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�

�

// · · ·

induces
ιs tn : Hn(C∗ s) −→ Hn(C∗ t)

for s ≤ t.

The Persistent Betti numbers are

βs t
n = rank(ιs tn ) s ≤ t

βs t
n = 0 s > t.



βn bar code has

βs,t
n horizontal lines from column s to column t

(βs t
2 ) =





1 1 1
0 4 2
0 0 4




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Fix a sequence of real numbers ǫ1 < ǫ2 < · · · < ǫT .

The Rips simplicial complex Xt has with

• vertex set V = {v1, . . . , v72}.

• n-simplices the subsets σ ⊆ V with n+ 1 vertices and
||v − v ′|| ≤ ǫt for all v , v

′ ∈ σ.
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Persistent β1 for C∗(X∗):
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Second example: 1V2X protein backbone

Data model: S1 ≃ K ⊂ R
3

By computing a discrete vector field on a finite region of R3 \ K
we find

Y = R
3 \ K ≃ e0 ∪ e1x ∪ e1y ∪ e2

and

π1Y ∼= 〈 x , y | yx
−1yxy−1x 〉

But what good is (a presentation of) the fundamental group?



Theorem (Gordon-Luecke, . J. Amer. Math. Soc. 1989)
Two knots K ,K ′ ⊂ R

3 are equivalent (up to mirror image) if and
only if their complements are homeomorphic.



Theorem (Gordon-Luecke, . J. Amer. Math. Soc. 1989)
Two knots K ,K ′ ⊂ R

3 are equivalent (up to mirror image) if and
only if their complements are homeomorphic.

Peripheral systems
The boundary ∂K of a tubular neighbouthood K of a knot K is a
torus.

∂K ⊂ R
3 \ K



Theorem (Gordon-Luecke, . J. Amer. Math. Soc. 1989)
Two knots K ,K ′ ⊂ R

3 are equivalent (up to mirror image) if and
only if their complements are homeomorphic.

Peripheral systems
The boundary ∂K of a tubular neighbouthood K of a knot K is a
torus.

∂K ⊂ R
3 \ K

Theorem (Waldhausen, Annals of Math. 1968)
The induced homomorphism

Z⊕ Z ∼= π1(∂K ) −→ π1(R
3 \ K )

is a complete knot invariant.



Theorem (Gordon-Luecke, . J. Amer. Math. Soc. 1989)
Two knots K ,K ′ ⊂ R

3 are equivalent (up to mirror image) if and
only if their complements are homeomorphic.

Peripheral systems
The boundary ∂K of a tubular neighbouthood K of a knot K is a
torus.

∂K ⊂ R
3 \ K

Theorem (Waldhausen, Annals of Math. 1968)
The induced homomorphism

Z⊕ Z ∼= π1(∂K ) −→ π1(R
3 \ K )

is a complete knot invariant.

Theorem (Whitten 1987, Gordon-Luecke 1989)
Prime knots are determined, up to mirror image, by their
fundamental group.
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Proposition: The alpha carbon atoms of the Thermus

Thermophilus protein determine a knot K with peripheral system

π1(∂K ) ∼= 〈a, b|aba−1b−1〉 → π1(R
3 \ K ) ∼= 〈x , y |xyx = yxy〉

a 7→ x−2yx2y

b 7→ x

.

gap> K:=ReadPDBfileAsPurePermutahedralComplex("1V2X.pdb");

Pure permutahedral complex of dimension 3

gap> Y:=RegularCWComplex(PureComplexComplement(K));;

Regular CW-complex of dimension 3

gap> i:=Boundary(Y);

Map of regular CW-complexes

gap> phi:=FundamentalGroup(i,22495);

[ f1, f2 ] -> [ f1^-3*f2*f1^2*f2*f1, f1 ]
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An isomorphism invariant of finitely presented groups

In(G ) = {Hab : H < G of index ≤ n}

I3(〈x , y |yx
−1yxy−1x〉) = {Z, Z⊕ Z3, Z⊕ Z, Z⊕ Z2 ⊕ Z2}

In(π1(R
3 \ K )) was tested on the 1701935 prime knots on ≤ 14

crossings

min value of n needed to distinguish between knots on c crossings

c 3 4 5 6 7 8 9 10 11 12 13 14

n 2 2 3 3 3 3 5 5 6 6 7 7

Brendel, E., Juda, Mrozek
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A connected homotopy 1-type X
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A connected homotopy 1-type X

is captured by the fundamental group

π1X = 〈x1, . . . , xd | r1, . . . , rm〉

The generators and relations correspond to the critical 1-cells and
critical 2-cells in a discrete vector field on X with unique critical
0-cell.
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A connected homotopy 2-type

is captured by J.H.C.Whitehead’s notion of crossed module:

A crossed module is a group homomorphism ∂ : M −→ G with
action G ×M −→ M, (g ,m) 7→ gm statisfying

• ∂(gm) = g ∂(m) g−1

• ∂mm′ = mm′m−1

π1(∂) = G/∂M π2(∂) = ker ∂
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J.H.C.Whitehead:

There is a functor

Π: (CW spaces) −→ (crossed modules)

which induces a bijection







homotopy classes
of connected 2-
types







↔







weak equivalence

classes of crossed
modules







.

