Last Time

Orbit / Stabilizer algorithm
Decompose group: Subgroup and Cosets

Use for permutation groups with subgroup being point
stabilizer.

Can iterate again for subgroups: Logarithmize problem.

Stabilizer Chains

Let G < Sa. A list of points B=(B1....,Bm), Bi € Q is called
a base, if the identity is the only element ge G such that

B&=Bifor all i
The associated Stabilizer Chain is the sequence
G=CO > aM > . > Gm= 1)

defined by G© =G, GW:=Stabg" (B). (Base property
guarantees that Gm= <1))

Note that every g € G is defined uniquely by base images
B1s,...Bms. (If gh have same images, then g/h fixes base.)

Data structure

We will store for a stabilizer chain:

» The base points (B7...,Bm).

- Generators for all stabilizers G®. (Union of all
generators IS strong generating set, as It permits

reconstruction of the G®) Data structure thus is often
called Base and Strong Generating Set.

- The orbit of B; under G7 and an associated
transversal for G® in G (possibly as Schreier tree).

Storage cost thus is ©(m -|Q|)

Data structure

We will store for a stabilizer chain:

+ The base points (B1...,Bm). _ g

{ of all

« (eneyan=
" | .
gene o bermits
recony Constr § thus is often
called T

—

+ The orbit of B; under G~7 and an associated
transversal for G@ in G#7 (possibly as Schreier tree).

Storage cost thus is ©(m -|Q|)

Consequences
e Group order: G = [GO:.GM]-.. . [GMD:GM] and
thus G=TT. |Bic¢=7.
Membership test in G for x € Sq:

1. Is w = B1* € B1°7? If not, terminate.

2. If so, find transversal element t € GO such that
B1t=B1x_

3. Recursively: Is x/t (stabilizing 1) in GO,
(Respectively: test x/y=() in last step.)

More Consequences

Bijection g € G & base image (B8,825,...).

» Enumerate G, equal distribution random elements.
» Write ge G as product in transversal elts.

» Write ge G as product in strong generators.

» |If strong gens. are words in group gens.: Write ge G
in generators of G. (Caveat: Often long words)

» Chosen base: Find stabilizers, transporter elements,
for point tuples.

More Consequences

Bijection g € G & base image (B8,825,...).

» Enumerate G, equal distribution random elements.

» |If strong gens. are words in group gens.: Write ge G
in generators of G. (Caveat: Often long words)

» Chosen base: Find stabilizers, transporter elements,
for point tuples.

Schreier-Sims algorithm

SIMS' (~1970) idea is to . ~ a membership test in a

partiam ~ompleted stabilizes n to reduce on the
numben

Basic stru
< G0=1
BU with t
generato

The basic

GV to1 Charles Sims, 1938 N Otto Schreier, 1901-1929
Image w = pX

Schreier-Sims algorithm

SIMS' (~1970) idea is to use a membership test in a

partially completed stabilizer chain to reduce on the
number of Schreier generators.

Basic structure is a partial stabilizer, i.e. a subgroup U
< G017 given by generators and a base-point orbit

BY with transversal elements (products of the
generators of U).

The basic operation now is to pass an element x €

G7 to this structure and to consider the base point
image w = pB*

Base point image w = Bx

o If wePY transversal element teU such that B=w.
Pass y=x/t to the next lower partial stabilizer <G®.

If w ¢ BY, add x to the generating set for U and

extend the orbit of B. All new Schreier generators
yeStaby(P) are passed to next partial stab. <G0,

If no lower stabilizer was known, test whether the
y was the identity. If so just return. (Successful
membership test.)

Otherwise start new stabilizer for generator y and
the next base point. (Pick a point moved by).

Homomorphisms

Embed permutation group G into direct product D=GxH.
A homomorphism @:G—H can be represented as U<D
via

U={(gh) € GXH | ge=h
Build a stabilizer chain for U using only the G-part.
Then decomposing g € G using this chain produces an H-

part that is gle=".
Use this to evaluate arbitrary homomorphisms.

Kernels, Relators

Vice versa, let ¢o:H— G and
U={(gh) € GxH | he=g}.

