p-group generation

- ▶ Go to p-Quotient Algorithm
- ▶ Go to Classification

Conclusion Lecture 2

Things we have discussed in the second lecture:

• the lower exponent-p series of a group G of p-class c is

Descendants

$$G = P_0(G) > P_1(G) > \dots > P_c(G) = 1$$

where
$$P_{i+1}(G) = [G, P_i(G)]P_i(G)^p$$
; in particular, $P_1(G) = \Phi(G)$

- \circ p-quotient algorithm: construct consistent wpcp of largest p-class c quotient of a finitely presented group (if it exists)
- \circ if H has rank d and $H\cong F/R$ with F free of rank d, then the p-cover H^* is isomorphic to F/R^* where $R^* = [F, R]R^p$
- application: Burnside problems

Today: the p-group generation algorithm!

p-group generation: descendants

Idea: Constructing new *p*-groups from old ones!

Descendants of p-groups

Let G be a d-generator p-group of p-class c.

A descendant of G is a d-generator p-group H with $H/P_c(H) \cong G$; it is an immediate descendant if H has p-class c+1, that is, $P_c(H) > P_{c+1}(H) = 1$.

Example 18

The group $\overline{G} = C_2 \times C_2$ has 2-class c = 1.

The 2-class of $D_8=\langle x_1,x_2,x_3\mid x_1^2,\ x_2^2=x_3,\ x_3^2,\ [x_2,x_1]=x_3\rangle$ is 2. Since $D_8/P_1(D_8)\cong G$, the group D_8 is an immediate descendant of G.

The group D_{16} has 2-class 3 and satisfies $D_{16}/P_1(D_{16}) \cong C_2 \times C_2$. Thus D_{16} is a descendant of G, but not an immediate descendant.

Every p-group K of p-class c > 1 is an immediate descendant of $K/P_{c-1}(K)$; if c = 1, then $K \cong C_n^d$ is elementary abelian.

p-group generation: p-covering

Given: a d-generator p-group G of p-class c.

Want: list of all immediate descendants H of G (up to isomorphism) **Fact:** each $H/P_c(H) \cong G$ and $P_c(H)$ is H-central elementary abelian.

Recall Theorem 13: If H is a d-generator p-group with $H/Z \cong G$ for some central elementary abelian $Z \leq H$, then H is a quotient of the p-cover G^* .

Theorem 19

Every immediate descendant of G is a quotient of the p-cover G^* .

In the following we discuss the p-group generation algorithm:

p-group generation algorithm

Input: a p-group G and description of its automorphism group

Output: wpcp's of all immediate descendants of G, up to isomorphism, and a description of their automorphism groups

Descriptions of the algorithm in the literature: Newman (1977), O'Brien (1999)

p-group generation: allowable subgroups

In the following: G = F/R with p-class c, and $G^* = F/R^*$ with $R^* = [R, F]R^p$.

Problem: What quotients of G^* are immediate descendants of G?

Definition

- The p-multiplicator of G is the kernel of $G^* \to G$, that is, R/R^* .
- The **nucleus** of G is $P_c(G^*)$; note that $P_c(G^*) \leq R/R^*$.
- If H is an immediate descendant, then there is an epi $G^* \to H$ whose kernel lies in R/R^* . An **allowable subgroup** is a subgroup $Z < R/R^*$ such that G^*/Z is an immediate descendant of G.

The next lemma characterises allowable subgroups:

Lemma 20

A subgroup $Z < R/R^*$ is allowable if and only if $ZP_c(G^*) = R/R^*$.

Thus: $Z < R/R^*$ is allowable if and only if it supplements the nucleus.

p-group generation: allowable subgroups

Recall: G = F/R with p-class c, and $G^* = F/R^*$ with $R^* = [R, F]R^p$.

Lemma 20

A subgroup $Z < R/R^*$ is allowable if and only if $ZP_c(G^*) = R/R^*$.

Proof.

