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Go to Classifications
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Isomorphism Testing Standard Presentations Example

Conclusion Lecture 3

Things we have discussed in the third lecture:

(immediate) descendants

p-group generation algorithm

p-cover, nucleus, multiplicator, allowable subgroups, extended auts

automorphism groups of immediate descendants

the group number gnu for group order p5, p6, p7

PORC conjecture
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Isomorphism Testing Standard Presentations Example

Resources

Isomorphism testing for p-groups
E. A. O’Brien
J. Symb. Comp. 17, 133-147 (1994)
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Isomorphism Testing Standard Presentations Example

Standard Presentations

Problem: Decide whether two p-groups are isomorphic.

Standard presentation

For a p-group G use methods from the p-quotient and p-group generation
algorithms to construct a standard pcp (std-pcp) for G, such that G ∼= H if and
only if G and H have the same std-pcp.

Example: For each j = 1, . . . , p− 1 the presentation

Pc〈a1, a2 | ap1 = aj2, a
p
2 = 1〉

is a wpcp describing Cp2 ; as a std-pcp one could choose

Pc〈a1, a2 | ap1 = a2, a
p
2 = 1〉.

Similarly, a std-pcp for Cdp is Pc〈a1, . . . , ad | ap1 = . . . = apd = 1〉.
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Isomorphism Testing Standard Presentations Example

Isomorphism test: computing std-pcp’s
Let G be d-generator p-group of p-class c.
Std-pcp of G/P1(G) is Pc〈a1, . . . , ad | ap1 = . . . = apd = 1〉.
Suppose H ∼= G/Pk(G) with k < c is defined by std-pcp; have θ : G→ G/Pk(G).

Find std-pcp of G/Pk+1(G) using p-group generation:

The p-group generation algorithm constructs immediate descendants of H.
Among these immediate descendants is K ∼= G/Pk+1(G). Proceed as follows:

let H ∼= F/R (defined by std-pcp) and H∗ ∼= F/R∗;

evaluate relations in H∗ to get allowable M/R∗ with F/M ∼= G/Pk+1(G);

recall: α ∈ Aut(H) acts as α∗ ∈ Aut(H∗) on allowable subgroups;
two allowable U/R∗ and V/R∗ are in same Aut(H)-orbit iff F/U ∼= F/V ;
the choice of orbit rep determines the pcp obtained, and two elements from
the same orbit determine different pcp’s for isomorphic groups;

associate with each allowable subgroup a unique label: a positive integer
which runs from one to the number of allowable subgroups;

let M/R∗ be the element in the Aut(H)-orbit of M/R∗ with label 1.

Now K = F/M is isomorphic to G/Pk+1(G); the pcp defining K is “standard”.
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Isomorphism Testing Standard Presentations Example

Isomorphism test: example of std-pcp
The group

G = 〈x, y | (xyx)3, x27, y27, [x, y]3, (xy)27, [y, x3], [y3, x]〉;

has order 37, rank 2, and 3-class 3; let S1 be the set of relators.

G/P1(G) has std-pcp H = Pc〈a1, a2 | a31 = a32 = 1〉,
and we have an epimorphism θ : G→ H with x, y 7→ a1, a2.

use the p-quotient algorithm to construct covering

H∗ = Pc〈 a1, . . . , a5 | [a2, a1] = a3, a
3
1 = a4, a

3
2 = a5, a

3
3 = a34 = a35 = 1 〉.

evaluate S1 in H∗ via θ̂ to determine the allowable subgroup U/R∗ = 〈a24a5〉
which must be factored from H∗ to obtain G/P2(G), that is, F/U is
isomorphic to G/P2(G) with wpcp

Pc〈a1, . . . , a4 | [a2, a1] = a3, a
3
1 = a32 = a4, a

3
3 = a34 = 1〉.
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Isomorphism Testing Standard Presentations Example

Isomorphism test: example of std-pcp
Recall:

H = Pc〈a1, a2 | a31 = a32 = 1〉;
H∗ = Pc〈 a1, . . . , a5 | [a2, a1] = a3, a

3
1 = a4, a

3
2 = a5, a

3
3 = a34 = a35 = 1 〉,

with 3-multiplicator M = 〈a3, a4, a5〉.
A generating set for the automorphism group Aut(H) ∼= GL2(3) is