Form a stabilizer chain from generators of U, using
the G-part.

The elements sifting through this chain (trivial g-part)
are generators for ker .

If His a free group, this yields relators (later) of a
presentation for G.

Other Actions

Every finite group is a permutation group in suitable
actions. (E.g. matrices on vectors.) Same methods

apply there.

It is possible to use different actions (e.g. matrix group
on subspaces and on vectors)

But: Orbit lengths can be unavoidably huge if there
are no subgroups of small index.

Approach can be useful for well-behaved groups.
Not a panacea, but part of matrix group recognition.

Permutation Backtrack

A stabilizer chain lets us consider the elements of
G as leafs on a tree, branches corresponding to
base point images.

Traverse the tree (depth first) by enumerating all
possible base images. Find group elements wi
particular desired property. i
Exponential run time but good A

in practice, by clever pruning.

(1,42

E.g.: Centralizer, Normalizer,o / by, © /Ly © /by

34

Set Stab., Intersection, ’%) ’3@ (s

conj.elts., ..

[y
\9)

0 234) (243) (123) (1,2)34) (1,24) (1,32) (1,34) (1,3)

In GAP

Permutation groups use backtrack search for

2 Centralizer, element conjugacy RepresentativeAction
2 Normalizer, Subgroup conjugacy RepresentativeAction
2Set Stabilizer, Intersection,

2 Generic: ElementProperty, SubgroupProperty

Quandry

Schreier-Sims is deterministic Algorithm. Polynomial
(in the degree n=|Q)|) runtime, but larger exponent
(naively ©(n’), ©(n3) if Schreier tree is used cleverly).

The cause is the processing of all (mostly redundant)
Schreier generators.

In practice this is not feasible if nis not small
(>1000). For short base (log|G|<logcn) we would like
nearly linear time ©(n loge n), best possible

Wrong Results are Cheap

Use only some generators (random subset, better: random
subproducts). Potentially wrong data structure. But:

2Error results in chain that claims to be too small - can detect if
group order is known. (Random-Schreier-Sims)

= Assign a known group order (SetSize(G,order);)

B Error analysis: A random element of G fails sifting in wrong chain
with probability 1/2 - guarantee arbitrary small error probability.

B> Verify correctness, by showing the group cannot be larger:
= Combinatorial Verification (SIMs, see SERESS' book)

= Presentation from stabilizer chain. Verify that group fulfills it. If
too small some relators fail to be.

Wrong Results are Cheap

Use only some generators (random subset, better: random
subproducts). Potentially wrong data structure. But:

2 Error results in chain that claims to be too small - can detect if
group order is known. (Random-Schreier-Sims)

= Assign a known group order (SetSize(G,order);)

B Error analysis: A random element of G fails sifting in wrong chain
with probability 1/2 - guarantee arbitrary small error pro

2 Verify correctness, by showing the group cannot be
= Combinatorial Verification (SiMms, see SERESS' book)
= Presentation from stabilizer chain. Verify that group fulfills it. If

too small some relators fail to be. %

Finitely
Presented
Groups

Finitely Presented Group

Let F be a free group on finite alphabet A

Let R (Relators / Relations) be a finite subset of F
(Interpret a=b as a/b.)

Then CA|R> = F/N, where N is the smallest normal
subgroup of F containing R, is a finitely presented group.

Some people distinguish the groups (quotients of A and
presentations (formal string objects) to describe

modifications.

Example

First textbook example of a nonabelian group:

Ds= <1, s | ri=s2=1, rs=sr')

 Elements have normal form s2r?, 0=a=1, O=b=3.

*So group has at most 8 elements.

* And indeed there are 8 different ones (show that
elements have different actions).

Group order bounded by normal form. Can we find one?

Actions (homomorphisms) show we achieve that image.

Example

First textbook exam plL/rotation]

r

abelian group:

Dg= <r, s | r*=s>=1, rs=sr')

 Elements have normafform s2r® O=a=1, O=b=3.

p.

st Spiegelung (ger.) |
=reflection
e 8 amrerent ones (show that

ent actions).

by hormal form. Can we find one?

s) show we achieve that image.

