Computational Group Cohomology
 Bangalore, November 2016

Graham Ellis
NUI Galway, Ireland

Slides available at http://hamilton.nuigalway.ie/Bangalore
Password: Belfast

Outline

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups
- Lecture 3: Homotopy 2-types
- Lecture 4: Steenrod algebra
- Lecture 5: Curvature and classifying spaces of groups

A filtered chain complex over a field

$$
C_{* 1} \longleftrightarrow C_{* 2} \longleftrightarrow C_{* 3} \longleftrightarrow C_{* 4} \longleftrightarrow \cdots
$$

induces

$$
\iota_{n}^{s t}: H_{n}\left(C_{* s}\right) \longrightarrow H_{n}\left(C_{* t}\right)
$$

for $s \leq t$.

A filtered chain complex over a field

$$
C_{* 1} \longleftrightarrow C_{* 2} \longleftrightarrow C_{* 3} \longleftrightarrow C_{* 4} \longleftrightarrow \cdots
$$

induces

$$
\iota_{n}^{s t}: H_{n}\left(C_{* s}\right) \longrightarrow H_{n}\left(C_{* t}\right)
$$

for $s \leq t$.

The Persistent Betti numbers are

$$
\begin{gathered}
\beta_{n}^{s t}=\operatorname{rank}\left(\iota_{n}^{s t}\right) \quad s \leq t \\
\beta_{n}^{s t}=0 \quad s>t
\end{gathered}
$$

β_{n} bar code has
$\beta_{n}^{s, t}$ horizontal lines from column s to column t

$$
\left(\beta_{2}^{s t}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 4 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

Example $v_{1}, v_{2}, \ldots, v_{72} \subset \mathbb{R}^{262144}$

Example $v_{1}, v_{2}, \ldots, v_{72} \subset \mathbb{R}^{262144}$

Toy data points from

$\nabla B A 円 Q \infty A \& D g 寸 \infty \forall \infty \forall B \varangle B$
$\triangle B \forall \infty \forall \infty \Delta \& D G \nabla \varnothing A \infty \triangleright ふ \varangle B$
$\triangle B \forall \leftrightarrow A \infty \otimes \otimes D g \nabla \delta A \infty A \circlearrowleft \nabla B$

Fix a sequence of real numbers $\epsilon_{1}<\epsilon_{2}<\cdots<\epsilon_{T}$.

The Rips simplicial complex X_{t} has with

- vertex set $V=\left\{v_{1}, \ldots, v_{72}\right\}$.
- n-simplices the subsets $\sigma \subseteq V$ with $n+1$ vertices and $\left\|v-v^{\prime}\right\| \leq \epsilon_{t}$ for all $v, v^{\prime} \in \sigma$.

Persistent β_{0} for $C_{*}\left(X_{*}\right)$:

Persistent β_{1} for $C_{*}\left(X_{*}\right)$:

Data Model: A homotopy retract $Y \subset X_{20}$

Data Model: A homotopy retract $Y \subset X_{20}$

Second example: 1V2X protein backbone

Second example: 1V2X protein backbone

Second example: 1V2X protein backbone

Second example: 1V2X protein backbone

Data model: $\mathbb{S}^{1} \simeq K \subset \mathbb{R}^{3}$

Second example: 1V2X protein backbone

Data model: $\mathbb{S}^{1} \simeq K \subset \mathbb{R}^{3}$

$$
Y=\mathbb{R}^{3} \backslash K
$$

Second example: 1V2X protein backbone

Data model: $\mathbb{S}^{1} \simeq K \subset \mathbb{R}^{3}$
By computing a discrete vector field on a finite region of $\mathbb{R}^{3} \backslash K$ we find

$$
Y=\mathbb{R}^{3} \backslash K \simeq e^{0} \cup e_{x}^{1} \cup e_{y}^{1} \cup e^{2}
$$

