* be two *FG*-modules.

Task: Given $g \in G$, determine the action of *ege* on $(V \otimes W)e$,

without the explicit computation of the action of g on $V \otimes W$.

THEOREM (LUX AND WIEGELMANN, 1997)

This can be done!

Let M be a subgroup of G and let W be an FM-module.

The induced module is the *FG*-module $W \otimes_{FM} FG$.

Task: Given $g \in G$, determine action of ege on $(W \otimes_{FM} FG)e$,

without the explicit computation of the action of g on $W \otimes_{FM} FG$.

THEOREM (MÜLLER AND ROSENBOOM, 1997)

This can be done!

Let M be a subgroup of G, W an FM-module and V an FG-FM-bimodule.

Let *M* be a subgroup of *G*, *W* an *FM*-module and *V* an *FG*-*FM*-bimodule. Then $Hom_{FM}(V, W)$ is a right *FG*-module:

 $v(\varphi g) := (gv)\varphi, \quad v \in V, \varphi \in \operatorname{Hom}_{FM}(V, W), g \in G.$

Let *M* be a subgroup of *G*, *W* an *FM*-module and *V* an *FG*-*FM*-bimodule. Then $Hom_{FM}(V, W)$ is a right *FG*-module:

 $v(\varphi g) := (gv)\varphi, \quad v \in V, \varphi \in \operatorname{Hom}_{FM}(V, W), g \in G.$

EXAMPLES

• Hom_{*FM*}(*FG*, *F*) \cong permutation module corresponding to permutation action of *G* on $\Omega := M \setminus G$.

Let *M* be a subgroup of *G*, *W* an *FM*-module and *V* an *FG*-*FM*-bimodule. Then $Hom_{FM}(V, W)$ is a right *FG*-module:

 $v(\varphi g) := (gv)\varphi, \quad v \in V, \varphi \in \operatorname{Hom}_{FM}(V, W), g \in G.$

EXAMPLES

- Hom_{*FM*}(*FG*, *F*) \cong permutation module corresponding to permutation action of *G* on $\Omega := M \setminus G$.
- Hom_{*F*}(V^* , W) \cong $V \otimes W$ for V, $W \in$ mod-*FG*. ($V^* =$ Hom_{*F*}(V, *F*).)

Let *M* be a subgroup of *G*, *W* an *FM*-module and *V* an *FG*-*FM*-bimodule. Then $Hom_{FM}(V, W)$ is a right *FG*-module:

 $v(\varphi g) := (gv)\varphi, \quad v \in V, \varphi \in \operatorname{Hom}_{FM}(V, W), g \in G.$

EXAMPLES

- Hom_{*FM*}(*FG*, *F*) \cong permutation module corresponding to permutation action of *G* on $\Omega := M \setminus G$.
- Hom_{*F*}(V^* , W) \cong $V \otimes W$ for V, $W \in$ mod-*FG*. ($V^* =$ Hom_{*F*}(V, F).)
- $\bullet \operatorname{Hom}_{FM}(FG, W) \cong W \otimes_{FM} FG.$

Let *M* be a subgroup of *G*, *W* an *FM*-module and *V* an *FG*-*FM*-bimodule. Then $Hom_{FM}(V, W)$ is a right *FG*-module:

 $v(\varphi g) := (gv)\varphi, \quad v \in V, \varphi \in \operatorname{Hom}_{FM}(V, W), g \in G.$

EXAMPLES

- Hom_{*FM*}(*FG*, *F*) \cong permutation module corresponding to permutation action of *G* on $\Omega := M \setminus G$.
- Hom_{*F*}(V^* , W) \cong $V \otimes W$ for V, $W \in$ mod-*FG*. ($V^* =$ Hom_{*F*}(V, *F*).)

Lux, Neunhöffer, Noeske develop general Condensation programs for such homomorphism spaces.

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_4 .

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_4 .

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_4 .

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19.

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_4 .

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19. $dim(V) = 976\,841\,775$, dim(Ve) = 1403.

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_4 .

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19. $\dim(V) = 976\,841\,775$, $\dim(Ve) = 1403$.

Müller, Neunhöffer, Röhr, Wilson, 2002: Brauer trees of Ly modulo 37 and 67.

