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NOTATION

Throughout this lecture, G denotes a finite group and F a field.

FG: group algebra of G over F
1 elements:

∑
g∈G agg (ag ∈ F )

2 multiplication: distributive extension of multiplication of G

FG is a finite-dimensional F -algebra.
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REPRESENTATIONS: ACCORDING TO ASCHBACHER

A C-representation of G is a group homomorphism

G→ Aut(C),

where C is a category and C is an object of C.

This is rather general. We will mainly look at two categories:

1 f.d. vector spaces over F  linear representations
2 finite sets permutation representations

From now on: representation = linear representation
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REPRESENTATIONS OF GROUPS: RECOLLECTION

Recall: An F -representation of G of degree d is a
homomorphism

X : G→ GL(V ),

where V is a d-dimensional F -vector space.

For v ∈ V and g ∈ G, write v .g := vX(g).
This makes V into a right FG-module.

X is irreducible, if V does not have any proper G-invariant
subspaces: V is a simple FG-module.

X : G→ GL(V ) and Y : G→ GL(W ) are equivalent, if and only
if V and W are isomorphic as FG-modules.
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REPRESENTATIONS OF ALGEBRAS

Let A be an F -algebra, e.g., A = FG.

An F -representation of A of degree d is an F -algebra
homomorphism

X : A→ End(V ),

where V is a d-dimensional F -vector space.

A group representation X : G→ GL(V ) canonically extends to
a representation X : FG→ End(V ).

For v ∈ V and a ∈ A, write v .a := vX(a). This makes V into a
right A-module.

Irreducibility and equivalence are defined analogously to the
case of group representations.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE III



REPRESENTATIONS OF ALGEBRAS

Let A be an F -algebra, e.g., A = FG.

An F -representation of A of degree d is an F -algebra
homomorphism

X : A→ End(V ),

where V is a d-dimensional F -vector space.

A group representation X : G→ GL(V ) canonically extends to
a representation X : FG→ End(V ).

For v ∈ V and a ∈ A, write v .a := vX(a). This makes V into a
right A-module.

Irreducibility and equivalence are defined analogously to the
case of group representations.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE III



REPRESENTATIONS OF ALGEBRAS

Let A be an F -algebra, e.g., A = FG.

An F -representation of A of degree d is an F -algebra
homomorphism

X : A→ End(V ),

where V is a d-dimensional F -vector space.

A group representation X : G→ GL(V ) canonically extends to
a representation X : FG→ End(V ).

For v ∈ V and a ∈ A, write v .a := vX(a). This makes V into a
right A-module.

Irreducibility and equivalence are defined analogously to the
case of group representations.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE III



REPRESENTATIONS OF ALGEBRAS

Let A be an F -algebra, e.g., A = FG.

An F -representation of A of degree d is an F -algebra
homomorphism

X : A→ End(V ),

where V is a d-dimensional F -vector space.

A group representation X : G→ GL(V ) canonically extends to
a representation X : FG→ End(V ).

For v ∈ V and a ∈ A, write v .a := vX(a). This makes V into a
right A-module.

Irreducibility and equivalence are defined analogously to the
case of group representations.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE III



REPRESENTATIONS OF ALGEBRAS

Let A be an F -algebra, e.g., A = FG.

An F -representation of A of degree d is an F -algebra
homomorphism

X : A→ End(V ),

where V is a d-dimensional F -vector space.

A group representation X : G→ GL(V ) canonically extends to
a representation X : FG→ End(V ).

For v ∈ V and a ∈ A, write v .a := vX(a). This makes V into a
right A-module.

Irreducibility and equivalence are defined analogously to the
case of group representations.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE III



REPRESENTATIONS OF GROUPS: CONSTRUCTIONS

Representations of G can be constructed

1 from permutation representations,

2 from two representations through their Kronecker product,

3 from representations through invariant subspaces,

4 in various other ways.
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PERMUTATION REPRESENTATIONS

A permutation representation of G on the finite set
Ω = {ω1, . . . , ωn} is a homomorphism

κ : G→ SΩ,

where SΩ denotes the symmetric group on Ω.

Let V denote an F -vector space with basis Ω.

Replacing each κ(g) ∈ SΩ by the linear map X(g) of V , which
permutes its basis like κ(g), we obtain an F -representation X of
degree n of G.
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PERMUTATION REPRESENTATIONS: EXAMPLE

Let G = S3, the symmetric group on three letters, acting (from
the right) on Ω = {1,2,3}. Then G = 〈a,b〉 with a = (1,2) and
b = (1,2,3).