Second example: 1V2X protein backbone

Data model: $\mathbb{S}^{1} \simeq K \subset \mathbb{R}^{3}$
By computing a discrete vector field on a finite region of $\mathbb{R}^{3} \backslash K$ we find

$$
Y=\mathbb{R}^{3} \backslash K \simeq e^{0} \cup e_{x}^{1} \cup e_{y}^{1} \cup e^{2}
$$

and

$$
\pi_{1} Y \cong\left\langle x, y \mid y x^{-1} y x y^{-1} x\right\rangle
$$

Second example: 1V2X protein backbone

Data model: $\mathbb{S}^{1} \simeq K \subset \mathbb{R}^{3}$
By computing a discrete vector field on a finite region of $\mathbb{R}^{3} \backslash K$ we find

$$
Y=\mathbb{R}^{3} \backslash K \simeq e^{0} \cup e_{x}^{1} \cup e_{y}^{1} \cup e^{2}
$$

and

$$
\pi_{1} Y \cong\left\langle x, y \mid y x^{-1} y x y^{-1} x\right\rangle
$$

But what good is (a presentation of) the fundamental group?

Theorem (Gordon-Luecke, . J. Amer. Math. Soc. 1989)
Two knots $K, K^{\prime} \subset \mathbb{R}^{3}$ are equivalent (up to mirror image) if and only if their complements are homeomorphic.

Theorem (Gordon-Luecke, . J. Amer. Math. Soc. 1989)
Two knots $K, K^{\prime} \subset \mathbb{R}^{3}$ are equivalent (up to mirror image) if and only if their complements are homeomorphic.

Peripheral systems

The boundary $\partial \bar{K}$ of a tubular neighbouthood \bar{K} of a knot K is a torus.

$$
\partial \bar{K} \subset \mathbb{R}^{3} \backslash K
$$

Theorem (Gordon-Luecke, . J. Amer. Math. Soc. 1989)
Two knots $K, K^{\prime} \subset \mathbb{R}^{3}$ are equivalent (up to mirror image) if and only if their complements are homeomorphic.

Peripheral systems

The boundary $\partial \bar{K}$ of a tubular neighbouthood \bar{K} of a knot K is a torus.

$$
\partial \bar{K} \subset \mathbb{R}^{3} \backslash K
$$

Theorem (Waldhausen, Annals of Math. 1968)
The induced homomorphism

$$
\mathbb{Z} \oplus \mathbb{Z} \cong \pi_{1}(\partial \bar{K}) \longrightarrow \pi_{1}\left(\mathbb{R}^{3} \backslash K\right)
$$

is a complete knot invariant.

Theorem (Gordon-Luecke, . J. Amer. Math. Soc. 1989)
Two knots $K, K^{\prime} \subset \mathbb{R}^{3}$ are equivalent (up to mirror image) if and only if their complements are homeomorphic.

Peripheral systems

The boundary $\partial \bar{K}$ of a tubular neighbouthood \bar{K} of a knot K is a torus.

$$
\partial \bar{K} \subset \mathbb{R}^{3} \backslash K
$$

Theorem (Waldhausen, Annals of Math. 1968)
The induced homomorphism

$$
\mathbb{Z} \oplus \mathbb{Z} \cong \pi_{1}(\partial \bar{K}) \longrightarrow \pi_{1}\left(\mathbb{R}^{3} \backslash K\right)
$$

is a complete knot invariant.
Theorem (Whitten 1987, Gordon-Luecke 1989)
Prime knots are determined, up to mirror image, by their fundamental group.

Proposition: The alpha carbon atoms of the Thermus
Thermophilus protein determine a knot K with peripheral system

$$
\begin{aligned}
\pi_{1}(\partial K) \cong\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle & \rightarrow \pi_{1}\left(\mathbb{R}^{3} \backslash K\right) \cong\langle x, y \mid x y x=y x y\rangle \\
a & \mapsto x^{-2} y x^{2} y \\
b & \mapsto x
\end{aligned}
$$

Proposition: The alpha carbon atoms of the Thermus
Thermophilus protein determine a knot K with peripheral system

$$
\begin{aligned}
\pi_{1}(\partial K) \cong\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle & \rightarrow \pi_{1}\left(\mathbb{R}^{3} \backslash K\right) \cong\langle x, y \mid x y x=y x y\rangle \\
a & \mapsto x^{-2} y x^{2} y \\
b & \mapsto x
\end{aligned}
$$

gap> K:=ReadPDBfileAsPurePermutahedralComplex("1V2X.pdb"); Pure permutahedral complex of dimension 3