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_4 .

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19. $\dim(V) = 976\,841\,775$, $\dim(Ve) = 1403$.

Müller, Neunhöffer, Röhr, Wilson, 2002: Brauer trees of Ly modulo 37 and 67. $\dim(V) = 1\,113\,229\,656.$

Benson, Conway, Parker, Thackray, Thompson, 1980: Existence of J_4 .

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19. $\dim(V) = 976\,841\,775$, $\dim(Ve) = 1403$.

Müller, Neunhöffer, Röhr, Wilson, 2002: Brauer trees of Ly modulo 37 and 67. $\dim(V) = 1\,113\,229\,656.$

More applications later.

DEFINITION

A finite-dimensional F-algebra B is called basic, if

$$\mathfrak{B}_{\mathfrak{B}}=Q_1\oplus Q_2\oplus\cdots\oplus Q_n$$

with PIMs Q_i such that $Q_i \not\cong Q_j$ for $1 \le i \ne j \le n$.

DEFINITION

A finite-dimensional F-algebra B is called basic, if

$$\mathfrak{B}_{\mathfrak{B}}=Q_1\oplus Q_2\oplus\cdots\oplus Q_n$$

with PIMs Q_i such that $Q_i \not\cong Q_j$ for $1 \le i \ne j \le n$.

Alternatively, if $\mathfrak{B}/J(\mathfrak{B})$ is a direct sum of division algebras.

DEFINITION

A finite-dimensional F-algebra \mathfrak{B} is called basic, if

$$\mathfrak{B}_{\mathfrak{B}} = Q_1 \oplus Q_2 \oplus \cdots \oplus Q_n$$

with PIMs Q_i such that $Q_i \not\cong Q_j$ for $1 \le i \ne j \le n$.

Alternatively, if $\mathfrak{B}/J(\mathfrak{B})$ is a direct sum of division algebras.

FACTS

Let P_1, \ldots, P_n be the PIMs of \mathfrak{A} (up to isomorphism). Then $\mathfrak{B} := \operatorname{End}_{\mathfrak{A}}(P_1 \oplus \cdots \oplus P_n)$ is a basic algebra Morita equivalent to \mathfrak{A} , the basic algebra of \mathfrak{A} .

DEFINITION

A finite-dimensional F-algebra \mathfrak{B} is called basic, if

$$\mathfrak{B}_{\mathfrak{B}}=Q_{1}\oplus Q_{2}\oplus\cdots\oplus Q_{n}$$

with PIMs Q_i such that $Q_i \not\cong Q_j$ for $1 \le i \ne j \le n$.

Alternatively, if $\mathfrak{B}/J(\mathfrak{B})$ is a direct sum of division algebras.

FACTS

Let P_1, \ldots, P_n be the PIMs of \mathfrak{A} (up to isomorphism). Then $\mathfrak{B} := \operatorname{End}_{\mathfrak{A}}(P_1 \oplus \cdots \oplus P_n)$ is a basic algebra Morita equivalent to \mathfrak{A} , the basic algebra of \mathfrak{A} .

This is the smallest algebra Morita equivalent to \mathfrak{A} .

If dim(\mathfrak{A}) is large, it may be too difficult to construct the basic algebra of \mathfrak{A} explicitly.

If dim(\mathfrak{A}) is large, it may be too difficult to construct the basic algebra of \mathfrak{A} explicitly.

Klaus Lux uses Condensation to construct algebras of feasible dimensions, Morita equivalent to (blocks of) group algebras *FG*.

If dim(\mathfrak{A}) is large, it may be too difficult to construct the basic algebra of \mathfrak{A} explicitly.

Klaus Lux uses Condensation to construct algebras of feasible dimensions, Morita equivalent to (blocks of) group algebras *FG*. Need idempotent $e \in FG$ with $Se \neq 0$ for all simple *FG*-modules *S* (or all simple modules in a block).

If dim(\mathfrak{A}) is large, it may be too difficult to construct the basic algebra of \mathfrak{A} explicitly.

Klaus Lux uses Condensation to construct algebras of feasible dimensions, Morita equivalent to (blocks of) group algebras *FG*. Need idempotent $e \in FG$ with $Se \neq 0$ for all simple *FG*-modules *S* (or all simple modules in a block).