If $Z=M/R^\star$ is allowable, then F/M is an immediate descendant, and so $G\cong (F/M)/(P_c(F)M/M)$. We also know that $G=F/R\cong (F/M)/(R/M)$ by the isomorphism theorem. Since $P_c(G)=P_c(F)R/R=1$, we have $P_c(F)M\leq R$. Together, it follows that $R=P_c(F)M$, and so $R/R^\star=P_c(G^\star)Z$, as claimed.

Conversely, if $Z=M/R^\star$ satisfies $R/R^*=ZP_c(G^*)=MP_c(F)/R^\star$, then $R=MP_c(F)$; factoring out M yields $R/M=P_c(F)M/M$. This shows that $H=G^*/Z=F/M$ satisfies $P_c(H)=P_c(F)M/M=R/M$, so $H/P_c(H)=F/R=G$ and H is immed. desc. since $P_c(H)>P_{c+1}(H)=1$.

p-group generation: allowable subgroups

Example 21

The group $G = D_{16}$ has p-class c = 3 and 2-covering

$$G^* = \operatorname{Pc}\langle a_1, \dots, a_7 \mid a_1^2 = a_6, a_2^2 = a_3 a_4 a_7, a_3^2 = a_4 a_5, a_4^2 = a_5,$$

 $[a_2, a_1] = a_3, [a_3, a_1] = a_4, [a_4, a_1] = a_5,$
 $a_5^2 = a_6^2 = a_7^2 = 1 \rangle.$

The multiplicator is $\langle a_5, a_6, a_7 \rangle \cong C_2^3$; the nucleus is $P_c(G^*) = \langle a_5 \rangle$.

The subgroups $\langle a_6, a_7 \rangle$, $\langle a_5 a_6, a_7 \rangle$, $\langle a_6, a_5 a_7 \rangle$ are allowable and the corresponding immediate descendants have order 32.

The subgroup $\langle a_5a_6, a_5a_7 \rangle$ is also allowable, but the resulting quotient is isomorphic to the quotient of G^* by $\langle a_6, a_5a_7 \rangle$.

Considering the factor groups of G^{st} by all allowable subgroups, a *complete* list of immediate descendants is obtained; this list usually contains isomorphic groups.

p-group generation: isomorphism problem

Recall: G = F/R with p-cover $G^* = F/R^*$ and multiplicator R/R^* .

Equivalence of allowable subgroups

Two allowable subgroups U/R^* and V/R^* are **equivalent** if the corresponding immediate descendants F/U and F/V are isomorphic.

This definition of "equivalence" is useful ...

 \dots only because the equivalence relation can be given a different characterisation by using the automorphism group of G.

p-group generation: isomorphism problem

Descendants

Extended automorphism

Let $\alpha \in Aut(G)$; suppose G = F/R is generated by a_1, a_2, \ldots, a_d .

For i = 1, ..., d, let $x_i, y_i \in F$ such that $a_i = x_i R$ and $\alpha(a_i) = y_i R$ for all i.

Define $\alpha^*: G^* \to G^*$ by $\alpha^*(x_i R^*) = y_i R^*$ for all i.

Lemma 22

If $\alpha \in Aut(G)$, then $\alpha^* \in Aut(G^*)$ is an **extended automorphism**. It is not uniquely defined by α , but its restriction to R/R^* is.

Proof [Sketch].

First show that α^* is a well-defined homomorphism; let $q = w(x_1, \dots, x_d) \in F$:

If $q \in R$, then $1R = \alpha(qR) = w(y_1, \dots, y_d)R$, so $w(y_1, \dots, y_d) \in R$.

So if $q \in R^*$, then $w(y_1, \ldots, y_d) \in R^*$; recall $R^* = [F, R]R^p$. The hom α^* is surjective: $G^* = \langle y_1 R^*, \dots, y_d R^* \rangle$ since $R/R^* < \Phi(G^*)$.

Two extensions of α differ only by elements in R/R^* , and words in R are

products of p-th powers and commutators. Since R/R^* is elementary abelian and central, the restriction of α^* to R/R^* is uniquely defined by α .

p-group generation: isomorphism problem

Lemma 23

Let G = F/R be as before, and let U/R^* and V/R^* be allowable subgroups. Then $F/U \cong F/V$ if and only if $\alpha^*(U/R^*) = V/R^*$ for some $\alpha \in \operatorname{Aut}(G)$.

