Computational Representation Theory LECTURE III

Gerhard Hiss

Lehrstuhl D für Mathematik
RWTH Aachen University
Group Theory and Computational Methods
ICTS-TIFR, Bangalore, 05 - 14 November 2016

Contents

(1) Representations of Groups and Algebras
(2 The MeatAxe

Throughout this lecture, G denotes a finite group and F a field.

Throughout this lecture, G denotes a finite group and F a field.

FG: group algebra of G over F

Throughout this lecture, G denotes a finite group and F a field.

FG: group algebra of G over F
(1) elements: $\sum_{g \in G} a_{g} g \quad\left(a_{g} \in F\right)$
(2) multiplication: distributive extension of multiplication of G

Throughout this lecture, G denotes a finite group and F a field.

FG: group algebra of G over F
(1) elements: $\sum_{g \in G} a_{g} g \quad\left(a_{g} \in F\right)$
(2) multiplication: distributive extension of multiplication of G
$F G$ is a finite-dimensional F-algebra.

Representations: According to Aschbacher

A \mathcal{C}-representation of G is a group homomorphism

$$
G \rightarrow \operatorname{Aut}(C)
$$

where \mathcal{C} is a category and \mathcal{C} is an object of \mathcal{C}.

A \mathcal{C}-representation of G is a group homomorphism

$$
G \rightarrow \operatorname{Aut}(C),
$$

where \mathcal{C} is a category and \mathcal{C} is an object of \mathcal{C}.

This is rather general. We will mainly look at two categories:

A \mathcal{C}-representation of G is a group homomorphism

$$
G \rightarrow \operatorname{Aut}(C),
$$

where \mathcal{C} is a category and \mathcal{C} is an object of \mathcal{C}.

This is rather general. We will mainly look at two categories:
(1) f.d. vector spaces over $F \rightsquigarrow$ linear representations

A \mathcal{C}-representation of G is a group homomorphism

$$
G \rightarrow \operatorname{Aut}(C),
$$

where \mathcal{C} is a category and \mathcal{C} is an object of \mathcal{C}.

This is rather general. We will mainly look at two categories:
(1) f.d. vector spaces over $F \rightsquigarrow$ linear representations
(2) finite sets \rightsquigarrow permutation representations

A \mathcal{C}-representation of G is a group homomorphism

$$
G \rightarrow \operatorname{Aut}(C),
$$

where \mathcal{C} is a category and \mathcal{C} is an object of \mathcal{C}.

This is rather general. We will mainly look at two categories:
(1) f.d. vector spaces over $F \rightsquigarrow$ linear representations
(2) finite sets \rightsquigarrow permutation representations

From now on: representation = linear representation

Representations of Groups: Recollection

Recall: An F-representation of G of degree d is a homomorphism

$$
\mathfrak{X}: G \rightarrow \operatorname{GL}(V),
$$

where V is a d-dimensional F-vector space.

Representations of Groups: Recollection

Recall: An F-representation of G of degree d is a homomorphism

$$
\mathfrak{X}: G \rightarrow \operatorname{GL}(V),
$$

where V is a d-dimensional F-vector space.
For $v \in V$ and $g \in G$, write $v . g:=v \mathfrak{X}(g)$.
This makes V into a right $F G$-module.

Recall: An F-representation of G of degree d is a homomorphism

$$
\mathfrak{X}: G \rightarrow \operatorname{GL}(V),
$$

where V is a d-dimensional F-vector space.
For $v \in V$ and $g \in G$, write $v . g:=v \mathfrak{X}(g)$.
This makes V into a right $F G$-module.
\mathfrak{X} is irreducible, if V does not have any proper G-invariant subspaces: V is a simple $F G$-module.

Recall: An F-representation of G of degree d is a homomorphism

$$
\mathfrak{X}: G \rightarrow \operatorname{GL}(V),
$$

where V is a d-dimensional F-vector space.
For $v \in V$ and $g \in G$, write $v . g:=v \mathfrak{X}(g)$.
This makes V into a right $F G$-module.
\mathfrak{X} is irreducible, if V does not have any proper G-invariant subspaces: V is a simple $F G$-module.
$\mathfrak{X}: G \rightarrow \mathrm{GL}(V)$ and $\mathfrak{Y}: G \rightarrow \mathrm{GL}(W)$ are equivalent, if and only if V and W are isomorphic as $F G$-modules.

Representations of Algebras

Let \mathfrak{A} be an F-algebra, e.g., $\mathfrak{A}=F G$.

Representations of Algebras

Let \mathfrak{A} be an F-algebra, e.g., $\mathfrak{A}=F G$.
An F-representation of \mathfrak{A} of degree d is an F-algebra homomorphism

$$
\mathfrak{X}: \mathfrak{A} \rightarrow \operatorname{End}(V),
$$

where V is a d-dimensional F-vector space.

Representations of Algebras

Let \mathfrak{A} be an F-algebra, e.g., $\mathfrak{A}=F G$.
An F-representation of \mathfrak{A} of degree d is an F-algebra homomorphism

$$
\mathfrak{X}: \mathfrak{A} \rightarrow \operatorname{End}(V),
$$

where V is a d-dimensional F-vector space.
A group representation $\mathfrak{X}: G \rightarrow \mathrm{GL}(V)$ canonically extends to a representation $\mathfrak{X}: F G \rightarrow E n d(V)$.