Proposition: The alpha carbon atoms of the Thermus
Thermophilus protein determine a knot K with peripheral system

$$
\begin{aligned}
\pi_{1}(\partial K) \cong\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle & \rightarrow \pi_{1}\left(\mathbb{R}^{3} \backslash K\right) \cong\langle x, y \mid x y x=y x y\rangle \\
a & \mapsto x^{-2} y x^{2} y \\
b & \mapsto x
\end{aligned}
$$

gap> K:=ReadPDBfileAsPurePermutahedralComplex("1V2X.pdb"); Pure permutahedral complex of dimension 3
gap> Y:=RegularCWComplex(PureComplexComplement(K)); ; Regular CW-complex of dimension 3

Proposition: The alpha carbon atoms of the Thermus

Thermophilus protein determine a knot K with peripheral system

$$
\begin{aligned}
\pi_{1}(\partial K) \cong\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle & \rightarrow \pi_{1}\left(\mathbb{R}^{3} \backslash K\right) \cong\langle x, y \mid x y x=y x y\rangle \\
a & \mapsto x^{-2} y x^{2} y \\
b & \mapsto x
\end{aligned}
$$

gap> K:=ReadPDBfileAsPurePermutahedralComplex("1V2X.pdb"); Pure permutahedral complex of dimension 3
gap> Y:=RegularCWComplex(PureComplexComplement(K)); ; Regular CW-complex of dimension 3
gap> i:=Boundary(Y);
Map of regular CW-complexes

Proposition: The alpha carbon atoms of the Thermus

Thermophilus protein determine a knot K with peripheral system

$$
\begin{aligned}
\pi_{1}(\partial K) \cong\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle & \rightarrow \pi_{1}\left(\mathbb{R}^{3} \backslash K\right) \cong\langle x, y \mid x y x=y x y\rangle \\
a & \mapsto x^{-2} y x^{2} y \\
b & \mapsto x
\end{aligned}
$$

gap> K:=ReadPDBfileAsPurePermutahedralComplex("1V2X.pdb"); Pure permutahedral complex of dimension 3
gap> Y:=RegularCWComplex(PureComplexComplement(K)); ; Regular CW-complex of dimension 3
gap> i:=Boundary(Y);
Map of regular CW-complexes
gap> phi:=FundamentalGroup(i,22495);
[f1, f2] -> [f1^-3*f $2 * f 1^{\wedge} 2 * f 2 * f 1, f 1$]

An isomorphism invariant of finitely presented groups

$$
I_{n}(G)=\left\{H_{a b}: H<G \text { of index } \leq n\right\}
$$

An isomorphism invariant of finitely presented groups

$$
I_{n}(G)=\left\{H_{a b}: H<G \text { of index } \leq n\right\}
$$

$$
I_{3}\left(\left\langle x, y \mid y x^{-1} y x y^{-1} x\right\rangle\right)=\left\{\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_{3}, \mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right\}
$$

An isomorphism invariant of finitely presented groups

$$
\begin{gathered}
I_{n}(G)=\left\{H_{a b}: H<G \text { of index } \leq n\right\} \\
I_{3}\left(\left\langle x, y \mid y x^{-1} y x y^{-1} x\right\rangle\right)=\left\{\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_{3}, \mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right\}
\end{gathered}
$$

$I_{n}\left(\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)\right)$ was tested on the 1701935 prime knots on ≤ 14 crossings

An isomorphism invariant of finitely presented groups

$$
\begin{gathered}
I_{n}(G)=\left\{H_{a b}: H<G \text { of index } \leq n\right\} \\
I_{3}\left(\left\langle x, y \mid y x^{-1} y x y^{-1} x\right\rangle\right)=\left\{\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_{3}, \mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right\}
\end{gathered}
$$

$I_{n}\left(\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)\right)$ was tested on the 1701935 prime knots on ≤ 14 crossings
min value of n needed to distinguish between knots on crossings

c	3	4	5	6	7	8	9	10	11	12	13	14
n	2	2	3	3	3	3	5	5	6	6	7	7

Brendel, E., Juda, Mrozek

A homotopy n-type

is a CW space X with $\pi_{i}(X)=0$ for $i>n$.

A homotopy n-type

is a CW space X with $\pi_{i}(X)=0$ for $i>n$.

Question: How can we succinctly encode an n-type?

A homotopy n-type

is a CW space X with $\pi_{i}(X)=0$ for $i>n$.

Question: How can we succinctly encode an n-type?