Proof [Sketch].

" \Rightarrow ". Let $\varphi \colon F/U \to F/V$ be an isomorphism. Since F/U is an immed. desc., $(F/U)/P_c(F/U) = G$, and so $P_c(F/U) = R/U$; similarly, $P_c(F/V) = R/V$, and so $\varphi(R/U) = R/V$. Thus φ induces $\alpha \in \operatorname{Aut}(G)$ with extension $\alpha^* \in \operatorname{Aut}(G^*)$. Now we show that $\alpha^*(U/R^*) = V/R^*$: if $g = w(x_1, \ldots, x_d) \in U$, then

$$1V = \varphi(gU) = w(\varphi(x_1U), \dots, \varphi(x_dU)) = w(y_1V, \dots, y_dV) = w(y_1, \dots, y_d)V,$$

which implies $\alpha^*(gR^*) = w(y_1, \dots, y_d)R^* \in V/R^*$, and so $\alpha^*(U/R^*) = V/R^*$.

"\(\infty\)". If
$$H$$
 is a group, $N \leq H$, and $\gamma \in \operatorname{Aut}(H)$, then $H/N \cong H/\gamma(N)$. This shows that if $\alpha^* \in \operatorname{Aut}(G^*)$ maps U/R^* to V/R^* , then $F/U \cong F/V$.

Via α^* , every $\alpha \in \operatorname{Aut}(G)$ yields a unique permutation $\pi(\alpha)$ of allowable subgrps.

p-group generation: automorphisms

G = F/R and immediate desc. H = F/M for some allowable M/R^* Given:

Want: automorphisms of H, that is, isomorphisms $F/M \to F/M$

Recall: every $\alpha \in \text{Aut}(G)$ yields a permutation $\pi(\alpha)$ of allowable subgrps.

Let Σ be the stabiliser of M/R^* under the action of Aut(G), that is,

$$\Sigma = \langle \zeta \in \operatorname{Aut}(G) \mid \pi(\zeta) \text{ stabilises } M/R^* \rangle.$$

Use Σ to compute

$$S = \langle \zeta^* |_{F/M} \mid \zeta \in \Sigma \rangle \le \mathsf{Aut}(H),$$

and determine a generating set for

$$T = \langle \beta \in \mathsf{Aut}(H) \mid \beta \mid_G = \mathsf{id}_G \rangle.$$

Theorem 24

Using the previous notation, $Aut(H) = \langle S, T, Inn(H) \rangle$.

(see O'Brien, 1999)

Isomorphism Problem

p-group generation: the algorithm

Descendants

```
p-group-generation(G, A, s)
```

group G = F/R of order p^n , its automorphism group A, integer $s \in \mathbb{N}$ **Output:** immediate descendants of G, up to isomorphism, of order p^{n+s} , and their automorphism groups

- construct consistent wpcp of covering $G^* = F/R^*$
- 2 **for** each generator α of A **do**
- 3 compute extension α^*
- 4 compute permutation $\pi(\alpha)$ of allowable subgroups of index p^s in R/R^*
- 5 compute orbits of these allowable subgroups under the action of all $\pi(\alpha)$
- 6 **for** each orbit representative $Z = M/R^*$ **do**
- compute a wpcp of the immediate descendant $H = G^*/Z \cong F/M$
- 8 compute generators of the automorphism group of H

p-group generation: example

Consider $G = \operatorname{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle$ with 2-covering

$$G^* = \text{Pc}\langle a_1, \dots, a_5 \mid a_1^2 = a_4, \ a_2^2 = a_5, \ [a_1, a_2] = a_3, \ a_3^2 = a_4^2 = a_5^2 = 1 \rangle.$$

The multiplicator and nucleus coincide: $M = \langle a_3, a_4, a_5 \rangle = P_1(G^*)$.

Thus: every proper subgroup of M is allowable.

