
Last Time

Orbit / Stabilizer algorithm

Decompose group: Subgroup and Cosets

Use for permutation groups with subgroup being point
stabilizer.

Can iterate again for subgroups: Logarithmize problem.

Stabilizer Chains
Let G ≤ SΩ. A list of points B=(β1,…,βm), βi ∈ Ω is called
a base, if the identity is the only element g∈G such that

βig=βi for all i.

The associated Stabilizer Chain is the sequence

G=G(0) > G(1) > … > G(m)= 1
defined by G(0):=G, G(i):=StabG(i−1)(βi). (Base property
guarantees that G(m)= 1 .)
Note that every g ∈ G is defined uniquely by base images
β1g,…,βmg. (If g,h have same images, then g/h fixes base.)

Data structure
We will store for a stabilizer chain:

• The base points (β1,…,βm).

• Generators for all stabilizers G(i). (Union of all
generators is strong generating set, as it permits
reconstruction of the G(i).) Data structure thus is often
called Base and Strong Generating Set.

• The orbit of βi under G(i−1) and an associated
transversal for G(i) in G(i−1) (possibly as Schreier tree).

Storage cost thus is O(m ·|Ω|)

Data structure
We will store for a stabilizer chain:

• The base points (β1,…,βm).

• Generators for all stabilizers G(i). (Union of all
generators is strong generating set, as it permits
reconstruction of the G(i).) Data structure thus is often
called Base and Strong Generating Set.

• The orbit of βi under G(i−1) and an associated
transversal for G(i) in G(i−1) (possibly as Schreier tree).

Storage cost thus is O(m ·|Ω|)

Construction: Later

Consequences

• Group order: G = [G(0):G(1)]·…[G(m−1):G(m)] and
thus G=∏i |βiG(i−1)|.

• Membership test in G for x ∈ SΩ:

1. Is ω = β1x ∈ β1G? If not, terminate.

2. If so, find transversal element t ∈ G(0) such that
β1t=β1x.

3. Recursively: Is x/t (stabilizing β1) in G(1).
(Respectively: test x/y=() in last step.)

More Consequences
Bijection g ∈ G ⇔ base image (β1g,β2g,…).

• Enumerate G, equal distribution random elements.
• Write g∈G as product in transversal elts.

• Write g∈G as product in strong generators.

• If strong gens. are words in group gens.: Write g∈G
in generators of G. (Caveat: Often long words)

• Chosen base: Find stabilizers, transporter elements,
for point tuples.

More Consequences
Bijection g ∈ G ⇔ base image (β1g,β2g,…).

• Enumerate G, equal distribution random elements.
• Write g∈G as product in transversal elts.

• Write g∈G as product in strong generators.

• If strong gens. are words in group gens.: Write g∈G
in generators of G. (Caveat: Often long words)

• Chosen base: Find stabilizers, transporter elements,
for point tuples.

Computable Bijection G↔{1,2,…,|G|}

SIMS' (~1970) idea is to use a membership test in a
partially completed stabilizer chain to reduce on the
number of Schreier generators.
Basic structure is a partial stabilizer, i.e. a subgroup U
≤ G(i−1) given by generators and a base-point orbit
βU with transversal elements (products of the
generators of U).
The basic operation now is to pass an element x ∈
G(i−1) to this structure and to consider the base point
image ω = βx.

Schreier-Sims algorithm

Charles Sims, *1938 Otto Schreier, 1901-1929

SIMS' (~1970) idea is to use a membership test in a
partially completed stabilizer chain to reduce on the
number of Schreier generators.
Basic structure is a partial stabilizer, i.e. a subgroup U
≤ G(i−1) given by generators and a base-point orbit
βU with transversal elements (products of the
generators of U).
The basic operation now is to pass an element x ∈
G(i−1) to this structure and to consider the base point
image ω = βx.

Schreier-Sims algorithm

Base point image ω = βx

• If ω∈βU, transversal element t∈U such that βt=ω.
Pass y=x/t to the next lower partial stabilizer ≤G(i).
If ω ∉ βU, add x to the generating set for U and
extend the orbit of β. All new Schreier generators
y∈StabU(β) are passed to next partial stab. ≤G(i).
If no lower stabilizer was known, test whether the
y was the identity. If so just return. (Successful
membership test.)
Otherwise start new stabilizer for generator y and
the next base point. (Pick a point moved by y).

