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Lecture 1
Modular Forms and the Moonshine Conjectures



What is moonshine?

According to the Cambridge Advanced Learners Dictionary:
moonshine noun

(i) (mainly US) alcoholic drink made illegally

(ii) (informal) nonsense; silly talk

Moonshine is not a well defined term, but everyone in the area
recognizes it when they see it. Roughly speaking, it means
weird connections between modular forms and sporadic simple
groups. It can also be extended to include related areas such as
infinite dimensional Lie algebras or complex hyperbolic reflection
groups. Also, it should only be applied to things that are weird and
special: if there are an infinite number of examples of something,
then it is not moonshine.

– R. E. Borcherds



Sporadic Simple Groups meet Number Theory

I The largest sporadic group, denoted by F1 or M, was called
the Monster by Conway. The order of the monster is

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

I Monstrous moonshine is the connection of the Monster with a
modular function of PSL(2,Z) called the j-invariant.

I The j-invariant has the followed q-series: (q = exp(2πiτ))

j(τ)−744 = q−1+[196883+1] q+[21296876+196883+1] q2+· · ·

I McKay observed that 196883 and 21296876 are the
dimensions of the two smallest irreps of the Monster group.

I Thompson (1979): Is there an infinite dimensional M-module

V = ⊕∞m=−1Hm ,

such that dim(Hm) is the coefficient of qm in the q-series?
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The Modular Group

I Let H = {τ ∈ C | Im(τ) > 0} be the upper-half complex
plane.

I The full modular group Γ := PSL(2,Z) acts on H as follows:

τ → a τ + b

c τ + d
, where γ =

(
a b
c d

)
∈ Γ .

I Γ is generated by T : τ → τ + 1 and S : τ → −1/τ .

I A fundamental domain for Γ\H is (image from planetmath.org)



Subgroups of the Modular Group

I Let Γ(N) = {γ ∈ Γ | γ = ( 1 0
0 1 ) mod N}. This is a normal

subgroup of Γ.

I Any subgroup of Γ the contains Γ(N) is called a congruence
subgroup of Γ at level N. An example of interest is the group
Γ0(N) = {

(
a b
c d

)
∈ Γ | c = 0 mod N}.

I The group Γ0(N)+ is defined to be the normalizer of Γ0(N) in
SL(2,R).

I The Fricke involution is given by the SL(2,R) matrix, one has

FN := 1√
N

(
0 −1
N 0

)
which takes τ → −1/(Nτ). For prime p,

Γ0(p)+ = 〈Γ0(p),Fp〉 .

I The group Γ0(N)+ is a discrete subgroup of SL(2,R).



Modular forms of Γ

Let f : H → C be a holomorphic function on H that satisfies the
modular property with weight k .

f
(

aτ+b
cτ+d

)
= (cτ + d)k f (τ) , ∀

(
a b
c d

)
∈ Γ .

I f (τ + 1) = f (τ) implies that
∑

n∈Z a(n) qn.

I If f (τ) is bounded as Im(τ)→∞ (or q → 0), then one has
a(n) = 0 for n < 0. We say that f is a holomorphic modular
form of weight k .

I If f (τ) = O(q−N) for some integer N > 0 rather than O(1) as
above, then a(0) = 0 and we call f a cusp form.

I Suppose a(n) = 0 ,for n < −N for some integer N > 0, then
we call f a weakly holomorphic modular form.



Modular Forms

I Let Mk(Γ) (resp. SK (Γ)) denote the vector space (over C) of
holomorphic modular (resp. cusp) forms of weight k.
Similarly define M !

k(Γ) to be the vector space of weakly
holomorphic forms of weight k .

I One has
Sk(Γ) ⊂ Mk(Γ) ⊂ M !

k(Γ) .

I A very practical and important fact is that Mk(Γ) is
finite-dimensional.

I One can replace Γ by its subgroups such as Γ0(N) and similar
considerations hold.

