Isomorphism Testing Standard Presentations Example
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Conclusion Lecture 3

Things we have discussed in the third lecture:

(immediate) descendants

p-group generation algorithm

p-cover, nucleus, multiplicator, allowable subgroups, extended auts
automorphism groups of immediate descendants

the group number gnu for group order p®, p®, p”

PORC conjecture
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Isomorphism Testing Standard Presentations Example

Isomorphism testing for p-groups
E. A. O'Brien
J. Symb. Comp. 17, 133-147 (1994)
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Isomorphism Testing Standard Presentations Example

Standard Presentations

Problem: Decide whether two p-groups are isomorphic.

Standard presentation

For a p-group G use methods from the p-quotient and p-group generation
algorithms to construct a standard pcp (std-pcp) for G, such that G = H if and
only if G and H have the same std-pcp.

Example: For each j =1,...,p — 1 the presentation
Pclas,az | af = al, o = 1)
is a wpcp describing C),2; as a std-pcp one could choose

Pel{glNag io — a5, 0 =N

SNBSS Btd-pcp for Clis,Pe(agy. . -, aa |af = . .= EEuls
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Isomorphism Testing Standard Presentations Example

Isomorphism test: computingsstd-pcp's
Let G be d-generator p-group of p-class c.
Std-pcp of G/P(G) is Pclar, ..., aq Gy = e

Suppose H = G/ Py (G) with k < c is defined by std-pcp; have 6: G — G/P(G).

Find std-pcp of G/P;1(G) using p-group generation:
The p-group generation algorithm constructs immediate descendants of H.
Among these immediate descendants is K = G/Py11(G). Proceed as follows:

- let H = F'/R (defined by std-pcp) and H* = F/R*;
« evaluate relations in H* to get allowable M/R* with F//M = G/Py+1(G);

- recall: a € Aut(H) acts as o* € Aut(H™) on allowable subgroups;
two allowable U/R* and V/R* are in same Aut(H )-orbit iff F/U = F/V;
the choice of orbit rep determines the pcp obtained, and two elements from
the same orbit determine different pcp's for isomorphic groups;

+ associate with each allowable subgroup a unique /abel: a positive integer
which runs from one to the number of allowable subgroups;

- let M/R* be the element in the Aut(H)-orbit of M/R* with label 1.
Now K = F/M is isomorphic to G/P;.+1(G); the pcp defining K is “standard”.
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Isomorphism Testing
Isomorphism test: example @f std- pcp ‘
The group
G = (z,y | (zyx)®, 2, o7, [z, 9P, (g™ [, 2°], [9KE1S
has order 37, rank 2, and 3-class 3; let S; be the set of relators.v

- G/P1(G) has std-pcp H = Pc{ay,as [ay 0 s
and we have an epimorphism 6: G — H with x,y — a1, as.
- use the p-quotient algorithm to construct covering
H*=Pc{ay,...,as | [a2,01] = a3, a5 = aq, s G- SRS}

- evaluate S; in H* via 0 to determine the allowable subgroup U/R* = (a2as)
which must be factored from H* to obtain G/P(G), that is, F/U is
isomorphic to G/P»(G) with wpcp

Pc(ay, ... a4 | [a2,01] = as, ai’ = ag’ =1¥ . ag = ai = ).
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Isomorphism Testing Standard Presentations Example

Isomorphism test: example @f std- pcp

Recall:
H = Pclay,as \ai’:ag’:D;
He o —  Pclay, ... a5 [dordi|E=ta8 ai’:a4, a%:ag,, a§=a2=a§=1>,

with 3-multiplicator M = (as, a4, as).

A generating set for the automorphism group Aut(H) = GL2(3) is

a1 oa; — aa3, az: a3 — a1, Q3z: a —> ai
az +— . asa3 az +— ajas lir) el
Note that
o} (a3) = Az, a1]) = [aias, cros) = .. — a8
o} (aq)eos (a) = (Hins) TR
ai(as) = aj(a3) = (aia3)® = ... = afa?

so the matrices representing the action of o on M are
100 100 200
0F1 o888 010 020 ).
022 021 001
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Isomorphism test: example of std—pcp ‘
Recall that \
H* =Pc{ai,...,as | [a2,01] = 63,67 — G4, 65 Gos (0 — GIN SN IE

and G/P,(G) = F/U for the subspace U/R* = (asa2), which is ((0,1,2))
 The Aut(H)-orbit containing U/R* is

{(as), (asas), (alas), (as)}.

- The orbit rep with label 1 is ... U/R* = (as).
- Factor H* by (as) to obtain the std-pcp for G/P2(G) as

K =Pclay,:..,a4 | [ag,01] = a3, a3 = a4, af = ... HEEEE
Recall that U/R* was found by evaluating the relations S; of G.
But: for the std-pcp we factored out U/R* = §(U/R*) for some 0 € Aut(H™).