Homomorphisms
Embed permutation group G into direct product D=G×H.
A homomorphism φ:G→H can be represented as U≤D
via

U={(g,h) ∈ G×H | gφ=h}

Build a stabilizer chain for U using only the G-part.

Then decomposing g ∈ G using this chain produces an H-
part that is g(φ−1).
Use this to evaluate arbitrary homomorphisms.

Kernels, Relators
Vice versa, let φ:H→ G and
U={(g,h) ∈ G×H | hφ=g}.

Form a stabilizer chain from generators of U, using
the G-part.
The elements sifting through this chain (trivial g-part)
are generators for ker φ.

If H is a free group, this yields relators (later) of a
presentation for G.

Other Actions
Every finite group is a permutation group in suitable
actions. (E.g. matrices on vectors.) Same methods
apply there.

It is possible to use different actions (e.g. matrix group
on subspaces and on vectors)

But: Orbit lengths can be unavoidably huge if there
are no subgroups of small index.

Approach can be useful for well-behaved groups.
Not a panacea, but part of matrix group recognition.

Permutation Backtrack

1 42 3

32 4

()

(1,2,3) (1,3,2)
(1,4,2)

()

(2,3,4)
(2,4,3)

13 4

()

(2,3,4)

(2,4,3)

21 4

()

(2,3,4)
(2,4,3)

31 2

()

(2,3,4)
(2,4,3)

(2,3,4)() (2,4,3) (1,2)(3,4)(1,2,3) (1,2,4) (1,3,4)(1,3,2) (1,3)(2,4) (1,4)(2,3)(1,4,2) (1,4,3)

Exponential run time but good
in practice, by clever pruning.

E.g.: Centralizer, Normalizer,
Set Stab., Intersection,
conj.elts., ...

A stabilizer chain lets us consider the elements of
G as leafs on a tree, branches corresponding to
base point images.
Traverse the tree (depth first) by enumerating all
possible base images. Find group elements with
particular desired property.

In GAP

Permutation groups use backtrack search for

Centralizer, element conjugacy RepresentativeAction

Normalizer, Subgroup conjugacy RepresentativeAction

Set Stabilizer, Intersection,

Generic: ElementProperty, SubgroupProperty

Quandry

Schreier-Sims is deterministic Algorithm. Polynomial
(in the degree n=|Ω|) runtime, but larger exponent
(naively O (n7), O (n3) if Schreier tree is used cleverly).

The cause is the processing of all (mostly redundant)
Schreier generators.

In practice this is not feasible if n is not small
(>1000). For short base (log|G|≤logc n) we would like
nearly linear timeO(n logc n), best possible

Wrong Results are Cheap
Use only some generators (random subset, better: random
subproducts). Potentially wrong data structure. But:

Error results in chain that claims to be too small - can detect if
group order is known. (Random-Schreier-Sims)
➡Assign a known group order (SetSize(G,order);)

Error analysis: A random element of G fails sifting in wrong chain
with probability 1/2 - guarantee arbitrary small error probability.
Verify correctness, by showing the group cannot be larger:

➡Combinatorial Verification (SIMS, see SERESS' book)
➡Presentation from stabilizer chain. Verify that group fulfills it. If
too small, some relators fail to be.

Wrong Results are Cheap
Use only some generators (random subset, better: random
subproducts). Potentially wrong data structure. But:

Error results in chain that claims to be too small - can detect if
group order is known. (Random-Schreier-Sims)
➡Assign a known group order (SetSize(G,order);)

Error analysis: A random element of G fails sifting in wrong chain
with probability 1/2 - guarantee arbitrary small error probability.
Verify correctness, by showing the group cannot be larger:

➡Combinatorial Verification (SIMS, see SERESS' book)
➡Presentation from stabilizer chain. Verify that group fulfills it. If
too small, some relators fail to be.

Prese
nt

Future

4
Finitely

Presented
Groups

Finitely Presented Group
Let F be a free group on finite alphabet A.

Let R (Relators / Relations) be a finite subset of F.

(Interpret a=b as a/b.)

Then A | R = F/N, where N is the smallest normal
subgroup of F containing R, is a finitely presented group.

Some people distinguish the groups (quotients of F) and
presentations (formal string objects) to describe

modifications.

First textbook example of a nonabelian group:

D8= r, s | r4=s2=1, rs=sr-1

•Elements have normal form sarb, 0≦a≦1, 0≦b≦3.

•So group has at most 8 elements.

•And indeed there are 8 different ones (show that
elements have different actions).