Representations of Algebras

Let \mathfrak{A} be an F-algebra, e.g., $\mathfrak{A}=F G$.
An F-representation of \mathfrak{A} of degree d is an F-algebra homomorphism

$$
\mathfrak{X}: \mathfrak{A} \rightarrow \operatorname{End}(V),
$$

where V is a d-dimensional F-vector space.
A group representation $\mathfrak{X}: G \rightarrow G L(V)$ canonically extends to a representation $\mathfrak{X}: F G \rightarrow \operatorname{End}(V)$.

For $v \in V$ and $\mathfrak{a} \in \mathfrak{A}$, write $v \cdot \mathfrak{a}:=v \mathfrak{X}(\mathfrak{a})$. This makes V into a right \mathfrak{A}-module.

Representations of Algebras

Let \mathfrak{A} be an F-algebra, e.g., $\mathfrak{A}=F G$.
An F-representation of \mathfrak{A} of degree d is an F-algebra homomorphism

$$
\mathfrak{X}: \mathfrak{A} \rightarrow \operatorname{End}(V),
$$

where V is a d-dimensional F-vector space.
A group representation $\mathfrak{X}: G \rightarrow G L(V)$ canonically extends to a representation $\mathfrak{X}: F G \rightarrow \operatorname{End}(V)$.

For $v \in V$ and $\mathfrak{a} \in \mathfrak{A}$, write $v \cdot \mathfrak{a}:=v \mathfrak{X}(\mathfrak{a})$. This makes V into a right \mathfrak{A}-module.

Irreducibility and equivalence are defined analogously to the case of group representations.

Representations of Groups: Constructions

Representations of G can be constructed

(1) from permutation representations,

Representations of Groups: Constructions

Representations of G can be constructed
(1) from permutation representations,
(2) from two representations through their Kronecker product,

Representations of Groups: Constructions

Representations of G can be constructed
(1) from permutation representations,
(2) from two representations through their Kronecker product,
(3) from representations through invariant subspaces,

Representations of Groups: Constructions

Representations of G can be constructed
(1) from permutation representations,
(2) from two representations through their Kronecker product,
(3) from representations through invariant subspaces,
(9) in various other ways.

PERMUTATION REPRESENTATIONS

A permutation representation of G on the finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a homomorphism

$$
\kappa: G \rightarrow S_{\Omega}
$$

where S_{Ω} denotes the symmetric group on Ω.

PERMUTATION REPRESENTATIONS

A permutation representation of G on the finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a homomorphism

$$
\kappa: G \rightarrow S_{\Omega},
$$

where S_{Ω} denotes the symmetric group on Ω.

Let V denote an F-vector space with basis Ω.

A permutation representation of G on the finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a homomorphism

$$
\kappa: G \rightarrow S_{\Omega}
$$

where S_{Ω} denotes the symmetric group on Ω.

Let V denote an F-vector space with basis Ω.

Replacing each $\kappa(g) \in S_{\Omega}$ by the linear map $\mathfrak{X}(g)$ of V, which permutes its basis like $\kappa(g)$, we obtain an F-representation \mathfrak{X} of degree n of G.

Permutation Representations: Example

Let $G=S_{3}$, the symmetric group on three letters, acting (from the right) on $\Omega=\{1,2,3\}$. Then $G=\langle a, b\rangle$ with $a=(1,2)$ and $b=(1,2,3)$.

Permutation Representations: Example

Let $G=S_{3}$, the symmetric group on three letters, acting (from the right) on $\Omega=\{1,2,3\}$. Then $G=\langle a, b\rangle$ with $a=(1,2)$ and $b=(1,2,3)$.
Take $F=\mathbb{Q} ; V \cong \mathbb{Q}^{1 \times 3}$. Then G acts on V by $e_{i} \cdot g=e_{i g}$, where e_{1}, e_{2}, e_{3} is the standard basis of V.

Let $G=S_{3}$, the symmetric group on three letters, acting (from the right) on $\Omega=\{1,2,3\}$. Then $G=\langle a, b\rangle$ with $a=(1,2)$ and $b=(1,2,3)$.
Take $F=\mathbb{Q} ; V \cong \mathbb{Q}^{1 \times 3}$. Then G acts on V by $e_{i} \cdot g=e_{i g}$, where e_{1}, e_{2}, e_{3} is the standard basis of V.
Then

$$
\mathfrak{X}(a)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \mathfrak{X}(b)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

are the corresponding permutation matrices. (Note that we use row convention.)

Let $G=S_{3}$, the symmetric group on three letters, acting (from the right) on $\Omega=\{1,2,3\}$. Then $G=\langle a, b\rangle$ with $a=(1,2)$ and $b=(1,2,3)$.
Take $F=\mathbb{Q} ; V \cong \mathbb{Q}^{1 \times 3}$. Then G acts on V by $e_{i} \cdot g=e_{i g}$, where e_{1}, e_{2}, e_{3} is the standard basis of V.
Then

$$
\mathfrak{X}(a)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \mathfrak{X}(b)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

are the corresponding permutation matrices. (Note that we use row convention.)
Note: In order to describe (store) a representation \mathfrak{X} of G, it suffices to give the matrices $\mathfrak{X}\left(a_{i}\right)$ for a generating set $\left\{a_{1}, \ldots, a_{l}\right\}$ of G.

Kronecker Product of Representations

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}_{d}(F)$ and $\mathfrak{Y}: G \rightarrow \mathrm{GL}_{e}(F)$ be two matrix representations of G.