Question: What can we compute from this encoding?

A homotopy n-type

is a CW space X with $\pi_{i}(X)=0$ for $i>n$.

Question: How can we succinctly encode an n-type?

Question: What can we compute from this encoding?

Question: How can we compute this encoding?

A connected homotopy 1-type X

is captured by the fundamental group

$$
\pi_{1} X=\left\langle x_{1}, \ldots, x_{d} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

A connected homotopy 1-type X

is captured by the fundamental group

$$
\pi_{1} X=\left\langle x_{1}, \ldots, x_{d} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

The generators and relations correspond to the critical 1-cells and critical 2-cells in a discrete vector field on X with unique critical 0 -cell.

A connected homotopy 2-type

is captured by J.H.C. Whitehead's notion of crossed module:

A connected homotopy 2-type

is captured by J.H.C. Whitehead's notion of crossed module:

A crossed module is a group homomorphism $\partial: M \longrightarrow G$ with action $G \times M \longrightarrow M,(g, m) \mapsto^{g} m$ statisfying

- $\partial\left({ }^{g} m\right)=g \partial(m) g^{-1}$
- $\partial m m^{\prime}=m m^{\prime} m^{-1}$

A connected homotopy 2-type

is captured by J.H.C. Whitehead's notion of crossed module:

A crossed module is a group homomorphism $\partial: M \longrightarrow G$ with action $G \times M \longrightarrow M,(g, m) \mapsto^{g} m$ statisfying

- $\partial\left({ }^{g} m\right)=g \partial(m) g^{-1}$
- $\partial m m^{\prime}=m m^{\prime} m^{-1}$

$$
\pi_{1}(\partial)=G / \partial M \quad \pi_{2}(\partial)=\operatorname{ker} \partial
$$

J.H.C. Whitehead:

There is a functor

$$
\Pi:(C W \text { spaces }) \longrightarrow \text { (crossed modules) }
$$

which induces a bijection

$$
\left\{\begin{array}{ll}
\text { homotopy classes } \\
\text { of connected } 2- \\
\text { types }
\end{array}\right\} \leftrightarrow\left\{\begin{array}{ll}
\text { weak } & \text { equivalence } \\
\text { classes } & \text { of crossed } \\
\text { modules }
\end{array}\right\} .
$$

J.H.C. Whitehead:

There is a functor

$$
\Pi:(C W \text { spaces }) \longrightarrow \text { (crossed modules })
$$

which induces a bijection

$$
\left\{\begin{array}{l}
\text { homotopy classes } \\
\text { of connected 2- } \\
\text { types }
\end{array}\right\} \leftrightarrow\left\{\begin{array}{ll}
\text { weak } & \text { equivalence } \\
\text { classes of crossed } \\
\text { modules }
\end{array}\right\} .
$$

This yields a homotopy invariant

$$
[\Pi(X), M \xrightarrow{\partial} G]
$$

depending on the weak equivalence class of $M \xrightarrow{\partial} G$

J.H.C. Whitehead:

There is a functor

$$
\Pi:(C W \text { spaces }) \longrightarrow(\text { crossed modules })
$$

which induces a bijection

$$
\left\{\begin{array}{ll}
\text { homotopy classes } \\
\text { of connected 2- } \\
\text { types }
\end{array}\right\} \leftrightarrow\left\{\begin{array}{ll}
\text { weak } & \text { equivalence } \\
\text { classes } & \text { of crossed } \\
\text { modules }
\end{array}\right\} .
$$

This yields a homotopy invariant

$$
[\Pi(X), M \xrightarrow{\partial} G]
$$

depending on the weak equivalence class of $M \xrightarrow{\partial} G$, which is computable if $M \xrightarrow{\partial} G$ is finite.