α1 : a1 7−→ a1a
2
2, α2 : a1 7−→ a1, α3 : a1 7−→ a21

a2 7−→ a21a
2
2 a2 7−→ a21a2 a2 7−→ a2

Note that

α∗1(a3) = α∗1([a2, a1]) = [a21a
2
2, a1a

2
2] = . . . = a3

α∗1(a4) = α∗1(a31) = (a1a
2
2)3 = . . . = a4a

2
5

α∗1(a5) = α∗1(a32) = (a21a
2
2)3 = . . . = a24a

2
5

so the matrices representing the action of α∗i on M are(
1 0 0
0 1 2
0 2 2

)
,

(
1 0 0
0 1 0
0 2 1

)
,
(

2 0 0
0 2 0
0 0 1

)
.
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Isomorphism Testing Standard Presentations Example

Isomorphism test: example of std-pcp

Recall that

H∗ = Pc〈 a1, . . . , a5 | [a2, a1] = a3, a
3
1 = a4, a

3
2 = a5, a

3
3 = a34 = a35 = 1 〉,

and G/P2(G) ∼= F/U for the subspace U/R∗ = 〈a4a25〉, which is 〈(0, 1, 2)〉
The Aut(H)-orbit containing U/R∗ is

{〈a5〉, 〈a4a5〉, 〈a24a5〉, 〈a4〉}.

The orbit rep with label 1 is . . . Ū/R∗ = 〈a5〉.
Factor H∗ by 〈a5〉 to obtain the std-pcp for G/P2(G) as

K = Pc〈a1, . . . , a4 | [a2, a1] = a3, a
3
1 = a4, a

3
1 = . . . = a34 = 1〉.

Recall that U/R∗ was found by evaluating the relations S1 of G.
But: for the std-pcp we factored out Ū/R∗ = δ(U/R∗) for some δ ∈ Aut(H∗).
For the next iteration we need to modify the set of relations S1 accordingly.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



Isomorphism Testing Standard Presentations Example

Isomorphism test: example of std-pcp

An extended automorphism which maps U/R∗ = 〈a4a25〉 to Ū/R∗ = 〈a5〉 is

δ : a1 7−→ a1a2a3a4 = a1a2[a2, a1]a31
a2 7−→ a1a

2
2

Apply δ to S1 = {(xyx)3, x27, y27, [x, y]3, . . .} to obtain

S2 = {(xy[y, x]x3xy2xy[y, x]x3)3, (xy[y, x]x3)27, (xy2)27, . . .};

it follows that G = 〈x, y | S1〉 ∼= 〈x, y | S2〉, see O’Brien 1994.

Now iterate with G ∼= 〈x, y | S2〉 and the std-pcp of K ∼= G/P2(G) to
compute the std-pcp of G/P3(G) ∼= G.

Practical issues: need complete orbit to identify element with smallest label. One
idea is to exploit the characteristic structure of the p-multiplicator (as before).

Note: The std-pcp is only “standard” because it has been computed by some
deterministic rule. Std-pcps are a very efficient tool to partition sets of groups
into isomorphism classes.
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Automorphism Groups Algorithm Example Stabiliser Problem

Automorphism groups

Go to Isomorphisms

Go to Coclass
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Automorphism Groups Algorithm Example Stabiliser Problem

Resources

Constructing automorphism groups of p-groups
B. Eick, C. R. Leedham-Green, E. A. O’Brien
Comm. Algebra 30, 2271-2295 (2002)
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Automorphism Groups Algorithm Example Stabiliser Problem

Computing automorphism groups

Let G be a d-generator p-group with lower p-central series

G = P0(G) > P1(G) > . . . > Pc(G) = 1.

In the following write Gi = G/Pi(G).

We want to construct Aut(G).

Approach

Compute Aut(G) = Aut(Gc) by induction on that series:

Aut(G1) = Aut(Cdp ) ∼= GLd(q)

construct Aut(Gk+1) from Aut(Gk).

For the induction step use ideas from p-group generation.
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Automorphism Groups Algorithm Example Stabiliser Problem

Computing automorphism groups

Let H = Gk and K = Gk+1; given Aut(H), compute Aut(K).