Kronecker Product of Representations

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}_{d}(F)$ and $\mathfrak{Y}: G \rightarrow \mathrm{GL}_{e}(F)$ be two matrix representations of G.

Then $\mathfrak{X} \otimes \mathfrak{Y}: G \rightarrow G L_{d e}(F), \quad g \mapsto \mathfrak{X}(g) \otimes \mathfrak{Y}(g)$ is a matrix representation of G.

Kronecker Product of Representations

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}_{d}(F)$ and $\mathfrak{Y}: G \rightarrow \mathrm{GL}_{e}(F)$ be two matrix representations of G.

Then $\mathfrak{X} \otimes \mathfrak{Y}: G \rightarrow \mathrm{GL}_{\text {de }}(F), \quad g \mapsto \mathfrak{X}(g) \otimes \mathfrak{Y}(g)$ is a matrix representation of G.

Here, $\mathfrak{X}(g) \otimes \mathfrak{Y}(g)$ is the Kronecker product of the two matrices $\mathfrak{X}(g)$ and $\mathfrak{Y}(g)$, defined as follows:

$$
A \otimes B:=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 d} B \\
\vdots & \ddots & \vdots \\
a_{d 1} B & \cdots & a_{d d} B
\end{array}\right]
$$

for $A=\left[a_{i j}\right] \in F^{d \times d}$, and $B \in F^{e \times e}$.

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}_{d}(F)$ and $\mathfrak{Y}: G \rightarrow \mathrm{GL}_{e}(F)$ be two matrix representations of G.

Then $\mathfrak{X} \otimes \mathfrak{Y}: G \rightarrow \mathrm{GL}_{\text {de }}(F), \quad g \mapsto \mathfrak{X}(g) \otimes \mathfrak{Y}(g)$ is a matrix representation of G.

Here, $\mathfrak{X}(g) \otimes \mathfrak{Y}(g)$ is the Kronecker product of the two matrices $\mathfrak{X}(g)$ and $\mathfrak{Y}(g)$, defined as follows:

$$
A \otimes B:=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 d} B \\
\vdots & \ddots & \vdots \\
a_{d 1} B & \cdots & a_{d d} B
\end{array}\right]
$$

for $A=\left[a_{i j}\right] \in F^{d \times d}$, and $B \in F^{e \times e}$.
From this: $\chi_{\mathfrak{x} \otimes \mathfrak{Y}}=\chi_{\mathfrak{X}} \cdot \chi_{\mathfrak{Y}}$, i.e. the product of characters is a character.

Invariant Subspaces

Let $\mathfrak{X}: G \rightarrow G L(V)$ be a representation of G on V.

Let W be a G-invariant subspace of V, i.e.:

$$
w . g \in W \quad \text { for all } w \in W, g \in G .
$$

(W is an $F G$-submodule of V.)

Let $\mathfrak{X}: G \rightarrow \mathrm{GL}(V)$ be a representation of G on V.

Let W be a G-invariant subspace of V, i.e.:

$$
w . g \in W \quad \text { for all } w \in W, g \in G .
$$

(W is an $F G$-submodule of V.)

We obtain F-representations

$$
\mathfrak{X}_{W}: G \rightarrow \mathrm{GL}(W) \quad \text { and } \quad \mathfrak{X}_{V / W}: G \rightarrow \mathrm{GL}(V / W)
$$

in the natural way.

Invariant Subspaces: EXAMPLE

Let $G=S_{3}$ and V be as above.
$W:=\left\langle e_{1}+e_{2}+e_{3}\right\rangle$ is an invariant subspace.

Let $G=S_{3}$ and V be as above.
$W:=\left\langle e_{1}+e_{2}+e_{3}\right\rangle$ is an invariant subspace.
Choosing the basis $e_{1}+e_{2}+e_{3}, e_{2}, e_{3}$ of V, and transforming the matrices accordingly, we obtain a representation \mathfrak{X}^{\prime} with

$$
\mathfrak{X}^{\prime}(a)=\left[\begin{array}{r|rr}
1 & 0 & 0 \\
\hline 1 & -1 & -1 \\
0 & 0 & 1
\end{array}\right], \quad \mathfrak{X}^{\prime}(b)=\left[\begin{array}{r|rr}
1 & 0 & 0 \\
\hline 0 & 0 & 1 \\
1 & -1 & -1
\end{array}\right] .
$$

Let $G=S_{3}$ and V be as above.
$W:=\left\langle e_{1}+e_{2}+e_{3}\right\rangle$ is an invariant subspace.
Choosing the basis $e_{1}+e_{2}+e_{3}, e_{2}, e_{3}$ of V, and transforming the matrices accordingly, we obtain a representation \mathfrak{X}^{\prime} with

$$
\mathfrak{X}^{\prime}(a)=\left[\begin{array}{r|rr}
1 & 0 & 0 \\
\hline 1 & -1 & -1 \\
0 & 0 & 1
\end{array}\right], \quad \mathfrak{X}^{\prime}(b)=\left[\begin{array}{r|rr}
1 & 0 & 0 \\
\hline 0 & 0 & 1 \\
1 & -1 & -1
\end{array}\right] .
$$

Moreover,

$$
\mathfrak{X}_{V / W}^{\prime}(a)=\left[\begin{array}{rr}
-1 & -1 \\
0 & 1
\end{array}\right], \quad \mathfrak{X}_{V / W}^{\prime}(b)=\left[\begin{array}{rr}
0 & 1 \\
-1 & -1
\end{array}\right] .
$$

The Irreducible Constituents

Iterating this process, we obtain a matrix representation \mathfrak{X}^{∞} of G, equivalent to \mathfrak{X}, s.t.:

$$
\mathfrak{X}^{\infty}(g)=\left[\begin{array}{cccc}
\mathfrak{X}_{1}(g) & 0 & \cdots & 0 \\
* & \mathfrak{X}_{2}(g) & \cdots & 0 \\
* & * & \ddots & 0 \\
* & * & \cdots & \mathfrak{X}_{/}(g)
\end{array}\right]
$$

and all the representations \mathfrak{X}_{i} are irreducible.