Example

First textbook exam plL/rotation]

r

abelian group:

Dg= <r, s | r*=s>=1, rs=sr')

 Elemenis have normafform s2r® O=a=1, O=b=3.

p.

st Spiegelung (ger.) |
=reflection
e 8 amrerent ones (show that

ent actions).

by hormal form. Can we find one?

s) show we achieve that image.

Example

First textbook example of a nonabelian group:

Ds= <1, s | ri=s2=1, rs=sr')

 Elements have normal form s2r?, 0=a=1, O=b=3.

*So group has at most 8 elements.

* And indeed there are 8 different ones (show that
elements have different actions).

Group order bounded by normal form. Can we find one?

Actions (homomorphisms) show we achieve that image.

DEHN's Problems (1911)

Given ¢ R), can we test
algoritt LA

1. Aw ity

2. Twi 2ments

3. Tes

Max Dehn, 1878-1952

DEHN's Problems (1911)

Given a finitely presented group, can we test
algorithmically whether:

1. A word represents the identity
2. Two words are conjugate elements

3. Test for Group Isomorphism

lel

Give up,
algc
18 2ntity

1 K
2. ° NS - eler |
‘William Boone, 1920-1983 Piotr Novikov, 1901-1975

| CoL 1UL VU IDUITIVI I (1<’

Answer: Boone, Novikov (1957) No.

Reduce to Halteproblem for Turing machines — there is
no universal machine. Any approach will be heuristics.

In GAP

Create a free group and a list of relators (elements of group),
quotient is finitely presented group.

GeneratorsOfGroup or AssighGeneratorVariables allows access
to generators — no automatic assignment.

Convenience function ParseRelators.

gap> f:=FreeGroup("a","b");

<free group on the generators [a, b]>

» gap> rels:=ParseRelators(f,"a3,b5,(ab)2");
e 3, b5, (a*b)"2]

» gap> g:=f/rels;

» <fp group on the generators [a, b]>

» gap> AssignGeneratorVariables(g);

- #I Assigned the global variables [a, b]
fgap> a in £; a in g;

tfalse /[true

e ® @ 6 e o @ o o o 0

Element Equality

Elements seemingly multiply as in the free group, but
equality tests will test properly. The first such test for a
group thus will trigger a highly nontrivial calculation.

One can also force reduction for all products formed.

°
gap> a*b*a*b; gap> g:=f/rels;; .
(a*b) "2 gap> g.l=a; ¢
gap> Order(a*b*a*b); | false i
1 gap> SetReducedMultiplication(g); e
gap> a*b*a*b=0ne(g); | gap> AssignGeneratorVariables(g); ®

- true #I Variable a' will be overwritten

' gap> a"7=a; #I Variable “b' will be overwrittes
true gap> a’"-1*b"5*a”7*b"3; ¢

- gap> a"8=a; b"-2 .

- false @

Element Equality

Elements seemingly multiply as in the free group, but
equality tests will test properly. The first such test for a
group thus will trigger a highly nontrivial calculation.

One can also force reductiaas®® all products formed.

Either a faithful gap> g:=f/rels;;

; gap> g.l=a;
permutation g

representation, or a gap> SetReducedMultiplication(g);
confluent rewriting gap> AssignGeneratorVariables(g);
gygtem—generahzation #I Variable "a' will be overwrittem
of the idea of collection #1 Variable "b' will be overwritteh

_ gap> a’-1*b"5*a”7*b"3; "
for arbitrary groups. i "

~—t o -

Homomorphisms

if CA| R isan fp. group, a map given on the generators
extends to a homomorphism, iff the generator images
satisty the relators.

(Free group: Any such map extends to homomorphism —
analog to basis property in linear algebra.)

The main tool for working with f.p. groups thus is to work
with homomorphismes.

E.g. p-Quotient algorithm (Heiko Dietrich's talks),
AbelianInvariants / MaximalAbelianQuotient

G-Quotient / Low Index

Given a f.p. group G and a finite group H, search for all
homomorphisms from G to H:

Test all tuples of elements of H for whether they satisty
the relators — then they can be images for G's generators.