I Next, we address the question of the dimension of Mk(Γ) and
construct the basis for it. We will discuss three different ways
to construct modular forms.



The Eisenstein series

I Let k > 2 be an even integer. Consider the sum

Gk(τ) :=
(k − 1)!

2(2π)k

∑
m,n∈Z

(m,n)6=0

1

(mτ + n)k
.

It is easy to show that it is a modular form of weight k .

I A more involved computation gives the q-series to be

Gk(τ) = 1
2ζ(1− k) +

∞∑
n=1

σk−1(n)qn .

I Setting k = 2 in the second formula gives G2(τ) that is not a
modular form but G ∗2 (τ) := G2(τ) + 1

8πIm(τ) is a
non-holomorphic weight two modular form.

I One defines Ek(τ) := 2Gk (τ)
ζ(1−k) = 1 + . . . whose constant

coefficient a(0) = 1.



The ring of modular forms

Example (q-series for Eisenstein Series)

E2(τ) = 1− 24q − 72q2 − 96q3 + · · ·
E4(τ) = 1 + 240q + 2160q2 + 6720q3 + · · ·
E6(τ) = 1− 504q − 16332q2 − 122976q3 + · · ·
E8(τ) = 1 + 480q + 61920q2 + 1050240q3 + · · ·

Proposition: The ring of holomorphic modular forms,
M∗(Γ) := ⊕kMk(Γ) is freely generated by E4(τ) and E6(τ).

I It is thus easy to show that E8(τ) = E4(τ)2 and
E10(τ) = E4(τ)E6(τ).

I There are two linearly independent forms at weight 12 i.e.,
E4(τ)3 and E6(τ)2.



The Dedekind eta Function

I The Dedekind eta function is defined by

η(τ) := q1/24
∞∏

m=1

(1− qm) .

I It is a modular form of weight 1
2 of a subgroup of Γ. The

q1/24 implies that under T , it picks up a phase that is a 24-th
root of unity.

I Taking the 24th-power of it, gives us a cusp form of weight 12
called the Discriminant function

∆(τ) := η(τ)24 = q − 24q2 + 252q3 + · · · ∈ S12(Γ) .

I It is easy to verify that ∆(τ) = (E4(τ)3 − E6(τ)2)/1728.

I ∆(τ) provides an isomorphism between Sk(Γ) and Mk−12(Γ)
as it is non-vanishing on Γ\H. If f ∈ Sk , then f /∆ ∈ Mk−12.

I Combinations such as η(τ)8η(2τ)8 are used to generate
modular forms of subgroups of Γ.



The j-invariant

I The function j(τ) = q−1 + 744 + · · · is a weakly holomorphic
modular function (of weight zero). It is invariant under the
full modular group Γ.

I Multiplying by the cusp form ∆(τ) gets rids of the pole in q.
One obtains

j(τ)∆(τ) = q [1− 24q + O(q)]
[
q−1 + 744 + O(q)

]
= 1 + 720q + O(q2) .

I This has to be an element of M12(Γ). It is easy to see that it
is E4(τ)3 since E4(τ) = (1 + 240q + O(q2)).

I We thus obtain a nice formula for j(τ) = E4(τ)3/∆(τ) whose
q-series is easy to obtain.

I The j-function provides an isomorphism between Γ\H and C.



Hauptmoduls for genus zero groups

I The compactifcation of the fundamental domain Γ\H on
adding the point at infinity has genus zero.

I J(τ) = (τ)− 744 is the unique modular function with q-series
J(τ) = q−1 + O(q) and is the normalised generator of the
function field of weight zero modular forms (hauptmodul) on
the fundamental domain..

I Let G be a discrete subgroup of SL(2,R) that is
commensurable with SL(2,Z) acting on H. If the quotient,
G\H is a Riemann surface such that G\H of genus zero, we
say that G is a genus zero group.