The Irreducible Constituents

Iterating this process, we obtain a matrix representation \mathfrak{X}^{∞} of G, equivalent to \mathfrak{X}, s.t.:

$$
\mathfrak{X}^{\infty}(g)=\left[\begin{array}{cccc}
\mathfrak{X}_{1}(g) & 0 & \cdots & 0 \\
* & \mathfrak{X}_{2}(g) & \cdots & 0 \\
* & * & \ddots & 0 \\
* & * & \cdots & \mathfrak{X}_{/}(g)
\end{array}\right]
$$

and all the representations \mathfrak{X}_{i} are irreducible.

The \mathfrak{X}_{i} are called the irreducible constituents (or composition factors) of \mathfrak{X} (or of V).

The Irreducible Constituents

Iterating this process, we obtain a matrix representation \mathfrak{X}^{∞} of G, equivalent to \mathfrak{X}, s.t.:

$$
\mathfrak{X}^{\infty}(g)=\left[\begin{array}{cccc}
\mathfrak{X}_{1}(g) & 0 & \cdots & 0 \\
* & \mathfrak{X}_{2}(g) & \cdots & 0 \\
* & * & \ddots & 0 \\
* & * & \cdots & \mathfrak{X}_{/}(g)
\end{array}\right]
$$

and all the representations \mathfrak{X}_{i} are irreducible.

The \mathfrak{X}_{i} are called the irreducible constituents (or composition factors) of \mathfrak{X} (or of V).

They are unique up to equivalence (Jordan-Hölder theorem).

All Irreducible Representations

Iterating the constructions, e.g.,
(1) F-representations from permutation representations,

All Irreducible Representations

Iterating the constructions, e.g.,
(1) F-representations from permutation representations,
(2) Kronecker products,

All Irreducible Representations

Iterating the constructions, e.g.,
(1) F-representations from permutation representations,
(2) Kronecker products,
(3) various others,

All Irreducible Representations

Iterating the constructions, e.g.,
(1) F-representations from permutation representations,
(2) Kronecker products,
(3) various others,
and reductions via invariant subspaces,

All Irreducible Representations

Iterating the constructions, e.g.,
(1) F-representations from permutation representations,
(2) Kronecker products,
(3) various others,
and reductions via invariant subspaces,
one obtains all irreducible F-representations of G.

The MEATAXE

The MeatAxe is a collection of programs that perform the above tasks (for finite fields F).

The MeatAxe

The MeatAxe is a collection of programs that perform the above tasks (for finite fields F).

It was invented and developed by Richard Parker and Jon Thackray around 1980.

The MeatAxe is a collection of programs that perform the above tasks (for finite fields F).

It was invented and developed by Richard Parker and Jon Thackray around 1980.

Since then, it has been improved and enhanced by many people, including Derek Holt, Gábor Ivanyos, Klaus Lux, Jürgen Müller, Sarah Rees, Michael Ringe, and by Richard Parker himself.

The Meataxe: Basic Problems

(1) How does one find a non-trivial proper G-invariant subspace of V ?

The Meataxe: Basic Problems

(1) How does one find a non-trivial proper G-invariant subspace of V ?

- It is enough to find a vector $w \neq 0$ which lies in a proper G-invariant subspace W.

The Meataxe: Basic Problems

(1) How does one find a non-trivial proper G-invariant subspace of V ?

- It is enough to find a vector $w \neq 0$ which lies in a proper G-invariant subspace W.
- Indeed, given $0 \neq w \in W$, the orbit $\{w . g \mid g \in G\}$ spans a G-invariant subspace contained in W.

The Meataxe: Basic Problems

(1) How does one find a non-trivial proper G-invariant subspace of V ?

- It is enough to find a vector $w \neq 0$ which lies in a proper G-invariant subspace W.
- Indeed, given $0 \neq w \in W$, the orbit $\{w . g \mid g \in G\}$ spans a G-invariant subspace contained in W.
(2) How does one prove that \mathfrak{X} is irreducible?

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l} be $(d \times d)$-matrices over F.

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l} be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$ (algebra span).

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l} be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$ (algebra span).

Let $B \in \mathfrak{A}$. Write $\mathcal{N}(B)$ for the (left) nullspace of B.
Then one of the following occurs:

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l} be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$ (algebra span).

Let $B \in \mathfrak{A}$. Write $\mathcal{N}(B)$ for the (left) nullspace of B.
Then one of the following occurs:
(1) B is invertible.

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l} be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$ (algebra span).

Let $B \in \mathfrak{A}$. Write $\mathcal{N}(B)$ for the (left) nullspace of B.
Then one of the following occurs:
(1) B is invertible.
(2) There is a non-trivial vector in $\mathcal{N}(B)$ which lies in a proper \mathfrak{A}-invariant subspace.

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l} be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$ (algebra span).