Test only up to conjugacy, might want onto map.

Variant: H symmetric group of degree n, no onto
requirement: Find (pre-images of point stabilizer) all
subgroups of G of index up to n: Low Index algorithm.

gap> f:=FreeGroup(“r”,"”s");;

gap> g:=f/ParseRelators(f,”r3,s4,(rs)6,[r,s]2");;

gap> Size(g);

23040

gap> g:=f/ParseRelators(f,”r3,s4,(rs)10,[r,s]2");

gap> Size(qg);

Error,
brk>

user interrupt in

gap> AbelianInvariants(g);

[2]

gap> l:=LowIndexSubgroupsFpGroup(g,30);
[Group(<fp, no generators known>),
gap> List(1l,x->Index(g,Xx));

[l eIZ e S, 30,30 ,30,30,30,30,30 S5
gap> List(1l,AbelianInvariants);

B2l
12,2,2
(2,2,2
(27,2
2028

[21,01,02,2,2],12,2,2],([2,2],[2,2],

1,[0,2]1,[2,2],[2,2,3]1,[2,4]1,[2,41,[2,4],
1,[2,2,2],[2,2,4],[2,2,2,2],[0,4],[2,2],
Pl 2525252500 [2,24), 1 2] P22y 2255,

1,011

gap> f:=FreeGroup(“a","b","c");;

gap> g:=f/ParseRelators(f,

> “a3,b7,cl19,(ab)2, (bec)2,(ca)2, (abc)2");;

gap> 1it:=SimpleGroupslterator();;

gap> repeat h:=NextIterator(it); Print(“Gp:”,h,"”\n");
> g:=GQuotients(g,h); until Length(qg)>0;Length(q);
Gp:A5

Gp:PSL(2,7)

Gp:J 1

1

gap> k:=Kernel(q[l]);

Group (<fp, no generators known>)

gap> Index(g,k);

175560

gap> repeat h:=NextIterator(it);

Gp:PSL(2,113)

gap> k2:=Kernel(q[l]);;

i gap> f:=FreeGroup(“a","b","c");;
. gap> g:=f/ParseRelators(f,
> “a3,b7,cl9,(ab)2, (bc)2,(ca)2, (abc)2");;
, gap> i1t:=SimpleGroupsIterator();;
, gap> repeat h)eNextIterator(it); Print(“Gp:”,h,”\n");
> g:=GQuotientsYg,h); until Length(q)>0;Length(q);
- Gp:AS
- Gp:PSL(2,7)[..]
, Gp:J 1
] Parameters: Starting Order. Potentially
(L SRSt A CIENR 5|50 Option :nopslR, eg
Group (<fp, no generais
T TR ESY SimpleGroupslterator(60:nopsl:).
175560
- gap> repeat h:=NextIterator(it);
Gp:PSL(2,113)
gap> k2:=Kernel(qg[l]);;

e 6-6.6 ©6 6-0.-0 0 - 0.0 © 0-0 .0 © e o o ©

Representing Subgroups

Work with homomorphisms to represent subgroup U<G
as pair (¢p,Ue) with p:G— P for a (finite, permutation)
group P. Can do well

2 Normalizer, (Normal) closure

2 Intersection (Embed in direct product)

2 Subgroup of Subgroup (Embed in wreath product)
B pre-images of arbitrary subgroups

gap> s:=Intersection(k,k2);

Group (<fp, no generators known>)

gap> Index(g,s);

126647579520

gap> q:=DefiningQuotientHomomorphism(s);
[alblc]_>

[(1,260,241)(2,240,177)(3,91,130)(4,234,203)
gap> p:=Image(q);

<permutation group of size 126647579520 with 3 generators»

gap> m:=MaximalSubgroupClassReps(p);;List(m,x->Index(p,Xx)¥;

[114, 6328, 6441, 6 30058, 30058, 266, 1045, ¢
gap> u:=PreImage(q,m[4]); °
Group(<fp, no generators known>) .
gap> Index(g,u); e
30058 ®
gap> AbelianInvariants(u); °

o2
gap> AbelianInvariants(m[4]);
[.