Take F = Q; V ∼= Q1×3. Then G acts on V by ei .g = eig , where
e1,e2,e3 is the standard basis of V .
Then

X(a) =

 0 1 0
1 0 0
0 0 1

 , X(b) =

 0 1 0
0 0 1
1 0 0


are the corresponding permutation matrices. (Note that we use
row convention.)
Note: In order to describe (store) a representation X of G, it
suffices to give the matrices X(ai) for a generating set
{a1, . . . ,al} of G.
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KRONECKER PRODUCT OF REPRESENTATIONS

Let X : G→ GLd (F ) and Y : G→ GLe(F ) be two matrix
representations of G.

Then X⊗Y : G→ GLde(F ), g 7→ X(g)⊗Y(g) is a matrix
representation of G.

Here, X(g)⊗Y(g) is the Kronecker product of the two matrices
X(g) and Y(g), defined as follows:

A⊗ B :=

 a11 B · · · a1d B
...

. . .
...

ad1 B · · · add B


for A = [aij ] ∈ F d×d , and B ∈ F e×e.

From this: χX⊗Y = χX · χY, i.e. the product of characters is a
character.
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INVARIANT SUBSPACES

Let X : G→ GL(V ) be a representation of G on V .

Let W be a G-invariant subspace of V , i.e.:

w .g ∈W for all w ∈W ,g ∈ G.

(W is an FG-submodule of V .)

We obtain F -representations

XW : G→ GL(W ) and XV/W : G→ GL(V/W )

in the natural way.
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INVARIANT SUBSPACES: EXAMPLE

Let G = S3 and V be as above.

W := 〈e1 + e2 + e3〉 is an invariant subspace.

Choosing the basis e1 + e2 + e3,e2,e3 of V , and transforming
the matrices accordingly, we obtain a representation X′ with

X′(a) =

 1 0 0
1 −1 −1
0 0 1

 , X′(b) =

 1 0 0
0 0 1
1 −1 −1

 .
Moreover,

X′V/W (a) =

[
−1 −1

0 1

]
, X′V/W (b) =

[
0 1
−1 −1

]
.
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THE IRREDUCIBLE CONSTITUENTS

Iterating this process, we obtain a matrix representation X∞ of
G, equivalent to X, s.t.:

X∞(g) =


X1(g) 0 · · · 0
∗ X2(g) · · · 0

∗ ∗ . . . 0
∗ ∗ · · · Xl(g)

 ,
and all the representations Xi are irreducible.

The Xi are called the irreducible constituents (or composition
factors) of X (or of V ).

They are unique up to equivalence (Jordan-Hölder theorem).
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ALL IRREDUCIBLE REPRESENTATIONS

Iterating the constructions, e.g.,

1 F -representations from permutation representations,

2 Kronecker products,

3 various others,

and reductions via invariant subspaces,

one obtains all irreducible F -representations of G.
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THE MEATAXE

The MeatAxe is a collection of programs that perform the above
tasks (for finite fields F ).

It was invented and developed by Richard Parker and Jon
Thackray around 1980.

Since then, it has been improved and enhanced by many
people, including Derek Holt, Gábor Ivanyos, Klaus Lux, Jürgen
Müller, Sarah Rees, Michael Ringe, and by Richard Parker
himself.
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THE MEATAXE: BASIC PROBLEMS

1 How does one find a non-trivial proper G-invariant
subspace of V?

It is enough to find a vector w 6= 0 which lies in a proper
G-invariant subspace W .
Indeed, given 0 6= w ∈W , the orbit {w .g | g ∈ G} spans a
G-invariant subspace contained in W .

2 How does one prove that X is irreducible?
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NORTON’S IRREDUCIBILITY CRITERION

Let A1, . . . ,Al be (d × d)-matrices over F .

Put A := F 〈A1, . . . ,Al〉 and Atr := F 〈Atr
1 , . . . ,A

tr
l 〉 (algebra

span).

Let B ∈ A. Write N (B) for the (left) nullspace of B.

Then one of the following occurs:

1 B is invertible.
2 There is a non-trivial vector in N (B) which lies in a proper

A-invariant subspace.
3 Every non-trivial vector in N (Btr ) lies in a proper

Atr -invariant subspace.
4 A acts irreducibly on F 1×d .
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THE MEATAXE: BASIC STRATEGY

Find singular B ∈ A (by a random search) with nullspace N of
small dimension (preferably 1).