Let $B \in \mathfrak{A}$. Write $\mathcal{N}(B)$ for the (left) nullspace of B.
Then one of the following occurs:
(1) B is invertible.
(2) There is a non-trivial vector in $\mathcal{N}(B)$ which lies in a proper \mathfrak{A}-invariant subspace.
(3) Every non-trivial vector in $\mathcal{N}\left(B^{t r}\right)$ lies in a proper $\mathfrak{A}^{t r}$-invariant subspace.

Norton's Irreducibility Criterion

Let A_{1}, \ldots, A_{l} be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$ (algebra span).

Let $B \in \mathfrak{A}$. Write $\mathcal{N}(B)$ for the (left) nullspace of B.
Then one of the following occurs:
(1) B is invertible.
(2) There is a non-trivial vector in $\mathcal{N}(B)$ which lies in a proper \mathfrak{A}-invariant subspace.
(3) Every non-trivial vector in $\mathcal{N}\left(B^{t r}\right)$ lies in a proper $\mathfrak{A}^{t r}$-invariant subspace.
(9) \mathfrak{A} acts irreducibly on $F^{1 \times d}$.

The Meataxe: Basic Strategy

Find singular $B \in \mathfrak{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

The Meataxe: Basic Strategy

Find singular $B \in \mathfrak{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w \cdot \mathfrak{A}=F^{1 \times d}$. (Note that $w \cdot \mathfrak{A}$ is \mathfrak{A}-invariant.)

The Meataxe: Basic Strategy

Find singular $B \in \mathfrak{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w \cdot \mathfrak{A}=F^{1 \times d}$. (Note that $w \cdot \mathfrak{A}$ is \mathfrak{A}-invariant.)

If YES
For one $0 \neq w$ in the nullspace of $B^{t r}$ test if $w \cdot \mathfrak{A}^{t r}=F^{1 \times d}$.

The Meataxe: Basic Strategy

Find singular $B \in \mathfrak{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w \cdot \mathfrak{A}=F^{1 \times d}$. (Note that $w \cdot \mathfrak{A}$ is \mathfrak{A}-invariant.)

If YES
For one $0 \neq w$ in the nullspace of $B^{t r}$ test if $w \cdot \mathfrak{A}^{\text {tr }}=F^{1 \times d}$.
If YES, \mathfrak{X} is irreducible.

The Meataxe: Basic Strategy

Find singular $B \in \mathfrak{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w \cdot \mathfrak{A}=F^{1 \times d}$. (Note that $w \cdot \mathfrak{A}$ is \mathfrak{A}-invariant.)

If YES
For one $0 \neq w$ in the nullspace of $B^{t r}$ test if $w \cdot \mathfrak{A}^{t r}=F^{1 \times d}$.
If YES, \mathfrak{X} is irreducible.
Note: If $G=\left\langle g_{1}, \ldots, g_{l}\right\rangle$, and $\mathfrak{X}: G \rightarrow \mathrm{GL}_{d}(F)$ is an F-representation of G, take $A_{i}:=\mathfrak{X}\left(g_{i}\right), 1 \leq i \leq I$.

THE Spinning Algorithm

The space $w . \mathfrak{A}$ is computed with a linearized version of an orbit algorithm: $\operatorname{spin}\left(A_{1}, \ldots, A_{l}, w\right)$ returns F-basis of $w . \mathfrak{A}$.

THE Spinning Algorithm

The space $w . \mathfrak{A}$ is computed with a linearized version of an orbit algorithm: $\operatorname{spin}\left(A_{1}, \ldots, A_{l}, w\right)$ returns F-basis of $w . \mathfrak{A}$.

ALGORITHM ($\left.\operatorname{spin}\left(A_{1}, \ldots, A_{l}, w\right)\right)$

Input: $A_{1}, \ldots, A_{l} \in F^{d \times d}, 0 \neq w \in F^{1 \times d}$
Output: basis \mathcal{B} of w. \mathfrak{A} with $\mathfrak{A}=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$

THE Spinning Algorithm

The space $w . \mathfrak{A}$ is computed with a linearized version of an orbit algorithm: $\operatorname{spin}\left(A_{1}, \ldots, A_{l}, w\right)$ returns F-basis of w. \mathfrak{A}.

ALGORITHM $\left(\operatorname{spin}\left(A_{1}, \ldots, A_{l}, w\right)\right)$

Input: $A_{1}, \ldots, A_{l} \in F^{d \times d}, 0 \neq w \in F^{1 \times d}$
Output: basis \mathcal{B} of w. \mathfrak{A} with $\mathfrak{A}=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$

```
\mathcal{B}}\leftarroww
for v in \mathcal{B do}
    for i from 1 to l do
        if {v\mp@subsup{A}{i}{}}\cup\mathcal{B}\mathrm{ linearly independent then}
        append vA; to \mathcal{B}
        end if;
    end for;
end for;
```


The Meataxe: Test for Equivalence

Let \mathfrak{A} be an F-algebra, generated by $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{/}$.

The Meataxe: Test for Equivalence

Let \mathfrak{A} be an F-algebra, generated by $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{/}$.
Suppose $\mathfrak{X}, \mathfrak{Y}: \mathfrak{A} \rightarrow F^{d \times d}$ are irreducible representations of \mathfrak{A}.

The Meataxe: Test for Equivalence

Let \mathfrak{A} be an F-algebra, generated by $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{/}$.
Suppose $\mathfrak{X}, \mathfrak{Y}: \mathfrak{A} \rightarrow F^{d \times d}$ are irreducible representations of \mathfrak{A}.
Put $A_{i}:=\mathfrak{X}\left(\mathfrak{a}_{i}\right), B_{i}:=\mathfrak{Y}\left(\mathfrak{a}_{i}\right), 1 \leq i \leq l$.