For the next iteration we need to modify the set of relations S; accordingly.
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Isomorphism test: example @f std-pcp

- An extended automorphism which maps U/R* = (a4a?) to U/R* = (as) is

. i 3
d: a1 > ajasazay = ajaslas,ai]a;
az — a3

- Apply § to S; = {(zyz)3, 2%, 4%, [z, y]®, ...} to obtain

Sz = {(zyly, 2]z’ zy’zyly, 2]e®)?, (oylge]z)™; (Gl .

it follows that G = (x,y | S1) = (x,y | S2), see O'Brien 1994,

Now iterate with G = (z,y | S2) and the std-pcp of K = G/Ps(G) to
compute the std-pcp of G/P5(G) = G.

Practical issues: need complete orbit to identify element with smallest label. One
idea is to exploit the characteristic structure of the p-multiplicator (as before).

Note: The std-pcp is only “standard” because it has been computed by some
deterministic rule. Std-pcps are a very efficient tool to partition sets of groups
into isomorphism classes.
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Automorphism Groups Algorithm Example Stabiliser Problem

Automorphism groups

» Go to Isomorphisms

» Go to Coclass
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Automorphism Groups Algorithm Example

Constructing automorphism groups of p-groups
B. Eick, C. R. Leedham-Green, E. A. O'Brien
Comm. Algebra 30, 2271-2295 (2002)
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Automorphism Groups Algorithm Example

abiliser Problem

Computing automorphism greups

Let G be a d-generator p-group with lower p-central series

G = Py(G) > Pi(G) > 5= PG —
In the following write G; = G/P;(G).
We want to construct Aut(G).

Approach

Compute Aut(G) = Aut(G.) by induction on that series:
© Aut(Gy) = Aut(C’g) = GL4(q)
« construct Aut(Gj41) from Aut(Gy).

For the induction step use ideas from p-group generation.
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Automorphism Groups Algorithm Example Stabiliser Problem

Computing automorphism greups

Let H = G, and K = Gj11; given Aut(H), compute Aut(K).

Recall from p-group generation:
< compute H* = F/R* and the multiplicator M = R/R*;
- determine allowable subgroup U/R* < M defining K, that is, K & F/U;

- each o € Aut(H) extends to o* € Aut(H*) which leaves M invariant;
via this construction, Aut(H) acts on the set of allowable subgroups;

- let ¥ be the stabiliser of U/R* in Aut(H) under this action;

- every a € ¥ defines an automorphism of F/U & K;
let S < Aut(K') be the subgroup induced by ¥;

< let T < Aut(K) be the kernel of Aut(K) — Aut(H).

Theorem
With the previous notation, Aut(K) = (S, T, Inn(K)).

For a proof see O'Brien (1999).
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Automorphism Groups Algorithm Example Stabiliser Problem
AT ST

Computing automorphism greups
Recall from p-group generation: : ,
« H=G/Py(G) and K = G/P;1+1(G); we have K/P(K) = H;
+ K is quotient of H* by allowable subgroup U/R*;
+ S < Aut(K) induced by stabiliser 3 of U/R* in Aut(H)
< T < Aut(K) is kernel of Aut(K) — Aut(H);
< Aut(K) = (S, T, Inn(K)).
Problem: how to determine S and T efficiently?

Lemma

Let {g1,...,94} and {z1,...,2;} be minimal generating sets for K and P (K),
respectively. Define

i GiTj
ﬁi7jIK—>K, g 9i% ¥
Gr: e G 2R

Then T'= ({8;;: 1 <i<d, 1 <j<l}), an elementary abelian p-group.

Main problem: Compute S, that is, the stabiliser ¥ of U/R* in Aut(H).
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Automorphism Groups Algorithm Example Stabiliser Problem
Induction step: example

Consider G = Pc(as, ... a4 | [a2,0:] = a3,a5 =a4 a7 = G =S =S
this group has 5-class 2 with P;(G) = (a3, aa).

Clearly, H = G/P1(G) = Pc{ay,az | a} = a3 = 1) with Aut(H) = GL3(5).

Now compute:
- H* =Pclay,...,as | [d3,a1] = 63,07 — G4, 05 s 0 GRS
- the allowable subgroup U/R* = (as) yields G as a quotient of H*

< aq: (ar,a) = (a2,az2) and ay: (a1, az) — (aias,a}) generate Aut(H);
their extensions act on the multiplicator (a3, a4, as) as

200 100
02 ) 041
001 040

- the stabiliser X of U/R* is generated by the extensions of o and agalag
- a generating set for T'is {$1,4, 82,4, 51,3, 82,3}
This yields indeed Aut(G) = (T, S, Inn(G)), where S is induced by ¥
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Automorphism Groups Algorithm Example Stabiliser Problem

Stabiliser problem

To do: Compute stabiliser of allowable subgroup U/R* under action of Aut(H).

Our set-up is:
- consider M = R/R* as GF(p)-vectorspace and V = U/R* as subspace;
represent the action of Aut(H) on M as a subgroup A < GL,,(p);
- compute the stabiliser of V in A.

