Isomorphism testing

- ▶ Go to Classifications
- ▶ Go to Automorphisms

Conclusion Lecture 3

Things we have discussed in the third lecture:

- (immediate) descendants
- \circ p-group generation algorithm
- ullet p-cover, nucleus, multiplicator, allowable subgroups, extended auts
- o automorphism groups of immediate descendants
- the group number gnu for group order p^5, p^6, p^7
- PORC conjecture

Isomorphism Testing Standard Presentations Example

Resources

Isomorphism testing for *p*-groups

E. A. O'Brien

J. Symb. Comp. 17, 133-147 (1994)

Standard Presentations

Problem: Decide whether two *p*-groups are isomorphic.

Standard presentation

For a p-group G use methods from the p-quotient and p-group generation algorithms to construct a **standard pcp** (std-pcp) for G, such that $G \cong H$ if and only if G and H have the same std-pcp.

Example: For each $j = 1, \dots, p-1$ the presentation

$$Pc\langle a_1, a_2 \mid a_1^p = a_2^j, \ a_2^p = 1 \rangle$$

is a wpcp describing C_{p^2} ; as a std-pcp one could choose

$$Pc\langle a_1, a_2 \mid a_1^p = a_2, \ a_2^p = 1 \rangle.$$

Similarly, a std-pcp for C_p^d is $\operatorname{Pc}\langle a_1,\ldots,a_d\mid a_1^p=\ldots=a_d^p=1\rangle$.

Isomorphism test: computing std-pcp's

Let G be d-generator p-group of p-class c.

Std-pcp of
$$G/P_1(G)$$
 is $P_1(G) = P_1(G) = P_2(G)$.

Suppose $H \cong G/P_k(G)$ with k < c is defined by std-pcp; have $\theta \colon G \to G/P_k(G)$.

Find std-pcp of $G/P_{k+1}(G)$ using p-group generation:

The p-group generation algorithm constructs immediate descendants of H. Among these immediate descendants is $K \cong G/P_{k+1}(G)$. Proceed as follows:

- let $H\cong F/R$ (defined by std-pcp) and $H^*\cong F/R^*$;
- evaluate relations in H^* to get allowable M/R^* with $F/M \cong G/P_{k+1}(G)$;
- recall: $\alpha \in \operatorname{Aut}(H)$ acts as $\alpha^* \in \operatorname{Aut}(H^*)$ on allowable subgroups; two allowable U/R^* and V/R^* are in same $\operatorname{Aut}(H)$ -orbit iff $F/U \cong F/V$; the choice of orbit rep determines the pcp obtained, and two elements from the same orbit determine different pcp's for isomorphic groups;
- associate with each allowable subgroup a unique label: a positive integer which runs from one to the number of allowable subgroups;
- \circ let \overline{M}/R^* be the element in the $\operatorname{Aut}(H)\text{-orbit}$ of M/R^* with label 1.

Now $K=F/\overline{M}$ is isomorphic to $G/P_{k+1}(G)$; the pcp defining K is "standard".

Isomorphism test: example of std-pcp

The group

$$G = \langle x, y \mid (xyx)^3, x^{27}, y^{27}, [x, y]^3, (xy)^{27}, [y, x^3], [y^3, x] \rangle;$$

has order 3^7 , rank 2, and 3-class 3; let S_1 be the set of relators.

- $G/P_1(G)$ has std-pcp $H=\operatorname{Pc}\langle a_1,a_2\mid a_1^3=a_2^3=1\rangle$, and we have an epimorphism $\theta\colon G\to H$ with $x,y\mapsto a_1,a_2$.
- ullet use the p-quotient algorithm to construct covering

$$H^* = \operatorname{Pc}\langle a_1, \dots, a_5 \mid [a_2, a_1] = a_3, \ a_1^3 = a_4, \ a_2^3 = a_5, \ a_3^3 = a_4^3 = a_5^3 = 1 \rangle.$$