The MeatAxe: Test for Equivalence

Let \mathfrak{A} be an F-algebra, generated by $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{/}$.
Suppose $\mathfrak{X}, \mathfrak{Y}: \mathfrak{A} \rightarrow F^{d \times d}$ are irreducible representations of \mathfrak{A}.
Put $A_{i}:=\mathfrak{X}\left(\mathfrak{a}_{i}\right), B_{i}:=\mathfrak{Y}\left(\mathfrak{a}_{i}\right), 1 \leq i \leq l$.
Let $\mathfrak{w} \in F\left\langle X_{1}, \ldots, X_{l}\right\rangle$ such that $A:=\mathfrak{w}\left(A_{1}, \ldots, A_{l}\right)$ has nullity 1 .

The MeatAxe: Test for Equivalence

Let \mathfrak{A} be an F-algebra, generated by $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{/}$.
Suppose $\mathfrak{X}, \mathfrak{Y}: \mathfrak{A} \rightarrow F^{d \times d}$ are irreducible representations of \mathfrak{A}.
Put $A_{i}:=\mathfrak{X}\left(\mathfrak{a}_{i}\right), B_{i}:=\mathfrak{Y}\left(\mathfrak{a}_{i}\right), 1 \leq i \leq l$.
Let $\mathfrak{w} \in F\left\langle X_{1}, \ldots, X_{l}\right\rangle$ such that $A:=\mathfrak{w}\left(A_{1}, \ldots, A_{l}\right)$ has nullity 1 .
If nullity of $B:=\mathfrak{w}\left(B_{1}, \ldots, B_{l}\right)$ is not 1 , then $\mathfrak{X}, \mathfrak{Y}$ are not equivalent.

The MeatAxe: Test for Equivalence

Let \mathfrak{A} be an F-algebra, generated by $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{/}$.
Suppose $\mathfrak{X}, \mathfrak{Y}: \mathfrak{A} \rightarrow F^{d \times d}$ are irreducible representations of \mathfrak{A}.
Put $A_{i}:=\mathfrak{X}\left(\mathfrak{a}_{i}\right), B_{i}:=\mathfrak{Y}\left(\mathfrak{a}_{i}\right), 1 \leq i \leq l$.
Let $\mathfrak{w} \in F\left\langle X_{1}, \ldots, X_{l}\right\rangle$ such that $A:=\mathfrak{w}\left(A_{1}, \ldots, A_{l}\right)$ has nullity 1 .
If nullity of $B:=\mathfrak{w}\left(B_{1}, \ldots, B_{l}\right)$ is not 1 , then $\mathfrak{X}, \mathfrak{Y}$ are not equivalent. Otherwise, let $0 \neq v \in \mathcal{N}(A), 0 \neq w \in \mathcal{N}(B)$.

The Meataxe: Test for Equivalence

Let \mathfrak{A} be an F-algebra, generated by $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{/}$.
Suppose $\mathfrak{X}, \mathfrak{Y}: \mathfrak{A} \rightarrow F^{d \times d}$ are irreducible representations of \mathfrak{A}.
Put $A_{i}:=\mathfrak{X}\left(\mathfrak{a}_{i}\right), B_{i}:=\mathfrak{Y}\left(\mathfrak{a}_{i}\right), 1 \leq i \leq l$.
Let $\mathfrak{w} \in F\left\langle X_{1}, \ldots, X_{l}\right\rangle$ such that $A:=\mathfrak{w}\left(A_{1}, \ldots, A_{l}\right)$ has nullity 1 .
If nullity of $B:=\mathfrak{w}\left(B_{1}, \ldots, B_{l}\right)$ is not 1 , then $\mathfrak{X}, \mathfrak{Y}$ are not equivalent. Otherwise, let $0 \neq v \in \mathcal{N}(A), 0 \neq w \in \mathcal{N}(B)$.

Let $\mathcal{A}:=\operatorname{spin}\left(A_{1}, \ldots, A_{l}, v\right), \mathcal{B}:=\operatorname{spin}\left(B_{1}, \ldots, B_{l}, w\right)$.

The Meataxe: Test for Equivalence

Let \mathfrak{A} be an F-algebra, generated by $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{/}$.
Suppose $\mathfrak{X}, \mathfrak{Y}: \mathfrak{A} \rightarrow F^{d \times d}$ are irreducible representations of \mathfrak{A}.
Put $A_{i}:=\mathfrak{X}\left(\mathfrak{a}_{i}\right), B_{i}:=\mathfrak{Y}\left(\mathfrak{a}_{i}\right), 1 \leq i \leq l$.
Let $\mathfrak{w} \in F\left\langle X_{1}, \ldots, X_{l}\right\rangle$ such that $A:=\mathfrak{w}\left(A_{1}, \ldots, A_{l}\right)$ has nullity 1 .
If nullity of $B:=\mathfrak{w}\left(B_{1}, \ldots, B_{l}\right)$ is not 1 , then $\mathfrak{X}, \mathfrak{Y}$ are not equivalent. Otherwise, let $0 \neq v \in \mathcal{N}(A), 0 \neq w \in \mathcal{N}(B)$.