Simple Approach: Orbit-Stabiliser Algorithm — constructs the whole orbit!

We’'ll briefly discuss the following ideas:
1 exploiting structure of M
2 exploiting structure of A

3 exploiting structure of K (and G)
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Automorphism Groups Algorithm Example Stabiliser Problem

Stabiliser problem: exploiting structure of M

Task: compute stabiliser of allowable subspace V' < M under A.

Idea: exploit the fact that N = Py 1(H*) < M is characteristic in H*,
and that M = NV (since V is allowable)

Use this to split stabiliser computation in two steps:

- compute the stabiliser of V' N N as subspace of IV:
use MeatAxe to compute composition series of N as A-module;
then compute orbit and stabiliser of V' N NV stepwise’

- compute orbit of V/(V N N) as subspace of M/(V N N):

V/(VNN) is complement to N/(VNN) in M/(VNN), and N/(VNN) is
A-invariant; compute A-module composition series of M /N and N/(V N N)
and break computation up in smaller steps

"see Eick, Leedham-Green, O'Brien (2002) for details
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Automorphism Groups Algorithm Example abiliser Problem

Stabiliser problem: exploiting structu"re‘;;of A

Task: compute stabiliser of allowable subspace V' < M under A.
Idea: Consider series A> S > P> 1, where
+ P induced by ker(H — Aut(H/P;(H))), a normal p-subgroup
S solvable radical, with S = S; > ...> S, > P, each section prime order.

Schwingel Algorithm for stabiliser under p-group P

One can compute a “canonical” representative of V¥ and generators for
Stabp (V') without enumerating the orbit; see E-LG-O'B (2002).

Next, compute Stab 4 (V') along S = S; > ... > S, > P, using the next lemma:

Lemma

Let L be a group acting on Q; let 7" L and let w € €.
Then w®' is an L-block in €2, and Staby(w?) = T'Stabr, (w).

If I € Stabr(wT), then w! = w' for some t € T, hence it~! € Staby (w).
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Automorphism Groups Algorithm Example abiliser Problem

Stabiliser problem: exploiting structu‘i‘g“;:df A

Compute Stab4 (V) along S = S > ...> S, > P, using the next lemma:

Lemma

Let L be a group acting on Q; let T L and w € Q.
Then wT is an L-block in €2, and Stabr (w?) = TStabr (w).

If orbit V¢ and stabiliser Stabg, (V') are known, compute Stabs, , (V°), and
extend each generator to an element in Stabg, , (V).

Advantage: Reduce the number of generators of Stabg (V') substantially
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Automorphism Groups
Stabiliser problem: exploitingsstructure of A (and G)

Recall: we aim to construct Aut(G) by induction on lower p-central series with
terms G; = G/P;(G); initial step is Aut(G1) = GL4(p)

Idea: Aut(G) induces a subgroup R < Aut(G}); instead of starting with Aut(G;),
start with L < GL4(p) such that R < L and [L : R] is small.

Approach:

+ construct a collection of characteristic subgroups of G, such as:
centre, derived group, €2, 2-step centralisers,...

- restrict this collection to G; = G/Pi(G)

- Schwingel has developed an algorithm to construct the subgroup
R < Aut(G;) =2 GL4(p) stabilising this lattice of subspaces of Gy

This aproach frequently reduces to small subgroups of GL4(p) as initial group.
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Automorphism Groups Algorithm Example Stabiliser Problem

Conclusion Lecture 4

Things we have discussed in the forth lecture:

std-pcp, isomorphism test for p-groups

automorphism group computation

Lecture 4 is also the last lecture on the ANUPQ algorithms:

ANUPQ (ANU-p-Quotient program), 22,000 lines of C code developed by
O'Brien; providing implementations of

* p-quotient algorithm
- p-group generation algorithm
isomorphism test for p-groups

* automorphisms of p-groups

Implementations are also available in GAP and Magma; various papers discuss the
theory and efficiency of these algorithms.
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Automorphism Groups Example er Problem

What's the Greek letter for “p” ...?
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Automorphism Groups Example
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Automorphism Groups Algorithm Example Stabiliser Problem

“Theorem”
We have m = 4.

We take a unit circle with diameter 1 and approximate its circumference (which is
defined to be 7) by computing its arc-length. Remember how arc-length is
defined? Use a polygonal approximation!

///\\
O Q \\/> E.

In every iteration: cirumference is 7, arc lenght of red curve is 4.
So in the limit: ™ = 4, as claimed.

Well ... obviously that is wrong!
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Automorphism Groups Algorithm Example er Problem

Everyone knows that the following is true ...

“Theorem”
We have m = 0.

We start with Euler's Identity 1 = e2™*, which yields e = e>™**1. Now observe:

2 o)
o 627TZ+1 i (627rz+1)27rz+1 = e(27rz+1) e 47 6647”.

Since e4™ = 1, this yields 1 = e=4™". Since —472 € R, this forces 0 = —4r2.
Since —4 # 0, we must have m = 0, as claimed.
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