A morphism of crossed modules is a commutative diagram

$$
\begin{aligned}
& M \xrightarrow{\phi_{2}} M^{\prime} \\
& \downarrow^{\prime} \\
& G \xrightarrow{\phi_{1}} \\
& \downarrow^{\prime}
\end{aligned}{\dot{\partial^{\prime}}}^{\prime}
$$

with ϕ_{1}, ϕ_{2} group homomorphisms satisfying

$$
\phi_{2}\left({ }^{g} m\right)={ }^{\left(\phi_{1} g\right)} \phi_{2}(m)
$$

A morphism of crossed modules is a commutative diagram

$$
\begin{aligned}
& M \xrightarrow{\phi_{2}} M^{\prime \prime} \\
& \downarrow^{\partial} \\
& G \xrightarrow{\phi_{1}} \\
& \|^{\prime}
\end{aligned}
$$

with ϕ_{1}, ϕ_{2} group homomorphisms satisfying

$$
\phi_{2}\left({ }^{g} m\right)={ }^{\left(\phi_{1} g\right)} \phi_{2}(m)
$$

It is a quasi-isomorphism if it induces isomorphisms

$$
\pi_{n}(\partial) \cong \pi_{n}\left(\partial^{\prime}\right), \quad n=1,2
$$

A morphism of crossed modules is a commutative diagram

with ϕ_{1}, ϕ_{2} group homomorphisms satisfying

$$
\phi_{2}\left({ }^{g} m\right)={ }^{\left(\phi_{1} g\right)} \phi_{2}(m)
$$

It is a quasi-isomorphism if it induces isomorphisms

$$
\pi_{n}(\partial) \cong \pi_{n}\left(\partial^{\prime}\right), \quad n=1,2
$$

Two crossed modules $\partial, \partial^{\prime}$ are weakly equivalent if there exists a sequence of quasi-isomorphisms:

$$
\partial \rightarrow \partial_{1} \leftarrow \partial_{2} \rightarrow \cdots \leftarrow \partial_{k} \rightarrow \partial^{\prime}
$$

The order of a homotopy 2 -type X is the least value of $|M||G|$ for a representative crossed module $M \xrightarrow{\partial} G$.

The order of a homotopy 2 -type X is the least value of $|M||G|$ for a representative crossed module $M \xrightarrow{\partial} G$.

Proposition [E, Le]: The homotopy 2-types of order m are classified up to homotopy for $m \leq 127, m \neq 32,64,81,96$ and are distributed with GAP in the form of crossed modules.

The order of a homotopy 2 -type X is the least value of $|M||G|$ for a representative crossed module $M \xrightarrow{\partial} G$.

Proposition [E, Le]: The homotopy 2-types of order m are classified up to homotopy for $m \leq 127, m \neq 32,64,81,96$ and are distributed with GAP in the form of crossed modules.

A useful weak equivalence invariant

$$
H_{n}(M \xrightarrow{\partial} G, \mathbb{Z})=H_{n}(X, \mathbb{Z})
$$

where X is the corresponding homotopy 2-type.

Category \mathcal{C} of a crossed module $M \xrightarrow{\partial} G$

$$
\begin{array}{ll}
\mathcal{C}=M \rtimes G \\
o b(\mathcal{C})=G & \\
s: \mathcal{C} \rightarrow \mathcal{C}, & (m, g) \mapsto(1, g) \\
t: \mathcal{C} \rightarrow \mathcal{C}, & (m, g) \mapsto(1, \partial(m) g) \\
\circ: \mathcal{C} \times{ }_{G} \mathcal{C} \rightarrow \mathcal{C}, & \left((m, g),\left(m^{\prime}, g^{\prime}\right) \mapsto\left(m,(\partial m)^{-1} g^{\prime}\right)\right.
\end{array}
$$

Category \mathcal{C} of a crossed module $M \xrightarrow{\partial} G$

$$
\begin{array}{ll}
\mathcal{C}=M \rtimes G \\
o b(\mathcal{C})=G & \\
s: \mathcal{C} \rightarrow \mathcal{C}, & (m, g) \mapsto(1, g) \\
t: \mathcal{C} \rightarrow \mathcal{C}, & (m, g) \mapsto(1, \partial(m) g) \\
\circ: \mathcal{C} \times{ }_{G} \mathcal{C} \rightarrow \mathcal{C}, & \left((m, g),\left(m^{\prime}, g^{\prime}\right) \mapsto\left(m,(\partial m)^{-1} g^{\prime}\right)\right.
\end{array}
$$

s, t, o are group homomorphisms.

Nerve construction

$$
\mathcal{N}_{n} \mathcal{C}=\left\{X_{0} \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} X_{2} \rightarrow \cdots \xrightarrow{f_{n}} X_{k}\right\}
$$

collection of composable sequences of n morphisms $f_{i} \in \mathcal{C}$.