This can be checked with the modular character table of *G*, if $e = e_H$ for some $H \le G$ with char(*F*) $\nmid |H|$.

If dim(\mathfrak{A}) is large, it may be too difficult to construct the basic algebra of \mathfrak{A} explicitly.

Klaus Lux uses Condensation to construct algebras of feasible dimensions, Morita equivalent to (blocks of) group algebras *FG*. Need idempotent $e \in FG$ with $Se \neq 0$ for all simple *FG*-modules *S* (or all simple modules in a block).

This can be checked with the modular character table of *G*, if $e = e_H$ for some $H \le G$ with char(*F*) $\nmid |H|$.

Example: Principal block \mathfrak{B}_0 of *HS* modulo 5, |H| = 192. dim $(\mathfrak{B}_0) = 15364500$, dim $(e_H \mathfrak{B}_0 e_H) = 767$.

If dim(\mathfrak{A}) is large, it may be too difficult to construct the basic algebra of \mathfrak{A} explicitly.

Klaus Lux uses Condensation to construct algebras of feasible dimensions, Morita equivalent to (blocks of) group algebras *FG*. Need idempotent $e \in FG$ with $Se \neq 0$ for all simple *FG*-modules *S* (or all simple modules in a block).

This can be checked with the modular character table of *G*, if $e = e_H$ for some $H \le G$ with char(*F*) $\nmid |H|$.

Example: Principal block \mathfrak{B}_0 of *HS* modulo 5, |H| = 192. dim $(\mathfrak{B}_0) = 15364500$, dim $(e_H \mathfrak{B}_0 e_H) = 767$.

See KLAUS LUX, *Faithful Condensation for Sporadic Groups*, (http://math.arizona.edu/~klux/habil.html).

MORITA EQUIVALENT ALGEBRAS

If dim(\mathfrak{A}) is large, it may be too difficult to construct the basic algebra of \mathfrak{A} explicitly.

Klaus Lux uses Condensation to construct algebras of feasible dimensions, Morita equivalent to (blocks of) group algebras *FG*. Need idempotent $e \in FG$ with $Se \neq 0$ for all simple *FG*-modules *S* (or all simple modules in a block).

This can be checked with the modular character table of *G*, if $e = e_H$ for some $H \le G$ with char(*F*) $\nmid |H|$.

Example: Principal block \mathfrak{B}_0 of *HS* modulo 5, |H| = 192. dim $(\mathfrak{B}_0) = 15364500$, dim $(e_H \mathfrak{B}_0 e_H) = 767$.

See KLAUS LUX, *Faithful Condensation for Sporadic Groups*, (http://math.arizona.edu/~klux/habil.html).

Applications: Cartan matrices for group algebras, cohomology computations.

Condensation An Example: The Fischer Group *Fi*23 Modulo 2

CONDENSATION: HISTORY

446 Hacke HxH in Fo LOWEN multip asin FE. Parlor double coses HxH Wes multiplication H×H. HyH= H×HyH TH = HASY # (H×HyH) TH(XXY)= T(H×HyH) °edelpils° Tuse Mis line to define X. Tradition und Bierkultur

We investigate Ve through the MeatAxe, using matrices of generators of *eFGe*.

We investigate Ve through the MeatAxe, using matrices of generators of *eFGe*.

QUESTION (THE GENERATION PROBLEM)

How can eFGe be generated with "a few" elements?

We investigate *Ve* through the MeatAxe, using matrices of generators of *eFGe*.

QUESTION (THE GENERATION PROBLEM)

How can eFGe be generated with "a few" elements?

If $\mathcal{E} \subseteq FG$ with $F\langle \mathcal{E} \rangle = FG$, then in general $F\langle e\mathcal{E}e \rangle \leq eFGe$.

We investigate *Ve* through the MeatAxe, using matrices of generators of *eFGe*.

QUESTION (THE GENERATION PROBLEM)

How can eFGe be generated with "a few" elements?

If $\mathcal{E} \subseteq FG$ with $F\langle \mathcal{E} \rangle = FG$, then in general $F\langle e\mathcal{E} e \rangle \leq eFGe$.