Let $\mathcal{A}:=\operatorname{spin}\left(A_{1}, \ldots, A_{l}, v\right), \mathcal{B}:=\operatorname{spin}\left(B_{1}, \ldots, B_{l}, w\right)$.
Let $\mathfrak{X}^{\prime}, \mathfrak{Y}^{\prime}$ be the "transformed" representations (matrices written w.r.t. \mathcal{A}, respectively \mathcal{B}). Then:

The Meataxe: Test for Equivalence

Let \mathfrak{A} be an F-algebra, generated by $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{/}$.
Suppose $\mathfrak{X}, \mathfrak{Y}: \mathfrak{A} \rightarrow F^{d \times d}$ are irreducible representations of \mathfrak{A}.
Put $A_{i}:=\mathfrak{X}\left(\mathfrak{a}_{i}\right), B_{i}:=\mathfrak{Y}\left(\mathfrak{a}_{i}\right), 1 \leq i \leq l$.
Let $\mathfrak{w} \in F\left\langle X_{1}, \ldots, X_{l}\right\rangle$ such that $A:=\mathfrak{w}\left(A_{1}, \ldots, A_{l}\right)$ has nullity 1 .
If nullity of $B:=\mathfrak{w}\left(B_{1}, \ldots, B_{l}\right)$ is not 1 , then $\mathfrak{X}, \mathfrak{Y}$ are not equivalent. Otherwise, let $0 \neq v \in \mathcal{N}(A), 0 \neq w \in \mathcal{N}(B)$.

Let $\mathcal{A}:=\operatorname{spin}\left(A_{1}, \ldots, A_{l}, v\right), \mathcal{B}:=\operatorname{spin}\left(B_{1}, \ldots, B_{l}, w\right)$.
Let $\mathfrak{X}^{\prime}, \mathfrak{Y}^{\prime}$ be the "transformed" representations (matrices written w.r.t. \mathcal{A}, respectively \mathcal{B}). Then:
\mathfrak{X} and \mathfrak{Y} are equivalent if and only if \mathfrak{X}^{\prime} and \mathfrak{Y}^{\prime} are equal.

The Meataxe: Remarks

The above strategy works very well if F is small.

The Meataxe: Remarks

The above strategy works very well if F is small.

For example, 71% of all $(d \times d)$-matrices over \mathbb{F}_{2} are singular, 57% of all $(d \times d)$-matrices over \mathbb{F}_{2} have nullspace of dimension 1.

The above strategy works very well if F is small.

For example, 71% of all $(d \times d)$-matrices over \mathbb{F}_{2} are singular, 57% of all $(d \times d)$-matrices over \mathbb{F}_{2} have nullspace of dimension 1.

As F gets larger, it gets harder to find a suitable B by a random search.

The above strategy works very well if F is small.

For example, 71% of all $(d \times d)$-matrices over \mathbb{F}_{2} are singular, 57% of all $(d \times d)$-matrices over \mathbb{F}_{2} have nullspace of dimension 1.

As F gets larger, it gets harder to find a suitable B by a random search.

Holt and Rees use characteristic polynomials of elements of \mathfrak{A} to find suitable Bs and also to reduce the number of tests considerably.

The Holt and Rees Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over F.

The Holt and Rees Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$.

The Holt and Rees Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$.
Let $B \in \mathfrak{A}, \chi_{B}$ the characteristic polynomial of B.

The Holt and Rees Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$.
Let $B \in \mathfrak{A}, \chi_{B}$ the characteristic polynomial of B.
An irreducible factor p of χ_{B} is good, if $\operatorname{deg}(p)=\operatorname{dim}(\mathcal{N}(p(B))$.

The Holt and Rees Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$.
Let $B \in \mathfrak{A}, \chi_{B}$ the characteristic polynomial of B.
An irreducible factor p of χ_{B} is good, if $\operatorname{deg}(p)=\operatorname{dim}(\mathcal{N}(p(B))$.

THEOREM (Holt AND ReES)

Suppose that p is a good factor of χ_{B} and let $0 \neq w \in \mathcal{N}(p(B))$, and $0 \neq w^{\prime} \in \mathcal{N}\left(p(B)^{t r}\right)$.

The Holt and Rees Irreducibility Criterion

Let A_{1}, \ldots, A_{l}, be $(d \times d)$-matrices over F.
Put $\mathfrak{A}:=F\left\langle A_{1}, \ldots, A_{l}\right\rangle$ and $\mathfrak{A}^{t r}:=F\left\langle A_{1}^{t r}, \ldots, A_{l}^{t r}\right\rangle$.
Let $B \in \mathfrak{A}, \chi_{B}$ the characteristic polynomial of B.
An irreducible factor p of χ_{B} is good, if $\operatorname{deg}(p)=\operatorname{dim}(\mathcal{N}(p(B))$.

THEOREM (Holt AND REES)

Suppose that p is a good factor of χ_{B} and let $0 \neq w \in \mathcal{N}(p(B))$, and $0 \neq w^{\prime} \in \mathcal{N}\left(p(B)^{t r}\right)$.
Then \mathfrak{A} acts irreducibly on $F^{1 \times d}$, if $w \cdot \mathfrak{A}=F^{1 \times d}$ and if $w^{\prime} \cdot \mathfrak{A}^{t r}=F^{1 \times d}$.

The Meataxe according to Holt and Rees

(1) Choose a random $B \in \mathfrak{A}$.

The Meataxe according to Holt and Rees

(1) Choose a random $B \in \mathfrak{A}$.
(2) Compute χ_{B}.