Group order bounded by normal form. Can we find one?

Actions (homomorphisms) show we achieve that image.

Example

First textbook example of a nonabelian group:

D8= r, s | r4=s2=1, rs=sr-1

•Elements have normal form sarb, 0≦a≦1, 0≦b≦3.

•So group has at most 8 elements.

•And indeed there are 8 different ones (show that
elements have different actions).

Group order bounded by normal form. Can we find one?

Actions (homomorphisms) show we achieve that image.

Example
rotation

Spiegelung (ger.)
=reflection

1 2

34

r

First textbook example of a nonabelian group:

D8= r, s | r4=s2=1, rs=sr-1

•Elements have normal form sarb, 0≦a≦1, 0≦b≦3.

•So group has at most 8 elements.

•And indeed there are 8 different ones (show that
elements have different actions).

Group order bounded by normal form. Can we find one?

Actions (homomorphisms) show we achieve that image.

Example
rotation

Spiegelung (ger.)
=reflection

1 2

34

s

First textbook example of a nonabelian group:

D8= r, s | r4=s2=1, rs=sr-1

•Elements have normal form sarb, 0≦a≦1, 0≦b≦3.

•So group has at most 8 elements.

•And indeed there are 8 different ones (show that
elements have different actions).

Group order bounded by normal form. Can we find one?

Actions (homomorphisms) show we achieve that image.

Example

DEHN’s Problems (1911)
Given a finitely presented group, can we test
algorithmically whether:

1. A word represents the identity

2. Two words are conjugate elements

3. Test for Group Isomorphism

Max Dehn, 1878-1952

DEHN’s Problems (1911)
Given a finitely presented group, can we test
algorithmically whether:

1. A word represents the identity

2. Two words are conjugate elements

3. Test for Group Isomorphism

Answer: Boone, Novikov (1957) No.

Reduce to Halteproblem for Turing machines — there is
no universal machine. Any approach will be heuristics.

DEHN’s Problems (1911)
Given a finitely presented group, can we test
algorithmically whether:

1. A word represents the identity

2. Two words are conjugate elements

3. Test for Group Isomorphism
Piotr Novikov, 1901-1975William Boone, 1920-1983

In GAP

gap> f:=FreeGroup("a","b");
<free group on the generators [a, b]>
gap> rels:=ParseRelators(f,"a3,b5,(ab)2");
[a^3, b^5, (a*b)^2]
gap> g:=f/rels;
<fp group on the generators [a, b]>
gap> AssignGeneratorVariables(g);
#I Assigned the global variables [a, b]
gap> a in f; a in g;
false / true

Create a free group and a list of relators (elements of group),
quotient is finitely presented group.

GeneratorsOfGroup or AssignGeneratorVariables allows access
to generators — no automatic assignment.

Convenience function ParseRelators.

Element Equality

gap> a*b*a*b;
(a*b)^2
gap> Order(a*b*a*b);
1
gap> a*b*a*b=One(g);
true
gap> a^7=a;
true
gap> a^8=a;
false

Elements seemingly multiply as in the free group, but
equality tests will test properly. The first such test for a
group thus will trigger a highly nontrivial calculation.

One can also force reduction for all products formed.

gap> g:=f/rels;;
gap> g.1=a;
false
gap> SetReducedMultiplication(g);
gap> AssignGeneratorVariables(g);
#I Variable `a' will be overwritten
#I Variable `b' will be overwritten
gap> a^-1*b^5*a^7*b^3;
b^-2

Element Equality

gap> a*b*a*b;
(a*b)^2
gap> Order(a*b*a*b);
1
gap> a*b*a*b=One(g);
true
gap> a^7=a;
true
gap> a^8=a;
false

Elements seemingly multiply as in the free group, but
equality tests will test properly. The first such test for a
group thus will trigger a highly nontrivial calculation.

One can also force reduction for all products formed.

gap> g:=f/rels;;
gap> g.1=a;
false
gap> SetReducedMultiplication(g);
gap> AssignGeneratorVariables(g);
#I Variable `a' will be overwritten
#I Variable `b' will be overwritten
gap> a^-1*b^5*a^7*b^3;
b^-2

Either a faithful
permutation
representation, or a
confluent rewriting
system — generalization
of the idea of collection
for arbitrary groups.

Homomorphisms
If A | R is an f.p. group, a map given on the generators
extends to a homomorphism, iff the generator images
satisfy the relators.

(Free group: Any such map extends to homomorphism —
analog to basis property in linear algebra.)