Nerve construction

$$
\mathcal{N}_{n} \mathcal{C}=\left\{X_{0} \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} X_{2} \rightarrow \cdots \xrightarrow{f_{n}} X_{k}\right\}
$$

collection of composable sequences of n morphisms $f_{i} \in \mathcal{C}$.

Since $\mathcal{N}_{n} \mathcal{C}$ is a group, and hence itself a category, we can form

$$
\mathcal{N}_{m} \mathcal{N}_{n} \mathcal{C}
$$

Nerve construction

$$
\mathcal{N}_{n} \mathcal{C}=\left\{X_{0} \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} X_{2} \rightarrow \cdots \xrightarrow{f_{n}} X_{k}\right\}
$$

collection of composable sequences of n morphisms $f_{i} \in \mathcal{C}$.

Since $\mathcal{N}_{n} \mathcal{C}$ is a group, and hence itself a category, we can form

$$
\mathcal{N}_{m} \mathcal{N}_{n} \mathcal{C}
$$

For the 2-type X corresponding to $M \xrightarrow{\partial} G$

$$
C_{n} X \text { has basis } \mathcal{N}_{n} \mathcal{N}_{n} \mathcal{C}
$$

Chain complex $C_{*} X$

$C_{*} X \simeq B_{*}$ the total complex of

$C_{*} X \simeq B_{*} \simeq R_{*}$ a filtered complex

A homotopy equivalence data

$$
\begin{equation*}
(R, d) \xrightarrow{\stackrel{p}{i}}(B, d), h \tag{*}
\end{equation*}
$$

consists of chain complexes R, B, quasi-isomorphisms i, p and a homotopy ip - $1=d h+h d$.

A homotopy equivalence data

$$
\begin{equation*}
(R, d) \xrightarrow{\frac{p}{i}}(B, d), h \tag{*}
\end{equation*}
$$

consists of chain complexes R, B, quasi-isomorphisms i, p and a homotopy ip $-1=d h+h d$. A perturbation on $(*)$ is a homomorphism $\epsilon: B \rightarrow B$ of degree -1 such that $(d+\epsilon)^{2}=0$.

A homotopy equivalence data

$$
\begin{equation*}
(R, d) \xrightarrow{\stackrel{p}{i}}(B, d), h \tag{*}
\end{equation*}
$$

consists of chain complexes R, B, quasi-isomorphisms i, p and a homotopy ip $-1=d h+h d$. A perturbation on $(*)$ is a homomorphism $\epsilon: B \rightarrow B$ of degree -1 such that $(d+\epsilon)^{2}=0$.

Perturbation Lemma: If $A=(1-\epsilon h)^{-1} \epsilon$ exists then

$$
\begin{equation*}
\left(R, d^{\prime}\right) \stackrel{\stackrel{p^{\prime}}{i^{\prime}}}{\xrightarrow{\prime}}(B, d+\epsilon), h^{\prime} \tag{**}
\end{equation*}
$$

is a homotopy equivalence data where

$$
i^{\prime}=i+h A i, \quad p^{\prime}=p+p A h, \quad h^{\prime}=h+h A h, \quad d^{\prime}=d+p A i .
$$

$$
\begin{align*}
& \xrightarrow{\downarrow} \mathbb{Z} \mathcal{N}_{2} \mathcal{N}_{2} \mathrm{C} \xrightarrow{0} \underset{\mathbb{Z N}}{2}{ }_{2} \mathcal{N}_{1} \mathrm{C} \xrightarrow{0} \mathbb{Z} \mathcal{N}_{2} \mathcal{N}_{0} \mathrm{C} \\
& \xrightarrow{0} \mathbb{Z} \mathcal{N}_{1} \mathcal{N}_{2} \mathcal{C} \xrightarrow{0} \mathbb{Z} \mathcal{N}_{1} \mathcal{N}_{1} \mathcal{C} \xrightarrow{0} \mathbb{Z} \mathcal{N}_{1} \mathcal{N}_{0} \mathcal{C} \tag{B,d}\\
& \xrightarrow{\downarrow} \mathbb{Z} \mathcal{N}_{0} \mathcal{N}_{2} \mathrm{C} \xrightarrow{\text { 0 }} \underset{\mathbb{Z}}{ } \mathcal{N}_{0} \mathcal{N}_{1} \mathrm{C} \xrightarrow{0} \mathbb{Z} \mathcal{N}_{0} \mathcal{N}_{0} \mathrm{C}
\end{align*}
$$