• evaluate \mathcal{S}_1 in H^* via $\hat{\theta}$ to determine the allowable subgroup $U/R^* = \langle a_4^2 a_5 \rangle$ which must be factored from H^* to obtain $G/P_2(G)$, that is, F/U is isomorphic to $G/P_2(G)$ with wpcp

$$Pc\langle a_1,\ldots,a_4 \mid [a_2,a_1]=a_3, \ a_1^3=a_2^3=a_4, \ a_3^3=a_4^3=1\rangle.$$

Isomorphism test: example of std-pcp

Recall:

$$\begin{array}{lcl} H & = & \operatorname{Pc}\langle a_1, a_2 \mid a_1^3 = a_2^3 = 1 \rangle; \\ H^* & = & \operatorname{Pc}\langle \ a_1, \dots, a_5 \mid [a_2, a_1] = a_3, \ a_1^3 = a_4, \ a_2^3 = a_5, \ a_3^3 = a_4^3 = a_5^3 = 1 \ \rangle, \\ & \text{with 3-multiplicator} \ M = \langle a_3, a_4, a_5 \rangle. \end{array}$$

ullet A generating set for the automorphism group $\mathsf{Aut}(H) \cong \mathrm{GL}_2(3)$ is

Note that

$$\alpha_1^*(a_3) = \alpha_1^*([a_2, a_1]) = [a_1^2 a_2^2, a_1 a_2^2] = \dots = a_3$$

$$\alpha_1^*(a_4) = \alpha_1^*(a_1^3) = (a_1 a_2^2)^3 = \dots = a_4 a_5^2$$

$$\alpha_1^*(a_5) = \alpha_1^*(a_2^3) = (a_1^2 a_2^2)^3 = \dots = a_4^2 a_5^2$$

so the matrices representing the action of α_i^* on M are

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Example

Isomorphism test: example of std-pcp

Recall that

$$H^* = \text{Pc}\langle a_1, \dots, a_5 \mid [a_2, a_1] = a_3, a_1^3 = a_4, a_2^3 = a_5, \ a_3^3 = a_4^3 = a_5^3 = 1 \rangle,$$

and $G/P_2(G) \cong F/U$ for the subspace $U/R^* = \langle a_4 a_5^2 \rangle$, which is $\langle (0,1,2) \rangle$

• The Aut(H)-orbit containing U/R^* is

$$\{\langle a_5\rangle, \langle a_4a_5\rangle, \langle a_4^2a_5\rangle, \langle a_4\rangle\}.$$

- \overline{ullet} The orbit rep with label 1 is $\dots \overline{U}/R^* = \langle a_5
 angle.$
- ullet Factor H^* by $\langle a_5
 angle$ to obtain the std-pcp for $G/P_2(G)$ as

$$K = \text{Pc}\langle a_1, \dots, a_4 \mid [a_2, a_1] = a_3, \ a_1^3 = a_4, \ a_1^3 = \dots = a_4^3 = 1 \rangle.$$

Recall that U/R^* was found by evaluating the relations \mathcal{S}_1 of G.

But: for the std-pcp we factored out $\bar{U}/R^* = \delta(U/R^*)$ for some $\delta \in \operatorname{Aut}(H^*)$. For the next iteration we need to modify the set of relations \mathcal{S}_1 accordingly.

Isomorphism test: example of std-pcp

ullet An extended automorphism which maps $U/R^*=\langle a_4 a_5^2
angle$ to $ar U/R^*=\langle a_5
angle$ is

• Apply δ to $\mathcal{S}_1 = \{(xyx)^3, x^{27}, y^{27}, [x,y]^3, \ldots\}$ to obtain

$$S_2 = \{(xy[y,x]x^3xy^2xy[y,x]x^3)^3, (xy[y,x]x^3)^{27}, (xy^2)^{27}, \dots\};$$

it follows that $G = \langle x, y \mid \mathcal{S}_1 \rangle \cong \langle x, y \mid \mathcal{S}_2 \rangle$, see O'Brien 1994.

Now iterate with $G \cong \langle x,y \mid \mathcal{S}_2 \rangle$ and the std-pcp of $K \cong G/P_2(G)$ to compute the std-pcp of $G/P_3(G) \cong G$.