Let 𝔅 := F⟨e𝔅e⟩ ≤ eFGe.
 Instead of Ve we consider the 𝔅-module Ve|𝔅.

We investigate *Ve* through the MeatAxe, using matrices of generators of *eFGe*.

QUESTION (THE GENERATION PROBLEM)

How can eFGe be generated with "a few" elements?

If $\mathcal{E} \subseteq FG$ with $F\langle \mathcal{E} \rangle = FG$, then in general $F\langle e\mathcal{E} e \rangle \leq eFGe$.

- Let 𝔅 := F⟨e𝔅e⟩ ≤ eFGe.
 Instead of Ve we consider the 𝔅-module Ve|𝔅.
- We can draw conclusions on V from Ve, but not from $Ve|_{\mathfrak{C}}$.

THEOREM (F. NOESKE, 2005)

Let $H \subseteq N \leq G$. If \mathcal{T} is a set of double coset representatives of $N \setminus G/N$ and \mathcal{N} a set of generators of N, then we have for $e = e_H$:

$$eFGe = F \langle e\mathcal{N}e, e\mathcal{T}e \rangle$$

as F-algebras.

THEOREM (F. NOESKE, 2005)

Let $H \trianglelefteq N \le G$. If \mathcal{T} is a set of double coset representatives of $N \setminus G/N$ and \mathcal{N} a set of generators of N, then we have for $e = e_H$:

$$eFGe = F \langle e\mathcal{N}e, e\mathcal{T}e
angle$$

as F-algebras.

More sophisticated results by Noeske on generation are available, but have not found applications yet.

THEOREM (F. NOESKE, 2005)

Let $H \trianglelefteq N \le G$. If \mathcal{T} is a set of double coset representatives of $N \setminus G/N$ and \mathcal{N} a set of generators of N, then we have for $e = e_H$:

$$eFGe = F \langle e\mathcal{N}e, e\mathcal{T}e
angle$$

as F-algebras.

More sophisticated results by Noeske on generation are available, but have not found applications yet.

Matching Problem: Let $e, e' \in FG$ be idempotents. Suppose $S, S' \in \text{mod-}FG$ are simple, and we know Se and S'e'. Can we decide if $S \cong S'$?

THEOREM (F. NOESKE, 2005)

Let $H \trianglelefteq N \le G$. If \mathcal{T} is a set of double coset representatives of $N \setminus G/N$ and \mathcal{N} a set of generators of N, then we have for $e = e_H$:

 $eFGe = F \langle e\mathcal{N}e, e\mathcal{T}e \rangle$

as F-algebras.

More sophisticated results by Noeske on generation are available, but have not found applications yet.

Matching Problem: Let $e, e' \in FG$ be idempotents. Suppose $S, S' \in \text{mod-}FG$ are simple, and we know Se and S'e'. Can we decide if $S \cong S'$? Yes! (Noeske, 2008)

Not a new idea, but now feasible through

- improved Condensation techniques
- programs by Jon Carlson for matrix algebras (see next lecture)

Not a new idea, but now feasible through

- improved Condensation techniques
- programs by Jon Carlson for matrix algebras (see next lecture)

If P = eFG is projective, then $End_{FG}(P) = eFGe = Pe$, and "generation" can be checked.

Not a new idea, but now feasible through

- improved Condensation techniques
- programs by Jon Carlson for matrix algebras (see next lecture)
- If P = eFG is projective, then $End_{FG}(P) = eFGe = Pe$, and "generation" can be checked. E.g. $dim(End_{FG}(P))$ known.

Not a new idea, but now feasible through

- improved Condensation techniques
- programs by Jon Carlson for matrix algebras (see next lecture)

If P = eFG is projective, then $End_{FG}(P) = eFGe = Pe$, and "generation" can be checked. E.g. $dim(End_{FG}(P))$ known.

EXAMPLE (G = Th, p = 5)

• (Done in 2007 with Jon Carlson): $P = e_H FG$, for $H = 3xG_2(3)$, dim $(P) = 7\,124\,544\,000$, dim_F(End_{FG}(P)) = 788 \rightsquigarrow some progress

Not a new idea, but now feasible through

- improved Condensation techniques
- programs by Jon Carlson for matrix algebras (see next lecture)

If P = eFG is projective, then $End_{FG}(P) = eFGe = Pe$, and "generation" can be checked. E.g. $dim(End_{FG}(P))$ known.