$$
\begin{aligned}
& \xrightarrow{0} R_{1}^{\mathcal{N}_{2} \mathcal{C}} \otimes \mathbb{Z} \xrightarrow{0} R_{1}^{\mathcal{N}_{1} \mathcal{C}} \otimes \mathbb{Z} \xrightarrow{0} R_{1}^{\mathcal{N}_{0} \mathcal{C}} \otimes \mathbb{Z} \\
& \xrightarrow{0} R_{0}^{\mathcal{N}_{2} \mathrm{C}} \otimes \mathbb{Z} \xrightarrow{0} R_{0}^{\mathcal{N}_{1} \mathrm{C}} \otimes \mathbb{Z} \xrightarrow{0} R_{0}^{\mathcal{N}_{0} \mathcal{C}} \otimes \mathbb{Z}
\end{aligned}
$$

$$
\longrightarrow \mathbb{Z} \mathcal{N}_{0} \mathcal{N}_{2} \mathcal{C} \longrightarrow \mathbb{Z} \mathcal{N}_{0} \mathcal{N}_{1} \mathcal{C} \longrightarrow \mathbb{Z} \mathcal{N}_{0} \mathcal{N}_{0} \mathcal{C}
$$

$$
Q \longrightarrow \operatorname{Aut}(Q), a \mapsto \iota_{a}(x)=a x a^{-1}
$$

gap> Q:=DihedralGroup(216); ;
gap> G:=AutomorphismGroupAsCrossedModule(Q); ;
gap> Size(G);
839808
gap> IdQuasiCrossedModule(G);
[72, 68]

$$
Q \longrightarrow \operatorname{Aut}(Q), a \mapsto \iota_{a}(x)=a x a^{-1}
$$

gap> Q:=DihedralGroup(216); ;
gap> G:=AutomorphismGroupAsCrossedModule(Q); ;
gap> Size(G);
839808
gap> IdQuasiCrossedModule(G);
[72, 68]
gap> G2:=SmallQuasiCrossedModule (72,68) ;
Crossed module with group homomorphism Pcgs([f3]) -> [<identity> of ...]

$$
Q \longrightarrow \operatorname{Aut}(Q), a \mapsto \iota_{a}(x)=a x a^{-1}
$$

gap> Q:=DihedralGroup(216); ;
gap> G:=AutomorphismGroupAsCrossedModule(Q); ;
gap> Size(G);
839808
gap> IdQuasiCrossedModule(G);
[72, 68]
gap> G2:=SmallQuasiCrossedModule(72,68);
Crossed module with group homomorphism Pcgs([f3]) -> [<identity> of ...]
gap> Homology (G,5);
$[2,2,2,2,2,2,2,2,2,2,18]$

A curiosity about vector field collapse

The crossed module

$$
: \mathbb{Z}_{2} \rightarrow 0
$$

represents a homotopy 2-type X with

$$
\pi_{2}(X)=\mathbb{Z}_{2}, \quad \pi_{k}(X)=0 \text { for } k \neq 2
$$

A curiosity about vector field collapse

The crossed module

$$
: \mathbb{Z}_{2} \rightarrow 0
$$

represents a homotopy 2-type X with

$$
\pi_{2}(X)=\mathbb{Z}_{2}, \quad \pi_{k}(X)=0 \text { for } k \neq 2
$$

```
gap> B:=EilenbergMacLaneComplex(CyclicGroup(2),2,11);;
gap> C:=ChainComplex(B);;
gap> List([0..11],CK!.dimension);
[ 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 ]
```


A curiosity about vector field collapse

The crossed module

$$
: \mathbb{Z}_{2} \rightarrow 0
$$

represents a homotopy 2-type X with

$$
\pi_{2}(X)=\mathbb{Z}_{2}, \quad \pi_{k}(X)=0 \text { for } k \neq 2
$$

gap> B:=EilenbergMacLaneComplex(CyclicGroup(2),2,11); ;
gap> C:=ChainComplex(B); ;
gap> List([0..11], CK!.dimension);
[1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
gap> D:=CoreducedChainComplex(C); ;
gap> List([0..10],D!.dimension);
[1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

