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Lecture 3: Homotopy 2-types



A filtered chain complex over a field
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A filtered chain complex over a field

induces
for s < t.
The Persistent Betti numbers are

Bt =rank(s3t) s<t

Bit=0 s>t
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Example vi,v,..., vy C R262144



Example vi,w,..., V7o C R202144
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Fix a sequence of real numbers ¢ < ex < -+ < e7.

The Rips simplicial complex X; has with

o vertex set V = {vy,..., v}

e n-simplices the subsets ¢ C V with n+ 1 vertices and
llv — V|| < e forall v,V €0.



Persistent 3y for C.(X,):




Persistent (3 for C.(X):

17



Data Model: A homotopy retract Y C Xyo
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Data Model: A homotopy retract Y C Xyo
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Second example: 1V2X protein backbone
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Second example:

1V2X protein backbone

Persistent 51




Second example: 1V2X protein backbone

Data model: S! ~ K ¢ R3
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Second example: 1V2X protein backbone
Data model: S! ~ K ¢ R3

By computing a discrete vector field on a finite region of R3\ K
we find

Y=R3\ K ~ eOUe;Ue;Ue2

and

Y 2 (xy | yx tyxy x)

But what good is (a presentation of) the fundamental group?
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Theorem (Gordon-Luecke, . J. Amer. Math. Soc. 1989)
Two knots K, K’ C R3 are equivalent (up to mirror image) if and
only if their complements are homeomorphic.

Peripheral systems
The boundary 9K of a tubular neighbouthood K of a knot K is a
torus.
0K C R¥\ K

Theorem (Waldhausen, Annals of Math. 1968)
The induced homomorphism

Z®Z=m(0K) — m(R3\ K)
is a complete knot invariant.

Theorem (Whitten 1987, Gordon-Luecke 1989)
Prime knots are determined, up to mirror image, by their
fundamental group.



Proposition: The alpha carbon atoms of the Thermus
Thermophilus protein determine a knot K with peripheral system
m1(0K) = (a,blaba=tb™t) — m(R3\ K) = (x,y|xyx = yxy)
x"2yx2y

X

)
a —
b —



Proposition: The alpha carbon atoms of the Thermus
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Proposition: The alpha carbon atoms of the Thermus
Thermophilus protein determine a knot K with peripheral system

71(0K) = (a, blaba=1bh™1

) = m(R3\ K) = (x, ylxyx = yxy)
a
b

— X_Zyxzy
= X

gap> K:=ReadPDBfileAsPurePermutahedralComplex ("1V2X.pdb") ;
Pure permutahedral complex of dimension 3

gap> Y:=RegularCWComplex (PureComplexComplement (K));;
Regular CW-complex of dimension 3

gap> i:=Boundary(Y);
Map of regular CW-complexes



Proposition: The alpha carbon atoms of the Thermus
Thermophilus protein determine a knot K with peripheral system

m1(0K) =2 (a,blaba1b™1) — 7 (R3\ K) 2 (x, y|xyx = yxy)
— X_2yX2y
= X

o L —

gap> K:=ReadPDBfileAsPurePermutahedralComplex ("1V2X.pdb") ;
Pure permutahedral complex of dimension 3

gap> Y:=RegularCWComplex (PureComplexComplement (K));;
Regular CW-complex of dimension 3

gap> i:=Boundary(Y);
Map of regular CW-complexes

gap> phi:=FundamentalGroup (i,22495) ;
[ £f1, £2 1 -> [ £17-3xf2xf1"2xf2xf1, f1 ]
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An isomorphism invariant of finitely presented groups

In(G) ={Hap : H< G of index < n}

B((x,ylyx tyxy ™) ={Z, Z& Zs3, ZO L, ZH Lo ® Lo}

I,(71(R3\ K)) was tested on the 1701935 prime knots on < 14
crossings

min value of n needed to distinguish between knots on ¢ crossings

c||3|4|5|6|7|8|9|10|11 |12 13|14
n||2|2|3|3|3|3|5(5|6|6|7]|7

Brendel, E., Juda, Mrozek
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is a CW space X with 7j(X) =0 for i > n.
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A connected homotopy 1-type X

is captured by the fundamental group

7T1X:<X1,...,Xd | r1,...,rm>



A connected homotopy 1-type X

is captured by the fundamental group

7T1X:<X1,...,Xd | r1,...,rm>

The generators and relations correspond to the critical 1-cells and
critical 2-cells in a discrete vector field on X with unique critical
0-cell.
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A connected homotopy 2-type

is captured by J.H.C. Whitehead's notion of crossed module:

A crossed module is a group homomorphism 0: M — G with
action G x M — M, (g, m) — &m statisfying

- 9(Em) = go(m) g~

om -1

e M"m! = mm'm

7r1(6): G/@M 7T2(6):kera
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M: (CW spaces) — (crossed modules)
which induces a bijection
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J.H.C. Whitehead:
There is a functor
M: (CW spaces) — (crossed modules)

which induces a bijection

homotopy classes weak  equivalence
of connected 2- > classes of crossed
types modules

This yields a homotopy invariant
[N(X), M- 6]

depending on the weak equivalence class of M 9, G, which is
computable if M 94 G is finite.



A morphism of crossed modules is a commutative diagram

M—2

'
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with ¢1, ¢2 group homomorphisms satisfying

do(Bm) = (¢1g)¢2(m)
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m(0) 2 me(d), n=12.