EXAMPLE (G = Th, p = 5)

 (Done in 2007 with Jon Carlson): P = e_HFG, for H = 3xG₂(3), dim(P) = 7 124 544 000, dim_F(End_{FG}(P)) = 788 → some progress

 (Envisaged): dim(Q) = 43 957 879 875, dim_F(End_{FG}(Q)) = 21 530 → almost finish Th modulo 5
 THE FISCHER GROUP Fi23

Let *G* denote the Fischer group Fi_{23} .

This is a sporadic simple group of order

4 089 470 473 293 004 800.

THE FISCHER GROUP Fi23

Let G denote the Fischer group Fi_{23} .

This is a sporadic simple group of order

4 089 470 473 293 004 800.

G has a maximal subgroup *M* of index 31 671, isomorphic to 2. Fi_{22} , the double cover of the Fischer group Fi_{22} .

THE FISCHER GROUP Fi23

Let G denote the Fischer group Fi_{23} .

This is a sporadic simple group of order

4 089 470 473 293 004 800.

G has a maximal subgroup *M* of index 31 671, isomorphic to 2. Fi_{22} , the double cover of the Fischer group Fi_{22} .

In joint work with Max Neunhöffer and F. Noeske we have computed the 2-modular character table of *G*.

In the following, let $F = \mathbb{F}_2$, the field with 2 elements.

In the following, let $F = \mathbb{F}_2$, the field with 2 elements.

Let $\Omega := M \setminus G$ and let *V* denote the corresponding permutation module over *F* (thus dim_{*F*}(*V*) = 31 671).

In the following, let $F = \mathbb{F}_2$, the field with 2 elements.

Let $\Omega := M \setminus G$ and let *V* denote the corresponding permutation module over *F* (thus dim_{*F*}(*V*) = 31 671).

Using the MeatAxe we found: V contains composition factors 1,782, 1494, 3588, 19940 (denoted by their degrees).

In the following, let $F = \mathbb{F}_2$, the field with 2 elements.

Let $\Omega := M \setminus G$ and let *V* denote the corresponding permutation module over *F* (thus dim_{*F*}(*V*) = 31 671).

Using the MeatAxe we found: *V* contains composition factors 1,782, 1494, 3588, 19940 (denoted by their degrees). (This took about 4 days of CPU time in 8 GB main memory.)

In the following, let $F = \mathbb{F}_2$, the field with 2 elements.

Let $\Omega := M \setminus G$ and let *V* denote the corresponding permutation module over *F* (thus dim_{*F*}(*V*) = 31 671).

Using the MeatAxe we found: *V* contains composition factors 1,782, 1494, 3588, 19940 (denoted by their degrees). (This took about 4 days of CPU time in 8 GB main memory.)

Using Condensation we analysed the ten tensor products:

 $782 \otimes 782, 782 \otimes 1494, \dots, 19940 \otimes 19940.$

In the following, let $F = \mathbb{F}_2$, the field with 2 elements.

Let $\Omega := M \setminus G$ and let *V* denote the corresponding permutation module over *F* (thus dim_{*F*}(*V*) = 31 671).

Using the MeatAxe we found: *V* contains composition factors 1,782, 1494, 3588, 19940 (denoted by their degrees). (This took about 4 days of CPU time in 8 GB main memory.)

Using Condensation we analysed the ten tensor products:

 $782 \otimes 782, 782 \otimes 1494, \dots, 19940 \otimes 19940.$

Note: $\dim_F(19940 \otimes 19940) = 367603600$.

In the following, let $F = \mathbb{F}_2$, the field with 2 elements.

Let $\Omega := M \setminus G$ and let *V* denote the corresponding permutation module over *F* (thus dim_{*F*}(*V*) = 31 671).

Using the MeatAxe we found: *V* contains composition factors 1,782, 1494, 3588, 19940 (denoted by their degrees). (This took about 4 days of CPU time in 8 GB main memory.)

Using Condensation we analysed the ten tensor products:

 $782 \otimes 782, 782 \otimes 1494, \dots, 19940 \otimes 19940.$

Note: dim_{*F*}(19940 \otimes 19940) = 367603600. One such matrix over \mathbb{F}_2 would need \approx 18403938 GB.