Recall from p-group generation:

compute H∗ = F/R∗ and the multiplicator M = R/R∗;

determine allowable subgroup U/R∗ ≤M defining K, that is, K ∼= F/U ;

each α ∈ Aut(H) extends to α∗ ∈ Aut(H∗) which leaves M invariant;
via this construction, Aut(H) acts on the set of allowable subgroups;

let Σ be the stabiliser of U/R∗ in Aut(H) under this action;

every α ∈ Σ defines an automorphism of F/U ∼= K;
let S ≤ Aut(K) be the subgroup induced by Σ;

let T ≤ Aut(K) be the kernel of Aut(K)→ Aut(H).

Theorem

With the previous notation, Aut(K) = 〈S, T, Inn(K)〉.
For a proof see O’Brien (1999).
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Automorphism Groups Algorithm Example Stabiliser Problem

Computing automorphism groups
Recall from p-group generation:

H = G/Pk(G) and K = G/Pk+1(G); we have K/Pk(K) ∼= H;

K is quotient of H∗ by allowable subgroup U/R∗;

S ≤ Aut(K) induced by stabiliser Σ of U/R∗ in Aut(H)

T ≤ Aut(K) is kernel of Aut(K)→ Aut(H);

Aut(K) = 〈S, T, Inn(K)〉.
Problem: how to determine S and T efficiently?

Lemma

Let {g1, . . . , gd} and {x1, . . . , xl} be minimal generating sets for K and Pk(K),
respectively. Define

βi,j : K → K,

{
gi 7→ gixj

gn 7→ gn (n 6= i).

Then T = 〈{βi,j : 1 ≤ i ≤ d, 1 ≤ j ≤ l}〉, an elementary abelian p-group.

Main problem: Compute S, that is, the stabiliser Σ of U/R∗ in Aut(H).
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Automorphism Groups Algorithm Example Stabiliser Problem

Induction step: example

Consider G = Pc〈a1, . . . , a4 | [a2, a1] = a3, a
5
1 = a4, a

5
2 = a53 = a54 = 1〉;

this group has 5-class 2 with P1(G) = 〈a3, a4〉.

Clearly, H = G/P1(G) = Pc〈a1, a2 | a51 = a52 = 1〉 with Aut(H) ∼= GL2(5).

Now compute:

H∗ = Pc〈a1, . . . , a5 | [a2, a1] = a3, a
5
1 = a4, a

5
2 = a5, a

5
3 = a54 = a55 = 1〉

the allowable subgroup U/R∗ = 〈a5〉 yields G as a quotient of H∗

α1 : (a1, a2) 7→ (a21, a2) and α2 : (a1, a2) 7→ (a41a2, a
4
1) generate Aut(H);

their extensions act on the multiplicator 〈a3, a4, a5〉 as(
2 0 0
0 2 0
0 0 1

)
,
(

1 0 0
0 4 1
0 4 0

)
the stabiliser Σ of U/R∗ is generated by the extensions of α1 and α2α1α

2
2

a generating set for T is {β1,4, β2,4, β1,3, β2,3}
This yields indeed Aut(G) = 〈T, S, Inn(G)〉, where S is induced by Σ
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Stabiliser problem

To do: Compute stabiliser of allowable subgroup U/R∗ under action of Aut(H).

Our set-up is:

consider M = R/R∗ as GF(p)-vectorspace and V = U/R∗ as subspace;

represent the action of Aut(H) on M as a subgroup A ≤ GLm(p);

compute the stabiliser of V in A.

Simple Approach: Orbit-Stabiliser Algorithm – constructs the whole orbit!

We’ll briefly discuss the following ideas:

1 exploiting structure of M

2 exploiting structure of A

3 exploiting structure of K (and G)
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Stabiliser problem: exploiting structure of M

Task: compute stabiliser of allowable subspace V ≤M under A.