For all 0 6= w ∈ N test if w .A = F 1×d . (Note that w .A is
A-invariant.)

If YES

For one 0 6= w in the nullspace of Btr test if w .Atr = F 1×d .

If YES, X is irreducible.

Note: If G = 〈g1, . . . ,gl〉, and X : G→ GLd (F ) is an
F -representation of G, take Ai := X(gi), 1 ≤ i ≤ l .
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THE SPINNING ALGORITHM

The space w .A is computed with a linearized version of an orbit
algorithm: spin(A1, . . . ,Al ,w) returns F -basis of w .A.

ALGORITHM (spin(A1, . . . ,Al ,w))

Input: A1, . . . ,Al ∈ F d×d , 0 6= w ∈ F 1×d

Output: basis B of w .A with A = F 〈A1, . . . ,Al〉

B ← w;
for v in B do

for i from 1 to l do
if {vAi} ∪ B linearly independent then

append vAi to B;
end if;

end for;
end for;
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THE MEATAXE: TEST FOR EQUIVALENCE

Let A be an F -algebra, generated by a1, . . . , al .

Suppose X,Y : A→ F d×d are irreducible representations of A.

Put Ai := X(ai), Bi := Y(ai), 1 ≤ i ≤ l .

Let w ∈ F 〈X1, . . . ,Xl〉 such that A := w(A1, . . . ,Al) has nullity 1.

If nullity of B := w(B1, . . . ,Bl) is not 1, then X, Y are not
equivalent. Otherwise, let 0 6= v ∈ N (A), 0 6= w ∈ N (B).

Let A := spin(A1, . . . ,Al , v), B := spin(B1, . . . ,Bl ,w).

Let X′, Y′ be the “transformed” representations (matrices
written w.r.t. A, respectively B). Then:

X and Y are equivalent if and only if X′ and Y′ are equal.
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THE MEATAXE: REMARKS

The above strategy works very well if F is small.

For example, 71% of all (d × d)-matrices over F2 are singular,
57% of all (d × d)-matrices over F2 have nullspace of
dimension 1.

As F gets larger, it gets harder to find a suitable B by a random
search.

Holt and Rees use characteristic polynomials of elements of A
to find suitable Bs and also to reduce the number of tests
considerably.
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THE HOLT AND REES IRREDUCIBILITY CRITERION

Let A1, . . . ,Al , be (d × d)-matrices over F .

Put A := F 〈A1, . . . ,Al〉 and Atr := F 〈Atr
1 , . . . ,A

tr
l 〉.

Let B ∈ A, χB the characteristic polynomial of B.

An irreducible factor p of χB is good, if deg(p) = dim(N (p(B)).

THEOREM (HOLT AND REES)

Suppose that p is a good factor of χB and let 0 6= w ∈ N (p(B)),
and 0 6= w ′ ∈ N (p(B)tr ).
Then A acts irreducibly on F 1×d , if w .A = F 1×d and if
w ′.Atr = F 1×d .
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THE MEATAXE ACCORDING TO HOLT AND REES

1 Choose a random B ∈ A.

2 Compute χB.
3 Compute Factors(χB). (If this fails go to Step 1.)
4 For each p ∈ Factors(χB) do

A := p(B);
if dim(N (A)) = deg(p), then p is good fi;
take 0 6= w ∈ N (A), compute W := w .A;
if W 6= F 1×d Return(W ) fi;
take 0 6= w ′ ∈ N (Atr ), compute W ′ := w ′.Atr ;
if W ′ 6= F 1×d Return(W ) fi;
# W = {w ∈ F 1×d | w ′w tr = 0 ∀w ′ ∈W ′}
if p is good, Return(“Irreducible”) fi;

5 Go back to Step 1.
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# W = {w ∈ F 1×d | w ′w tr = 0 ∀w ′ ∈W ′}
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ROB WILSON’S ATLAS

A huge collection of explicit representations of finite groups is
contained in Rob Wilson’s WWW Atlas of Finite Group
Representations: (http://brauer.maths.qmul.ac.uk/Atlas/).

These representations have been computed by Wilson and
collaborators, e.g.

the representation of M of degree 196 882 over F2 by Linton,
Parker, Walsh, and Wilson.

Much of this information is also available through the
GAP-package atlasrep
(http://www.math.rwth-aachen.de/˜Thomas.Breuer/atlasrep/).
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Thank you for your attention!
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