Practical issues: need *complete orbit* to identify element with smallest label. One idea is to exploit the characteristic structure of the p-multiplicator (as before).

Note: The std-pcp is only "standard" because it has been computed by some deterministic rule. Std-pcps are a very efficient tool to partition sets of groups into isomorphism classes.

Automorphism groups

- ▶ Go to Isomorphisms
- ▶ Go to Coclass

Automorphism Groups Example Stabiliser Problem Algorithm

Resources

Constructing automorphism groups of *p*-groups

B. Eick, C. R. Leedham-Green, E. A. O'Brien Comm. Algebra 30, 2271-2295 (2002)

Computing automorphism groups

Let G be a d-generator p-group with lower p-central series

$$G = P_0(G) > P_1(G) > \ldots > P_c(G) = 1.$$

In the following write $G_i = G/P_i(G)$.

We want to construct Aut(G).

Approach

Compute $Aut(G) = Aut(G_c)$ by induction on that series:

- $\operatorname{Aut}(G_1) = \operatorname{Aut}(C_p^d) \cong \operatorname{GL}_d(q)$
- construct $Aut(G_{k+1})$ from $Aut(G_k)$.

For the induction step use ideas from p-group generation.

Computing automorphism groups

Let $H = G_k$ and $K = G_{k+1}$; given Aut(H), compute Aut(K).

Recall from p-group generation:

- compute $H^* = F/R^*$ and the multiplicator $M = R/R^*$;
- determine allowable subgroup $U/R^* \leq M$ defining K, that is, $K \cong F/U$;
- each $\alpha \in \operatorname{Aut}(H)$ extends to $\alpha^* \in \operatorname{Aut}(H^*)$ which leaves M invariant; via this construction, $\operatorname{Aut}(H)$ acts on the set of allowable subgroups;
- let Σ be the stabiliser of U/R^* in $\operatorname{Aut}(H)$ under this action;
- every $\alpha \in \Sigma$ defines an automorphism of $F/U \cong K$; let $S \leq \operatorname{Aut}(K)$ be the subgroup induced by Σ ;
- let $T \leq \operatorname{Aut}(K)$ be the kernel of $\operatorname{Aut}(K) \to \operatorname{Aut}(H)$.

Theorem

With the previous notation, $Aut(K) = \langle S, T, Inn(K) \rangle$.

For a proof see O'Brien (1999).

Computing automorphism groups

Recall from p-group generation:

- $\overline{\circ} H = G/P_k(G)$ and $K = G/P_{k+1}(G)$; we have $K/P_k(K) \cong H$;
- K is quotient of H^* by allowable subgroup U/R^* ;
- $S < \operatorname{Aut}(K)$ induced by stabiliser Σ of U/R^* in $\operatorname{Aut}(H)$
- $T < \operatorname{Aut}(K)$ is kernel of $\operatorname{Aut}(K) \to \operatorname{Aut}(H)$;
- $\operatorname{Aut}(K) = \langle S, T, \operatorname{Inn}(K) \rangle$.

Problem: how to determine S and T efficiently?

Lemma

Let $\{g_1, \ldots, g_d\}$ and $\{x_1, \ldots, x_l\}$ be minimal generating sets for K and $P_k(K)$, respectively. Define

$$\beta_{i,j} \colon K \to K, \quad \begin{cases} g_i \mapsto g_i x_j \\ g_n \mapsto g_n & (n \neq i). \end{cases}$$

Then $T = \langle \{\beta_{i,j} : 1 \le i \le d, \ 1 \le j \le l \} \rangle$, an elementary abelian p-group.

Main problem: Compute S, that is, the stabiliser Σ of U/R^* in Aut(H).

Induction step: example

Consider $G = \text{Pc}\langle a_1, \dots, a_4 \mid [a_2, a_1] = a_3, a_1^5 = a_4, a_2^5 = a_3^5 = a_4^5 = 1 \rangle$; this group has 5-class 2 with $P_1(G) = \langle a_3, a_4 \rangle$.