Idea: exploit the fact that N = Pk+1(H∗) ≤M is characteristic in H∗,

Idea:

and that M = NV (since V is allowable)

Use this to split stabiliser computation in two steps:

compute the stabiliser of V ∩N as subspace of N :

use MeatAxe to compute composition series of N as A-module;
then compute orbit and stabiliser of V ∩N stepwise7

compute orbit of V/(V ∩N) as subspace of M/(V ∩N):

V/(V ∩N) is complement to N/(V ∩N) in M/(V ∩N), and N/(V ∩N) is
A-invariant; compute A-module composition series of M/N and N/(V ∩N)
and break computation up in smaller steps

7see Eick, Leedham-Green, O’Brien (2002) for details
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Automorphism Groups Algorithm Example Stabiliser Problem

Stabiliser problem: exploiting structure of A

Task: compute stabiliser of allowable subspace V ≤M under A.

Idea: Consider series AD S D P D 1, where

P induced by ker(H → Aut(H/P1(H))), a normal p-subgroup

S solvable radical, with S = S1 B . . .B Sn B P , each section prime order.

Schwingel Algorithm for stabiliser under p-group P

One can compute a “canonical” representative of V P and generators for
StabP (V ) without enumerating the orbit; see E-LG-O’B (2002).

Next, compute StabA(V ) along S = S1 B . . .B Sn B P , using the next lemma:

Lemma

Let L be a group acting on Ω; let T E L and let ω ∈ Ω.
Then ωT is an L-block in Ω, and StabL(ωT ) = TStabL(ω).

If l ∈ StabL(ωT ), then ωl = ωt for some t ∈ T , hence lt−1 ∈ StabL(ω).
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Automorphism Groups Algorithm Example Stabiliser Problem

Stabiliser problem: exploiting structure of A

Compute StabA(V ) along S = S1 B . . .B Sn B P , using the next lemma:

Lemma

Let L be a group acting on Ω; let T E L and ω ∈ Ω.
Then ωT is an L-block in Ω, and StabL(ωT ) = TStabL(ω).

If orbit V Si and stabiliser StabSi
(V ) are known, compute StabSi−1

(V Si), and
extend each generator to an element in StabSi−1

(V ).

Advantage: Reduce the number of generators of StabS(V ) substantially
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Stabiliser problem: exploiting structure of K (and G)

Recall: we aim to construct Aut(G) by induction on lower p-central series with
terms Gi = G/Pi(G); initial step is Aut(G1) ∼= GLd(p)

Idea: Aut(G) induces a subgroup R ≤ Aut(G1); instead of starting with Aut(G1),
start with L ≤ GLd(p) such that R ≤ L and [L : R] is small.

Approach:

construct a collection of characteristic subgroups of G, such as:
centre, derived group, Ω, 2-step centralisers,...

restrict this collection to G1 = G/P1(G)

Schwingel has developed an algorithm to construct the subgroup
R ≤ Aut(G1) ∼= GLd(p) stabilising this lattice of subspaces of G1

This aproach frequently reduces to small subgroups of GLd(p) as initial group.
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Automorphism Groups Algorithm Example Stabiliser Problem

Conclusion Lecture 4

Things we have discussed in the forth lecture:

std-pcp, isomorphism test for p-groups

automorphism group computation

Lecture 4 is also the last lecture on the ANUPQ algorithms:

ANUPQ (ANU-p-Quotient program), 22,000 lines of C code developed by
O’Brien; providing implementations of

p-quotient algorithm

p-group generation algorithm

isomorphism test for p-groups

automorphisms of p-groups

Implementations are also available in GAP and Magma; various papers discuss the
theory and efficiency of these algorithms.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



Automorphism Groups Algorithm Example Stabiliser Problem

What’s the Greek letter for “p” . . . ?
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πππ
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“Theorem”

We have π = 4.

Proof.
We take a unit circle with diameter 1 and approximate its circumference (which is
defined to be π) by computing its arc-length. Remember how arc-length is
defined? Use a polygonal approximation!

In every iteration: cirumference is π, arc lenght of red curve is 4.
So in the limit: π = 4, as claimed.

Well . . . obviously that is wrong!
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Everyone knows that the following is true . . .

“Theorem”

We have π = 0.

Proof.
We start with Euler’s Identity 1 = e2πı, which yields e = e2πı+1. Now observe:

e = e2πı+1 = (e2πı+1)2πı+1 = e(2πı+1)2 = e−4π
2

ee4πı.

Since e4πı = 1, this yields 1 = e−4π
2

. Since −4π2 ∈ R, this forces 0 = −4π2.
Since −4 6= 0, we must have π = 0, as claimed.
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