I For every genus zero group, there is a unique normalised
hauptmodul JG (τ) = q−1 + 0 + O(q) that provides an
isomorphism between G\H and C ∪∞.

I Ogg observed that for all primes p that divide the order of the
Monster, the group Γ0(p)+ is a genus zero group. Further, for
N < 10, Γ0(N) has genus zero.



The moonshine conjectures – 1

Conjecture (Thompson (1979))

There exists a graded M-module V = ⊕∞m=0Vm such that dim(Vm)
is the coefficient of qm−1 in the Fourier expansion of J(τ).

I One has V0 = C and V1 = 0. Thompson also gave the
decomposition of the the first five Vm in terms of irreducible
M-modules.

I For g ∈M, define the McKay-Thompson series

Tg (τ) =
∞∑

m=0

Tr(g |Vm) qm−1 = q−1+0+
[
χ1(g)+χ2(g)

]
q+· · ·

where χ1(g) and χ2(g) are the characters of the two smallest
irreps of M.

T2A(τ) = q−1 + 4372q + 96256q2 + 1240002q3 + O(q4)

T2B(τ) = q−1 + 276q − 2048q2 + 11202q3 + O(q4)



The moonshine conjectures – 2

Conjecture (Conway-Norton (1979))

The McKay-Thompson series Tg (τ) is the normalised generator of
a genus zero function field (hauptmodul) arising from a group, Hg ,
between Γ0(N) and its normaliser in PSL(2,R) i.e., Γ0(N)+ for
some N dividing ord(g) gcd(24, ord(g)). In other words,
Tg (τ) = JHg (τ).

I M has 194 conjugacy classes. However, there are only 171
distinct McKay-Thompson series. An element and its inverse
have the same series. Two distinct conjugacy classes of
elements of order 27 have the same McKay-Thompson series.

I Conway and Norton identified the precise genus-zero groups
Hg as well as the modular forms. The results are presented
via a large number of tables!

I For instance, H2B = Γ0(2) and T2B = η(τ)24

η(2τ)24 + 24.



The conjectures are theorems today

Theorem (Frenkel-Lepowsky-Meurman (1984/1985/1988))

There is a Monster module V \ with the properties in Conjecture 1.

A natural representation of the Fischer-Griess Monster with the
modular function J as character, Proc. Nat. Acad. Sci. U.S.A.,
81(10) (1984) 3256–3260.

Theorem (Borcherds (1992))

Suppose that V = ⊕n∈ZVn is the infinite dimensional graded
representation of the monster simple group constructed by Frenkel,
Lepowsky, and Meurman]. Then for any element g of the monster
the Thompson series Tg (q) =

∑
n Tr(g |Vn)qn is a Hauptmodul for

a genus 0 subgroup of SL2(R), i.e., V satisfies the main conjecture
in Conway and Norton’s paper.

Monstrous moonshine and monstrous Lie superalgebras, Invent.
Math., 109 (1992) 405–444.



Theta Series
(A third construction for modular forms)



Lattices and Theta Series
I Let Q denote a quadratic form in r variables. Let Q : Zr → Z

be a positive definite quadratic form taking integral values.
Let Q(x) := 1

2

∑r
i ,j=1 aijxixj , where A = (aij) is a symmetric

matrix with integer entries and aii are even. (Call such
matrices even integral) Positive definiteness implies detA > 0
among other things.

I The root lattice of simply laced Lie algebras with A given by
its Cartan matrix satisfies the required conditions.

I To Q, we associate the theta series

θQ(τ) :=
∑
x∈Zr

qQ(x) .

I Define the level of Q to be the smallest positive integer
N = NQ such that the matrix NA−1 is even integral and let
D = (−1)r/2 det(A). Then, (for even r) θQ(τ) is a modular
form of weight r/2 on Γ0(NQ) with character χ(d) = (Dd )

θQ( aτ+b
cτ+d ) = χ(d) (cτ + d)k θQ(τ) .