Clearly,
$$H=G/P_1(G)=\operatorname{Pc}\langle a_1,a_2\mid a_1^5=a_2^5=1\rangle$$
 with $\operatorname{Aut}(H)\cong\operatorname{GL}_2(5).$

Now compute:

- $H^* = \text{Pc}\langle a_1, \dots, a_5 \mid [a_2, a_1] = a_3, a_1^5 = a_4, a_2^5 = a_5, a_3^5 = a_4^5 = a_5^5 = 1 \rangle$
- ullet the allowable subgroup $U/R^* = \langle a_5
 angle$ yields G as a quotient of H^*
- $\alpha_1 \colon (a_1, a_2) \mapsto (a_1^2, a_2)$ and $\alpha_2 \colon (a_1, a_2) \mapsto (a_1^4 a_2, a_1^4)$ generate $\operatorname{Aut}(H)$; their extensions act on the multiplicator $\langle a_3, a_4, a_5 \rangle$ as

$$\begin{pmatrix} 2&0&0\\0&2&0\\0&0&1 \end{pmatrix}, \quad \begin{pmatrix} 1&0&0\\0&4&1\\0&4&0 \end{pmatrix}$$

- ullet the stabiliser Σ of U/R^* is generated by the extensions of $lpha_1$ and $lpha_2lpha_1lpha_2^2$
- a generating set for T is $\{\beta_{1,4}, \beta_{2,4}, \beta_{1,3}, \beta_{2,3}\}$

This yields indeed $\operatorname{Aut}(G) = \langle T, S, \operatorname{Inn}(G) \rangle$, where S is induced by Σ

Stabiliser problem

To do: Compute stabiliser of allowable subgroup U/R^* under action of $\operatorname{Aut}(H)$.

Our set-up is:

- ullet consider $M=R/R^*$ as $\mathsf{GF}(p)$ -vectorspace and $V=U/R^*$ as subspace;
- ullet represent the action of $\operatorname{Aut}(H)$ on M as a subgroup $A \leq \operatorname{GL}_m(p)$;
- ullet compute the stabiliser of V in A.

Simple Approach: Orbit-Stabiliser Algorithm – constructs the whole orbit!

We'll briefly discuss the following ideas:

- $oldsymbol{1}$ exploiting structure of M

Task: compute stabiliser of allowable subspace $V \leq M$ under A.

Idea: exploit the fact that $N=P_{k+1}(H^*)\leq M$ is characteristic in H^* , and that M=NV (since V is allowable)

Use this to split stabiliser computation in two steps:

- compute the stabiliser of V ∩ N as subspace of N:
 use MeatAxe to compute composition series of N as A-module;
 then compute orbit and stabiliser of V ∩ N stepwise⁷
- \circ compute orbit of $V/(V\cap N)$ as subspace of $M/(V\cap N)$: $V/(V\cap N)$ is complement to $N/(V\cap N)$ in $M/(V\cap N)$, and $N/(V\cap N)$ is A-invariant; compute A-module composition series of M/N and $N/(V\cap N)$ and break computation up in smaller steps

⁷see Eick, Leedham-Green, O'Brien (2002) for details

Stabiliser problem: exploiting structure of A

Task: compute stabiliser of allowable subspace $V \leq M$ under A.

Idea: Consider series $A \triangleright S \triangleright P \triangleright 1$, where

- $\circ P$ induced by $\ker(H \to \operatorname{\mathsf{Aut}}(H/P_1(H)))$, a normal p-subgroup
- S solvable radical, with $S = S_1 \triangleright ... \triangleright S_n \triangleright P$, each section prime order.

Schwingel Algorithm for stabiliser under p-group P

One can compute a "canonical" representative of V^P and generators for $\operatorname{Stab}_P(V)$ without enumerating the orbit; see E-LG-O'B (2002).

Next, compute $\operatorname{Stab}_A(V)$ along $S = S_1 \rhd \ldots \rhd S_n \rhd P$, using the next lemma:

Lemma

Let L be a group acting on Ω ; let $T \unlhd L$ and let $\omega \in \Omega$.