THE CONDENSATION FOR Fi_{23}

• We took
$$H \le G$$
, $|H| = 3^9 = 19683$.

The Condensation for Fi_{23}

• We took
$$H \le G$$
, $|H| = 3^9 = 19683$.

We found that *eFGe* and *FG* are Morita equivalent (a posteriori).

THE CONDENSATION FOR Fi_{23}

• We took
$$H \le G$$
, $|H| = 3^9 = 19683$.

- We found that *eFGe* and *FG* are Morita equivalent (a posteriori).
- dim_{*F*} (19940 \otimes 19940)e = 25542.

One such matrix over \mathbb{F}_2 needs ≈ 77.8 MB.

THE CONDENSATION FOR Fi_{23}

• We took
$$H \le G$$
, $|H| = 3^9 = 19683$.

- We found that *eFGe* and *FG* are Morita equivalent (a posteriori).
- **③** dim_{*F*} (19940 \otimes 19940)*e* = 25542.

One such matrix over \mathbb{F}_2 needs ≈ 77.8 MB.

About 1 week of CPU time to compute the action of one element *ege* on $(19940 \otimes 19940)e$.

The Condensation for Fi_{23}

• We took
$$H \le G$$
, $|H| = 3^9 = 19683$.

- We found that *eFGe* and *FG* are Morita equivalent (a posteriori).
- dim_{*F*} (19940 \otimes 19940)e = 25542.

One such matrix over \mathbb{F}_2 needs ≈ 77.8 MB.

About 1 week of CPU time to compute the action of one element *ege* on $(19940 \otimes 19940)e$.

Severy irreducible FG-module (of the principal 2-block) occurs in 19940 ⊗ 19940.

THE IRREDUCIBLE BRAUER CHARACTERS OF Fi23

The results of the Condensation and further computations with Brauer characters using GAP and MOC gave all the irreducible 2-modular characters of G.

THE IRREDUCIBLE BRAUER CHARACTERS OF Fi23

The results of the Condensation and further computations with Brauer characters using GAP and MOC gave all the irreducible 2-modular characters of G.

Degrees of the irreducible 2-modular characters of Fi23:

1,	782,	1 494,	3 588,
19 940,	57 408,	79442,	94 588,
94 588,	583 440,	724 776,	979 132,
1 951 872,	1 997 872,	1 997 872,	5812860,
7 821 240,	8 280 208,	17 276 520,	34 744 192,
73 531 392,	97 976 320,	166 559 744,	504 627 200,
504 627 200.			

THE IRREDUCIBLE BRAUER CHARACTERS OF Fi23

The results of the Condensation and further computations with Brauer characters using GAP and MOC gave all the irreducible 2-modular characters of G.

Degrees of the irreducible 2-modular characters of Fi23:

1,	782,	1 494,	3 588,
19940,	57 408,	79442,	94 588,
94 588,	583 440,	724 776,	979 132,
1 951 872,	1 997 872,	1 997 872,	5812860,
7 821 240,	8 280 208,	17 276 520,	34 744 192,
73 531 392,	97 976 320,	166 559 744,	504 627 200,
504 627 200.			

Using similar methods, Görgen and Lux have recently computed the irreducible characters of Fi_{23} over \mathbb{F}_3 . (Largest condensed module:184644, largest module found: 34753159.)

REFERENCES

- D. F. HOLT, B. EICK AND E. A. O'BRIEN, Handbook of Computational Group Theory, Chapman & Hall/CRC, 2005.
- K. LUX, Algorithmic methods in modular representation theory, Habilitationsschrift, RWTH Aachen University, 1997.
- K. LUX AND H. PAHLINGS, Representations of Groups. A computational approach. Cambridge University Press, 2010.
- J. MÜLLER, M. NEUNHÖFFER AND R. WILSON, Enumerating big orbits and an application: B acting on the cosets of *Fi*₂₃, *J. Algebra* **314**, 2007, 75–96.
- F. NOESKE, Morita-Äquivalenzen in der algorithmischen Darstellungstheorie, Dissertation, RWTH Aachen University, 2005.

Thank you for your attention!

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE IV