Lattices and Theta Series

I When det(A) = 1, we say that A is a unimodular matrix. In
such cases, we obtain a theta series that gives a modular form
for the full modular group. One can show that such lattices
are self-dual.

I Such lattices occur only when the dimension r is divisble by 8.

I In eight dimensions, there is a unique self-dual lattice given by
the E8 root lattice. We obtain a modular form of weight 4 on
Γ. Thus, we see that

θE8(τ) = E4(τ) = 1 + 240q + O(q2) .

The number of vectors in the root lattice with length 2 equals
240 as expected for the root vectors of E8.

I In 16 dimensions, there are two self-dual lattices, the root
lattices of E8⊕ E8 and D16. Both are modular forms of weight
8 on Γ. Since there is only one modular form of weight 8, we
see that the theta series must be equal to E4(τ)2.



Lattices and Theta Series

I In 24 dimensions, there are 24 such lattices that were
classified by Niemeier.

I The theta series for 24 Niemeier lattices will all have weight
12. However, since dim(M12(Γ)) = 2, the theta series need
not be equal.

I In particular, there is a special lattice called the Leech lattice
that has no vectors of norm 2. Thus θΛ(τ) = 1 + O(q2).
Modularity determines the

θΛ(τ) =
7

12
E4(τ)3 +

5

12
E6(τ)2 = 1 + 196560q2 + · · ·

I One also has the identity

θΛ(τ)

∆(τ)
= J(τ) + 24 .

I Similarly, the number of vectors of norm 2 in the 23 other
lattices completely determines the theta series.



Lecture 2:
The FLM construction of the moonshine module



Theta series for the E8 root lattice

I Recall that we saw that θE8(τ) = E4(τ) = 1 + 240q + · · · .
Consider the q-series for

θE8(τ)

η(τ)8
= q−1/3

[
1 + 248q + 4124q2 + 34752q3 + · · ·

]
After removing the factor q−1/3. the coefficient of q is the
dimension of the E8 algebra. What about the next term? It
can be written as 4124 = 1 + 248 + 3875 – these are the
dimensions of the three smallest irreps of E8.

I Is this E8 moonshine? Yes. However, there is not much
mystery as one can show that this is the character of a
representation of the level one affine E8 Kac Moody algebra.

I It is also interesting to see that

θE8(τ)

η(τ)8
=

E4(τ)

η(τ)8
= j(τ)1/3 .



Quantum Fields

I Let V be a linear space. A (quantum) field is a formal series

a(z) :=
∑
m∈Z

anz
−n−1 ∈ End(V )[[z , z−1]]

of operators an on V such that if v ∈ V , anv = 0 for all n
that is suitably large. We say that a(n) are the modes of the
field a(z).

I Let F(V ) = {a(z) ∈ End(V )[[z , z−1]] | a(z) is a field}.
I Thus F(V ) is the ‘space of fields’.

Remark: We are following the lectures of Mason at Heidelberg in
2011 for definitions, notation and mathematical precision. (precise
reference will be given later).



Definition (Vertex Algebra)

A vertex algebra is the quadruple (V ,Y , 1,D) consisting of a linear
space V , a distinguished vector 1 ∈ V , an endomorphism
D : V → V with D1 = 0, and a linear injectiion Y : V → F(V )
satisfying the following for all u, v ∈ V :

I Locality: Y (u, z1) and Y (v , z2) are mutually local i.e., there
is a positive integer N such that

(z1 − z2)N Y (u, z1)Y (v , z2) = (z1 − z2)N Y (v , z2)Y (u, z1) ,

I Creativity: Y (u, z) 1 = u + O(z).

I Translation covariance: [D,Y (u, z)] = d
dzY (u, z).