Then ω^T is an L-block in Ω , and $\mathrm{Stab}_L(\omega^T) = T\mathrm{Stab}_L(\omega)$.

If $l \in \operatorname{Stab}_L(\omega^T)$, then $\omega^l = \omega^t$ for some $t \in T$, hence $lt^{-1} \in \operatorname{Stab}_L(\omega)$.

Stabiliser problem: exploiting structure of A

Compute $\operatorname{Stab}_A(V)$ along $S = S_1 \rhd \ldots \rhd S_n \rhd P$, using the next lemma:

Lemma

Let L be a group acting on Ω ; let $T \leq L$ and $\omega \in \Omega$. Then ω^T is an L-block in Ω , and $\operatorname{Stab}_L(\omega^T) = T\operatorname{Stab}_L(\omega)$.

If orbit V^{S_i} and stabiliser $\operatorname{Stab}_{S_i}(V)$ are known, compute $\operatorname{Stab}_{S_{i-1}}(V^{S_i})$, and extend each generator to an element in $\operatorname{Stab}_{S_{i-1}}(V)$.

Advantage: Reduce the number of generators of $\operatorname{Stab}_S(V)$ substantially

Stabiliser problem: exploiting structure of K (and G)

Recall: we aim to construct $\operatorname{Aut}(G)$ by induction on lower p-central series with terms $G_i=G/P_i(G)$; initial step is $\operatorname{Aut}(G_1)\cong\operatorname{GL}_d(p)$

Idea: $\operatorname{Aut}(G)$ induces a subgroup $R \leq \operatorname{Aut}(G_1)$; instead of starting with $\operatorname{Aut}(G_1)$, start with $L \leq \operatorname{GL}_d(p)$ such that $R \leq L$ and [L:R] is small.

Approach:

- construct a collection of characteristic subgroups of G, such as: centre, derived group, Ω , 2-step centralisers,...
- restrict this collection to $G_1=G/P_1(G)$
- Schwingel has developed an algorithm to construct the subgroup $R \leq \operatorname{Aut}(G_1) \cong \operatorname{GL}_d(p)$ stabilising this lattice of subspaces of G_1

This approach frequently reduces to small subgroups of $\mathrm{GL}_d(p)$ as initial group.

Stabiliser Problem

Conclusion Lecture 4

Things we have discussed in the forth lecture:

- std-pcp, isomorphism test for p-groups
- automorphism group computation

Lecture 4 is also the last lecture on the ANUPQ algorithms:

ANUPQ (ANU-p-Quotient program), 22,000 lines of C code developed by O'Brien; providing implementations of

- p-quotient algorithm
- p-group generation algorithm
- ullet isomorphism test for p-groups
- ullet automorphisms of p-groups

Implementations are also available in GAP and Magma; various papers discuss the theory and efficiency of these algorithms.

What's the Greek letter for "p" ...?

 π

"Theorem"

We have $\pi = 4$.

Proof.

We take a unit circle with diameter 1 and approximate its circumference (which is defined to be π) by computing its arc-length. Remember how arc-length is defined? Use a polygonal approximation!

In every iteration: cirumference is π , arc length of red curve is 4. So in the limit: $\pi=4$, as claimed.

Well ... obviously that is wrong!

Everyone knows that the following is true ...

"Theorem"

We have $\pi = 0$.

Proof.

We start with Euler's Identity $1=e^{2\pi\imath}$, which yields $e=e^{2\pi\imath+1}$. Now observe:

$$e = e^{2\pi i + 1} = (e^{2\pi i + 1})^{2\pi i + 1} = e^{(2\pi i + 1)^2} = e^{-4\pi^2} e^{4\pi i}.$$

Since $e^{4\pi\imath}=1$, this yields $1=e^{-4\pi^2}$. Since $-4\pi^2\in\mathbb{R}$, this forces $0=-4\pi^2$. Since $-4\neq 0$, we must have $\pi=0$, as claimed.