The Meataxe according to Holt and Rees

(1) Choose a random $B \in \mathfrak{A}$.
(2) Compute χ_{B}.

- Compute Factors $\left(\chi_{B}\right)$. (If this fails go to Step 1.)

The Meataxe according to Holt and Rees

(1) Choose a random $B \in \mathfrak{A}$.
(2) Compute χ_{B}.

- Compute Factors $\left(\chi_{B}\right)$. (If this fails go to Step 1.)
(- For each $p \in \operatorname{Factors}\left(\chi_{B}\right)$ do

$$
A:=p(B) ;
$$

if $\operatorname{dim}(\mathcal{N}(A))=\operatorname{deg}(p)$, then p is $\operatorname{good} \mathrm{fi}$;

The Meataxe according to Holt and Rees

(1) Choose a random $B \in \mathfrak{A}$.
(2) Compute χ_{B}.

- Compute Factors $\left(\chi_{B}\right)$. (If this fails go to Step 1.)
(- For each $p \in \operatorname{Factors}\left(\chi_{B}\right)$ do

$$
A:=p(B) ;
$$

if $\operatorname{dim}(\mathcal{N}(A))=\operatorname{deg}(p)$, then p is good fi ; take $0 \neq w \in \mathcal{N}(A)$, compute $W:=w \cdot \mathfrak{A}$; if $W \neq F^{1 \times d} \operatorname{Return}(W) \mathrm{fi}$;
(1) Choose a random $B \in \mathfrak{A}$.
(2) Compute χ_{B}.

- Compute Factors $\left(\chi_{B}\right)$. (If this fails go to Step 1.)
- For each $p \in \operatorname{Factors}\left(\chi_{B}\right)$ do

$$
A:=p(B) ;
$$

if $\operatorname{dim}(\mathcal{N}(A))=\operatorname{deg}(p)$, then p is good fi ; take $0 \neq w \in \mathcal{N}(A)$, compute $W:=w \cdot \mathfrak{A}$;
if $W \neq F^{1 \times d} \operatorname{Return}(W)$ fi; take $0 \neq w^{\prime} \in \mathcal{N}\left(A^{\text {tr }}\right)$, compute $W^{\prime}:=w^{\prime} \cdot \mathfrak{A}^{\text {tr }}$;
if $W^{\prime} \neq F^{1 \times d} \operatorname{Return}(W)$ fi;
$\# W=\left\{w \in F^{1 \times d} \mid w^{\prime} w^{t r}=0 \forall w^{\prime} \in W^{\prime}\right\}$
(1) Choose a random $B \in \mathfrak{A}$.
(2) Compute χ_{B}.

- Compute Factors $\left(\chi_{B}\right)$. (If this fails go to Step 1.)
- For each $p \in \operatorname{Factors}\left(\chi_{B}\right)$ do

$$
A:=p(B) ;
$$

if $\operatorname{dim}(\mathcal{N}(A))=\operatorname{deg}(p)$, then p is good fi; take $0 \neq w \in \mathcal{N}(A)$, compute $W:=w \cdot \mathfrak{A}$;
if $W \neq F^{1 \times d} \operatorname{Return}(W)$ fi;
take $0 \neq w^{\prime} \in \mathcal{N}\left(A^{\text {tr }}\right)$, compute $W^{\prime}:=w^{\prime} \cdot \mathfrak{A t}^{\text {tr }}$;
if $W^{\prime} \neq F^{1 \times d} \operatorname{Return}(W)$ fi;
$\# W=\left\{w \in F^{1 \times d} \mid w^{\prime} w^{t r}=0 \forall w^{\prime} \in W^{\prime}\right\}$
if p is good, Return("Irreducible") fi;

- Go back to Step 1.

A huge collection of explicit representations of finite groups is contained in Rob Wilson's WWW Atlas of Finite Group Representations: (http://brauer.maths.qmul.ac.uk/Atlas/).

A huge collection of explicit representations of finite groups is contained in Rob Wilson's WWW Atlas of Finite Group Representations: (http://brauer.maths.qmul.ac.uk/Atlas/).

These representations have been computed by Wilson and collaborators, e.g.

A huge collection of explicit representations of finite groups is contained in Rob Wilson's WWW Atlas of Finite Group Representations: (http://brauer.maths.qmul.ac.uk/Atlas/).

These representations have been computed by Wilson and collaborators, e.g.
the representation of M of degree 196882 over \mathbb{F}_{2} by Linton, Parker, Walsh, and Wilson.

A huge collection of explicit representations of finite groups is contained in Rob Wilson's WWW Atlas of Finite Group Representations: (http://brauer.maths.qmul.ac.uk/Atlas/).

These representations have been computed by Wilson and collaborators, e.g.
the representation of M of degree 196882 over \mathbb{F}_{2} by Linton, Parker, Walsh, and Wilson.

Much of this information is also available through the GAP-package atlasrep
(http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/).
(1) D. F. Holt, B. Eick and E. A. O'Brien, Handbook of Computational Group Theory, Chapman \& Hall/CRC, 2005.
(2 D. F. Holt and S. Rees, Testing modules for irreducibility, J. Austral. Math. Soc. Ser. A 57 (1994), 1, 1-16.

- K. Lux and H. Pahlings, Representations of Groups. A computational approach. Cambridge University Press, 2010.
- R. A. Parker, The computer calculation of modular characters (the meat-axe), Computational group theory (Durham, 1982), 267-274, Academic Press, London, 1984.

Thank you for your attention!