Remarks: In physics terminology, an element v ∈ V is called a
‘state’, 1 the vacuum state and the map Y provides the state to
operator correspondence. Y (u, z) is called a vertex operator.
It is interesting to show that the locality condition is equivalent to
other conditions usually given. (see Mason’s Heidelberg lectures)



Definition (Vertex Operator Algebras)

A Vertex Operator Algebra (VOA) is a vertex algebra (V ,Y , 1,D)
together with a distinguished vector ω ∈ V called the Virasoro
vector such that

I The modes of the field Y (ω, z) =
∑

m∈Z L(n)z−n−2 generate
an action of the Virasoro algebra

[L(m), L(n)] = (m − n)L(m + n) + m3−m
12 δm+n,0K ,

on V with K acting as a scalar c , called the central charge.

I L(0) is a semi-simple operator on V , its eigenvalues lie in Z,
are bounded from below and all its eigenspaces are finite
dimensional.

I D = L(−1).

Remark: Note that ω(n + 1) = L(n).
Exercise: Show that (i) (z1 − z2)4[Y (ω, z2),Y (ω, z2)] = 0 and (ii)
ω = L(−2)1.



Modules over a VOA

I Given a VA (V ,Y , 1), a V-module is a linear space W and a
linear map YW : V → F(W ).

I YW (u, z) =
∑

n∈Z uW (n)z−n−1 with Y (1, z) = IdW .

I The fields YW (u, z) for u ∈ V are mutally local.

I However, there is no analog of the vacuum vector and so
creativity doesn’t make sense here.

I A module over a VOA is a V-module with the additional
condition that LW (0) is semisimple with finite-dimensional
eigenspaces.



Example 1: The Heisenberg VOA

I Let L be an abelian Lie algebra of dimension ` with a
symmetric bilinear form 〈 , 〉. The affine Lie algebra
associated with is L̂ := L⊗ C[t, t−1]⊕ CK with bracket (for
a, b ∈ L)

[a⊗ tm, b ⊗ tn] = mδm+n,0〈a, b〉K .

I Consider the triangle decomposition L̂ = L̂− ⊕ L̂0 ⊕ L̂+ where
L̂− = {a⊗ tm | a ∈ L, m < 0}, L̂0 = {a⊗ t0 | a ∈ L}, and
L̂+ = {a⊗ tm | a ∈ L, m > 0}.

I Let W = Cv0 be the trivial L-module. Extend w to a L̂0 ⊕ L̂+

module by having L̂+ annihilate w and K acts as a scalar
equal to ` on the module. The induced module
V (`,Cv0) ' S(L̂−)⊗ Cv0.

I This is a vertex algebra with Y (a, z) =
∑

m∈Z(a⊗ tm)z−m−1,
and (z1 − z2)2[Y (a, z1),Y (b, z2)] = 0.



Example 1: The Heisenberg VOA

I It is a VOA with Virasoro vector ω := 1
2

∑`
i=1 vi (−1)vi where

{vi} is an orthonormal basis for L and central charge `.

I The vector space V (`,Cv0) can be graded by the L(0)
eigenvalue. This associates a degree of m to (L⊗ t−m)⊗Cv0.

I V (`,Cv0) = ⊕∞m=0Vm, where m is the L(0) eigenvalue.

I The dimension of the subspace of degree m is given by the
number of `-coloured partitions of m. For example, at m = 2,
the states are (L⊗ t−2)⊗ Cv0, S2(L⊗ t−1)⊗ Cv0 which has

dimension `+ `(`+1)
2 .

I We see that

q−c/24
∞∑

m=0

dimVm qm =
q−`/24∏∞

k=1(1− qk)`
= η(τ)−` =: ZV (q) .

Call this the partition function of the VOA.



Example 2: The lattice VOA

I Let L be an even lattice of rank ` associated with symmetric
bilinear form 〈 , 〉 : L× L→ Z. To match the previous
lecture, this corresponds the quadratic form Q(x) = 〈x , x〉 for
x ∈ L. Set H = C⊗Z L and extend the biliinear form to H.