This yields a homotopy invariant

[ Π(X ) , M
∂
−→ G ]

depending on the weak equivalence class of M
∂
−→ G , which is

computable if M
∂
−→ G is finite.
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A morphism of crossed modules is a commutative diagram

M
φ2

//

∂
��

M ′

∂′

��

G
φ1

// G ′

with φ1, φ2 group homomorphisms satisfying

φ2(
gm) = (φ1g)φ2(m)

It is a quasi-isomorphism if it induces isomorphisms

πn(∂) ∼= πn(∂
′) , n = 1, 2.

Two crossed modules ∂, ∂′ are weakly equivalent if there exists
a sequence of quasi-isomorphisms:

∂ → ∂1 ← ∂2 → · · · ← ∂k → ∂′
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The order of a homotopy 2-type X is the least value of |M||G | for

a representative crossed module M
∂
→ G .

Proposition [E, Le]: The homotopy 2-types of order m are
classified up to homotopy for m ≤ 127, m 6= 32, 64, 81, 96 and are
distributed with GAP in the form of crossed modules.

A useful weak equivalence invariant

Hn(M
∂
→ G ,Z) = Hn(X ,Z)

where X is the corresponding homotopy 2-type.
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ob(C) = G
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Category C of a crossed module M
∂
→ G

C = M ⋊ G

ob(C) = G

s : C → C, (m, g) 7→ (1, g)

t : C → C, (m, g) 7→ (1, ∂(m) g)

◦ : C ×G C → C, ((m, g), (m′, g ′) 7→ (m, (∂m)−1g ′)

s, t, ◦ are group homomorphisms.
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Nerve construction

NnC = {X0
f1→ X1

f2→ X2 → · · ·
fn→ Xk}

collection of composable sequences of n morphisms fi ∈ C.

Since NnC is a group, and hence itself a category, we can form

NmNnC

For the 2-type X corresponding to M
∂
→ G

CnX has basis NnNnC.



Chain complex C∗X
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I
I
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M
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M
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M
M
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ZN0N0C



C∗X ≃ B∗ the total complex of

�� �� ��
// ZN2N2C //

��

ZN2N1C

��

//// ZN2N0C

��
// ZN1N2C //

��

ZN1N1C

��

//// ZN1N0C

��
// ZN0N2C // ZN0N1C // // ZN0N0C



C∗X ≃ B∗ ≃ R∗ a filtered complex

�� �� ��

44hhhhhhhhhhhhhhhhhhhhhhhhhh // RN2C
2 ⊗ Z //

��

33ggggggggggggggggggggggggg
RN1C
2 ⊗ Z

��

//// RN0C
2 ⊗ Z

��

55jjjjjjjjjjjjjjjjjjjjj // RN2C
1 ⊗ Z //

��

44hhhhhhhhhhhhhhhhhhhhh
RN1C
1 ⊗ Z

��

//// RN0C
1 ⊗ Z

��

55jjjjjjjjjjjjjjjjjjjjj // RN2C
0 ⊗ Z //

44hhhhhhhhhhhhhhhhhhhhh
RN1C
0 ⊗ Z // // RN0C

0 ⊗ Z



A homotopy equivalence data
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A homotopy equivalence data

(R , d)

p
←

i
→ (B , d), h (∗)

consists of chain complexes R ,B , quasi-isomorphisms i , p and a
homotopy ip − 1 = dh + hd . A perturbation on (∗) is a
homomorphism ǫ : B → B of degree −1 such that (d + ǫ)2 = 0.

Perturbation Lemma: If A = (1− ǫh)−1ǫ exists then

(R , d ′)

p′

←

i ′
→ (B , d + ǫ), h′ (∗∗)

is a homotopy equivalence data where

i ′ = i + hAi , p′ = p + pAh, h′ = h + hAh, d ′ = d + pAi .
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(B , d + ǫ)

ZN2N2C // ZN0N2C // ZN0N1C // // ZN0N0C
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ZN2N2C

33ggggggggggggggggggggggggg
// RN2C

2 ⊗ Z //

��

33ggggggggggggggggggggggggg
RN1C
2 ⊗ Z

��

//// RN0C
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��

ZN2N2C

44hhhhhhhhhhhhhhhhhhhhh
// RN2C

1 ⊗ Z //

��

44hhhhhhhhhhhhhhhhhhhhh
RN1C
1 ⊗ Z

��

//// RN0C
1 ⊗ Z

��

(R , d ′)

ZN2N2C

44hhhhhhhhhhhhhhhhhhhhh
// RN2C

0 ⊗ Z //

44hhhhhhhhhhhhhhhhhhhhh
RN1C
0 ⊗ Z // // RN0C

0 ⊗ Z
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Q −→ Aut(Q), a 7→ ιa(x) = axa−1

gap> Q:=DihedralGroup(216);;

gap> G:=AutomorphismGroupAsCrossedModule(Q);;

gap> Size(G);

839808

gap> IdQuasiCrossedModule(G);

[ 72, 68 ]

gap> G2:=SmallQuasiCrossedModule(72,68);

Crossed module with group homomorphism

Pcgs([ f3 ]) -> [ <identity> of ... ]

gap> Homology(G,5);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 18 ]
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A curiosity about vector field collapse
The crossed module

: Z2 → 0

represents a homotopy 2-type X with

π2(X ) = Z2, πk(X ) = 0 for k 6= 2.

gap> B:=EilenbergMacLaneComplex(CyclicGroup(2),2,11);;

gap> C:=ChainComplex(B);;

gap> List([0..11],CK!.dimension);

[ 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 ]

gap> D:=CoreducedChainComplex(C);;

gap> List([0..10],D!.dimension);

[ 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ]