A morphism of crossed modules is a commutative diagram

M—2

'

G2 ¢
with ¢1, ¢2 group homomorphisms satisfying
do(Bm) = (¢1g)¢2(m)
It is a quasi-isomorphism if it induces isomorphisms

m(0) 2 me(d), n=12.

Two crossed modules 0, &' are weakly equivalent if there exists
a sequence of quasi-isomorphisms:

=014+ 00— 0 — 0
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distributed with GAP in the form of crossed modules.



The order of a homotopy 2-type X is the least value of |M||G| for

. 10)
a representative crossed module M = G.

Proposition [E, Le|: The homotopy 2-types of order m are
classified up to homotopy for m < 127, m # 32,64,81,96 and are
distributed with GAP in the form of crossed modules.

A useful weak equivalence invariant

Ho(M 3 G,Z) = Ho(X,Z)

where X is the corresponding homotopy 2-type.



Category C of a crossed module M e

C=MxG

ob(C) =G

s:C—C, (m.g) ~ (1,8)
t:C—C, (m,g) — (1,0(m) g)

0:CxgC—C, ((mg),(m,g)— (m (dm)~1g")



Category C of a crossed module M e

C=MxG

ob(C) =G

s:C—C, (m.g) ~ (1,8)
t:C—C, (m,g) — (1,0(m) g)

0:CxgC—C, ((mg),(m,g)— (m (dm)~1g")

s, t, o are group homomorphisms.
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Nerve construction

NnC:{Xogxng2—>~'f4Xk}

collection of composable sequences of n morphisms f; € C.

Since NV,C is a group, and hence itself a category, we can form

NuNoC

For the 2-type X corresponding to M 2) G

C,X has basis N,N,C.



Chain complex C. X

N

ZNoN>C

.

ZN1N1C

ZNoNoC



C.X ~ B, the total complex of

—— ZNoNo,C —— ZN>

—— ZNINoC —— ZN,

N1C ——= ZN5

N1C —=ZMN;

NoC

NoC

——— ZNoNoC —— ZNoN1C —— ZNoNoC



C. X ~ B, ~ R, a filtered complex
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A homotopy equivalence data

2

(R,d) > (B,d), h (%)

consists of chain complexes R, B, quasi-isomorphisms i, p and a
homotopy ip — 1 = dh+ hd. A perturbation on (%) is a
homomorphism e: B — B of degree —1 such that (d + €)% = 0.

Perturbation Lemma: If A = (1 — e¢h)le exists then

’
2

(R,d') 55 (B,d+¢), H (%)
is a homotopy equivalence data where

i" =i+ hAi, p'=p+pAh, W =h+hAh, d =d+pAi .



—O>ZN2

—O>ZN1

NoC —2 = 7N,

NoC —2~ 7N,

NiC -2~ 7N,

NiC -2~ 7N

NoC

NoC

O ZNGNHC —2 = ZNONLC —2 = ZNGNGC

— 0 RN 970 RMC 9z 2> RMC g7

—O0 RN 70 RMC g7 25 RMC g 7

—O>R$/2C®Z—O>R£/IC®Z—O>R6\[OC®Z

(B,d)

(R, d)



——— ZNoNoC —— ZNoN1C —— ZNoNoC

—— ZN1NoC —— ZNIN1C —— ZNINGC

——— ZNoN>C —— ZNoN1C —— ZNNoC

(B,d+¢)

(R,d)



Q — Aut(Q),a— 14(x) = axa !

gap> Q:=DihedralGroup(216);;

gap> G:=AutomorphismGroupAsCrossedModule(Q);;
gap> Size(G);

839808

gap> IdQuasiCrossedModule(G) ;
[ 72, 68 1]
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Pcgs([ £3 ]) -> [ <identity> of ... ]



Q — Aut(Q),a— 14(x) = axa !

gap> Q:=DihedralGroup(216);;

gap> G:=AutomorphismGroupAsCrossedModule(Q);;
gap> Size(G);

839808

gap> IdQuasiCrossedModule(G) ;
[ 72, 68 1]

gap> G2:=SmallQuasiCrossedModule(72,68);
Crossed module with group homomorphism
Pcgs([ £3 ]) -> [ <identity> of ... ]

gap> Homology(G,5);
[2,2,2,2,2,2,2,2,2,2, 18]



A curiosity about vector field collapse
The crossed module
: Zz —0

represents a homotopy 2-type X with
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The crossed module
: Zz —0

represents a homotopy 2-type X with

7T2(X) = Zz, 7Tk(X) =0 for k 75 2.

gap> B:=EilenbergMacLaneComplex(CyclicGroup(2),2,11);;
gap> C:=ChainComplex(B);;

gap> List([0..11],CK!.dimension);

(1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 ]



A curiosity about vector field collapse
The crossed module
: Zz —0

represents a homotopy 2-type X with

7T2(X) = Zz, 7Tk(X) =0 for k 75 2.

gap> B:=EilenbergMacLaneComplex(CyclicGroup(2),2,11);;
gap> C:=ChainComplex(B);;

gap> List([0..11],CK!.dimension);

(1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 ]

gap> D:=CoreducedChainComplex(C);;
gap> List([0..10],D!.dimension);
(1,0, 1,1, 2, 3, 5,8, 13, 21, 34 1]