I H is an abelian Lie algebra and there is a Heisenberg VOA
V (`,Cv0) associated with it.

I Fix β ∈ L. Let Ceβ be the linear space spanned by eβ. This
can be made into an H-module by

α · eβ = 〈α, β〉eβ for α ∈ H ,

I One constructs Vβ := V (`,Ceβ) as a V (`,Cv0)-module and

V (`,Ceβ) ' S(Ĥ−)⊗ Ceβ.



Example 2: The lattice VOA

I Let VL := ⊕β∈LV (`,Ceβ) ' S(Ĥ−)⊗
(
⊕β∈L Ceβ

)
.

I Identify Vβ=0 with V (`,Cv0) with 1 = 1⊗ v0.

I For u ∈ Vβ, the vertex operator Y (u, z) maps Vα to Vα+β.

I Mutual locality of the vertex operators Y (eα, z) and Y (eβ, z)
requires eα to be an element of a central extension of L.

I Given any even lattice L, there is a central extension

0→ Z2 → L̃→ L→ 0 ,

where Z2 is a group of order two generated by an element ε.

I For every β ∈ L, L̃ has an element eβ such that
eαeβ = ε〈α,β〉eβeα and eβe−β = ε〈β,β〉/2.

I L̃ is unique up to isomorphism.

I One can show that VL is a VOA with central charge `.

I In particular, the L(0) eigenvalue of 1⊗ eβ is 1
2〈β, β〉 ∈ Z≥0.



Example 2: The lattice VOA

I The partition function of this VOA is

ZVL
(q) =

θL(τ)

η(τ)`
,

where θL(τ) :=
∑

β∈L q
1
2
〈β,β〉 is the partition function from(

⊕β∈L Ceβ
)

part of VL and the eta function is from the
Heisenberg part.

I An automorphism of a VOA, V, is an invertible map
g : V → V such that g(ω) = ω and
gY (v , z)g−1 = Y (g(v), z).

I The automorphism group of L̃ is an extension 2rank(L).Aut(L).

I For root lattices associated with simple Lie algebras of the
ADE type, Aut(L) is the Weyl group.



The Leech VOA

I Griess generated the monster group as M = 〈C , σ〉, where
C = 21+24.Co1 is the centraliser of an involution in M and σ
is another involution not in C .

I These arose as the automorphisms of an algebra (the Griess
algebra) on a space of dimension 196884.

I Frenkel, Lepowsky and Meurman (FLM) observed that VOA
associated with the Leech lattice Λ has a subspace V2 ∈ VΛ

that has the correct dimension.

ZΛ =
θΛ(τ)

∆(τ)
= q−1(1 + 24q + 196884q2 + · · · ) .

I Could the automorphism group of the Leech VOA provide C?
One has Aut(Λ) = Co0 = 2.Co1. Thus, Aut(Λ̃) has the same
order as C but is not of the form 21+24.Co1.

I FLM solved this problem by considering a twisting of the
Leech VOA by a lattice involution.



Twinning by an involution
I Let t denote the involution that maps β to −β in a lattice L.

t acts as −1 on the abelian Lie algebra C⊗ L and thus on the
Heisenberg VOA.This can be lifted to an involution of the
lattice VOA as follows.

t(u ⊗ eβ) = t(u)⊗ e−β (u ∈ S(Ĥ−)) .

I Let g be an automorphism of the lattice VOA of finite order.
Define the twinning partition

ZVL
(g , τ) := q−c/24

∞∑
m=0

TrVm(g) , qm .

I Let t be the involution discussed above. The only
contribution comes from states of the form u ⊗ e0

(u ∈ S(Ĥ−)). An easy computation gives

ZVL
(t, τ) =

(
η(τ)

η(2τ)

)`
.