The main tool for working with f.p. groups thus is to work
with homomorphisms.

E.g. p-Quotient algorithm (Heiko Dietrich’s talks),
AbelianInvariants / MaximalAbelianQuotient

G-Quotient / Low Index
Given a f.p. group G and a finite group H, search for all
homomorphisms from G to H:

Test all tuples of elements of H for whether they satisfy
the relators — then they can be images for G’s generators.

Test only up to conjugacy, might want onto map.

Variant: H symmetric group of degree n, no onto
requirement: Find (pre-images of point stabilizer) all
subgroups of G of index up to n: Low Index algorithm.

gap> f:=FreeGroup(“r”,”s");;
gap> g:=f/ParseRelators(f,”r3,s4,(rs)6,[r,s]2”);;
gap> Size(g);
23040

gap> g:=f/ParseRelators(f,”r3,s4,(rs)10,[r,s]2");
gap> Size(g); CTRL-C after a while
Error, user interrupt in
brk> CTRL-D
gap> AbelianInvariants(g);
[2]
gap> l:=LowIndexSubgroupsFpGroup(g,30);
[Group(<fp, no generators known>), …
gap> List(l,x->Index(g,x));
[1,2,6,12,15,30,30,30,30,30,30,30,10,…
gap> List(l,AbelianInvariants);
[[2],[],[2],[],[2,2,2],[2,2,2],[2,2],[2,2],
[2,2,2],[0,2],[2,2],[2,2,3],[2,4],[2,4],[2,4],
[2,2,2],[2,2,2],[2,2,4],[2,2,2,2],[0,4],[2,2],
[2],[2],[2,2,2,2],[2,2,4],[2],[2,2,2,2,3],
[2,2,8],[]]

gap> f:=FreeGroup(“a","b","c");;
gap> g:=f/ParseRelators(f,
> “a3,b7,c19,(ab)2,(bc)2,(ca)2,(abc)2");;
gap> it:=SimpleGroupsIterator();;
gap> repeat h:=NextIterator(it); Print(“Gp:”,h,”\n”);
> q:=GQuotients(g,h); until Length(q)>0;Length(q);
Gp:A5
Gp:PSL(2,7)[…]
Gp:J_1
1
gap> k:=Kernel(q[1]);
Group(<fp, no generators known>)
gap> Index(g,k);
175560
gap> repeat h:=NextIterator(it); […]
Gp:PSL(2,113)
gap> k2:=Kernel(q[1]);;

gap> f:=FreeGroup(“a","b","c");;
gap> g:=f/ParseRelators(f,
> “a3,b7,c19,(ab)2,(bc)2,(ca)2,(abc)2");;
gap> it:=SimpleGroupsIterator();;
gap> repeat h:=NextIterator(it); Print(“Gp:”,h,”\n”);
> q:=GQuotients(g,h); until Length(q)>0;Length(q);
Gp:A5
Gp:PSL(2,7)[…]
Gp:J_1
1
gap> k:=Kernel(q[1]);
Group(<fp, no generators known>)
gap> Index(g,k);
175560
gap> repeat h:=NextIterator(it); […]
Gp:PSL(2,113)
gap> k2:=Kernel(q[1]);;

Parameters: Starting Order. Potentially
also Option :nopsl2, e.g.
SimpleGroupsIterator(60:nopsl2).

Representing Subgroups

Work with homomorphisms to represent subgroup U<G
as pair (φ,Uφ) with φ:G→P for a (finite, permutation)
group P. Can do well

 Normalizer, (Normal) closure
 Intersection (Embed in direct product)
 Subgroup of Subgroup (Embed in wreath product)
 pre-images of arbitrary subgroups

gap> s:=Intersection(k,k2);
Group(<fp, no generators known>)
gap> Index(g,s);
126647579520
gap> q:=DefiningQuotientHomomorphism(s);
[a, b, c] ->
[(1,260,241)(2,240,177)(3,91,130)(4,234,203)
gap> p:=Image(q);
<permutation group of size 126647579520 with 3 generators>
gap> m:=MaximalSubgroupClassReps(p);;List(m,x->Index(p,x));
[114, 6328, 6441, 30058, 30058, 266, 1045, […]
gap> u:=PreImage(q,m[4]);
Group(<fp, no generators known>)
gap> Index(g,u);
30058
gap> AbelianInvariants(u);
[2]
gap> AbelianInvariants(m[4]);
[2]