Twisting by an involution

I Let (V ,Y ) be a VOA and g denote an automorphism of V of
order N. A g -twisted V -module is pair (Wg ,Yg ) consisting of
a space Wg and a map Yg : V → F(Wg ), u 7→ Yg (u, z) where

Yg (u, z) :=
∑

m∈Z+ r
N

u(m)z−m−1 ∈ End(Wg )[[z1/N , z−1/N ]]

when g(u) = exp(−2πir/N) u (r ∈ Z) and Yg (1, z) = IdWg .

I There are several other conditions that we have not specified.
The L(0) eigenvalue of states in V-module Wg are bounded
from below by its conformal weight, hg . Wg has the
decomposition

Wg =
∞⊕

m=0

(Wg )hg+m
N
,

where the grading is the L(0) eigenvalue.



The twisted partition function

I Define the g -twisted partition function as

ZWg (τ) = q−
c

24
+hg

∞∑
m=0

dim((Wg )hg+m
N

)qm/N .

I Let us now consider the Leech VOA. In this case, the ZΛ(τ)
was a modular function of the full modular group. Let t
denote the involution and let VΛ(t) denote the twisted
module. One has the following identity

ZVΛ(t)(τ) = ZVΛ
(t,−1/τ) ,

= 212q1/2
∞∏

m=1

(1 + qm/2)24 .

We see that ht = 1 + 1/2 = 3/2 and that there are 212 states
with L(0) eigenvalue 3/2. These form a representation of the
extra special group 21+24.



The Moonshine module V \

I The involution t acts on S(⊕n>0H ⊗ t−n/2) as before and as
−1 on the 212 states.

I Define
V \ := V+

Λ + V+
Λ (t) ,

where the plus in the superscript indicates that we project on
t-invariant states in the two linear spaces.

I The partition function on V \ is defined as that sum

ZV \ = ZV+
Λ

+ ZV+
Λ (t).

I One obtains

ZV+
Λ

(τ) =
1

2

(
ZVΛ

(τ) + ZVΛ
(t, τ)

)
= q−1 + 98580q + · · ·

ZV+
Λ (t) = 211q1/2

( ∞∏
m=1

(1 + qm/2)24 −
∞∏

m=1

(1− qm−1/2)24
)

= 98304q + · · ·



Putting things together

I ZV \(τ) = q−1(1 + 196884q2 + · · · ) = J(τ) as we wanted.

I The 196884 dimensional subspace V2 of V \ with L(0)
eigenvalue 2 provides the setting for the Griess algebra.

I The näıve guess that it is the algebra of the vertex operators
Y (u, z) is the Griess algebra is not quite correct as the natural
action takes one out of V2.

I FLM carry out a symmetrisation of this algebra called the
cross-product which removes the unwanted terms. It has the
same structure as the Griess algebra.

I The final part of the story is to show that the automorphism
of the VOA associated with V \ is the monster. Since it
compatible with the L(0) grading, it acts on the Griess algebra
as well. This is best understood with another construction
that starts with a Niemeier lattice associated with A⊕24

1 .



Concluding Remarks

I The proof of conjecture 2 by Borcherds involves working with
the unique even Lorentzian unimodular lattice of signature
(25, 1) which is isomorphic to Λ⊕ II1,1. The Lorentzian
signature lets him replace the complicated Griess algebra by a
Lie algebra albeit of a new kind – the Borcherds-Kac-Moody
(BKM) algebra.

I The Weyl denominator for this BKM algebra (and its twisted
versions) imply replication formulae for the McKay-Thompson
series Tg (τ) that prove that they are indeed hauptmoduls.

I Norton further extended these considerations to pairs of
commuting automorphisms (g , h) of M and one obtains
McKay-Thompson series Tg ,h(τ) where the traces are now in
the twisted modules V \(ha), a = 0, 1, . . . , ord(h)− 1.

I There has been recent work on Moonshine associated with the
largest Mathieu group M24 that relates conjugacy classes of
M24 to Jacobi forms, genus two Siegel modular forms,
Borcherds Kac-Moody superalgebras.
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