Note that $Aut(G) \cong GL_2(2)$, with generators and extensions

$$\alpha_1 \colon (a_1, a_2) \mapsto (a_1 a_2, a_2) \quad \alpha_1^* \colon (a_1, a_2, a_3, a_4, a_5) \mapsto (a_1 a_2, a_2, a_3, a_3 a_4 a_5, a_5)$$

$$\alpha_2 \colon (a_1, a_2) \mapsto (a_2, a_1) \quad \alpha_2^* \colon (a_1, a_2, a_3, a_4, a_5) \mapsto (a_2, a_1, a_3, a_5, a_4).$$

For example, observe that

$$\alpha_1^*(a_3) = \alpha_1^*([a_1, a_2]) = [a_1 a_2, a_2] = a_3$$

$$\alpha_1^*(a_4) = \alpha_1^*(a_1^2) = (a_1 a_2)^2 = a_1^2 a_2^2 a_3 = a_3 a_4 a_5$$

$$\alpha_1^*(a_5) = \alpha_1^*(a_2^2) = a_2^2 = a_5$$

p-group generation: example

Consider $G = \operatorname{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle$ with 2-covering

$$G^* = \text{Pc}\langle a_1, \dots, a_5 \mid a_1^2 = a_4, \ a_2^2 = a_5, \ [a_1, a_2] = a_3, \ a_3^2 = a_4^2 = a_5^2 = 1 \rangle.$$

The multiplicator and nucleus coincide: $M = \langle a_3, a_4, a_5 \rangle = P_1(G^*)$.

Thus: every proper subgroup of M is allowable.

Note that $Aut(G) \cong GL_2(2)$, with generators and extensions

$$\alpha_1 \colon (a_1, a_2) \mapsto (a_1 a_2, a_2) \quad \alpha_1^* \colon (a_1, a_2, a_3, a_4, a_5) \mapsto (a_1 a_2, a_2, a_3, a_3 a_4 a_5, a_5)$$

$$\alpha_2 \colon (a_1, a_2) \mapsto (a_2, a_1) \quad \alpha_2^* \colon (a_1, a_2, a_3, a_4, a_5) \mapsto (a_2, a_1, a_3, a_5, a_4).$$

Immediate descendants of $G = C_2 \times C_2$ of order 8:

There are 7 allowable subgroups of index 2 in M (that is, of rank 2), namely $\langle a_4, a_5 \rangle$, $\langle a_4, a_3 a_5 \rangle$, $\langle a_3, a_4, a_5 \rangle$, $\langle a_3, a_4 \rangle$, $\langle a_$

There are 3 orbits of allowable subgroups induced by
$$\alpha_1^*$$
 and α_2^* :

 $\{\langle a_4, a_5 \rangle, \langle a_4, a_3 a_5 \rangle, \langle a_3 a_4, a_5 \rangle\}, \ \{\langle a_3 a_4, a_3 a_5 \rangle\}, \ \{\langle a_3, a_5 \rangle, \langle a_3, a_4 a_5 \rangle, \langle a_3, a_4 \rangle\}$

p-group generation: example

Immediate descendants of $G = C_2 \times C_2$ of order 8

Recall that

$$G^* = \text{Pc}\langle a_1, \dots, a_5 \mid a_1^2 = a_4, \ a_2^2 = a_5, \ [a_1, a_2] = a_3, \ a_3^2 = a_4^2 = a_5^2 = 1 \rangle$$

and allowable subgroups of rank 2 are

$$\{\langle a_4, a_5 \rangle, \langle a_4, a_3 a_5 \rangle, \langle a_3 a_4, a_5 \rangle\}, \{\langle a_3 a_4, a_3 a_5 \rangle\}, \{\langle a_3, a_5 \rangle, \langle a_3, a_4 a_5 \rangle, \langle a_3, a_4 \rangle\}.$$

Choose one rep from each orbit and factor it from G^* to obtain immediate descendants:

$$\begin{array}{llll} \operatorname{Pc}\langle\,a_1,a_2,a_3 & | & a_1^2=a_2^2=a_3^2, \ [a_2,a_1]=a_3\,\rangle \cong D_8 \\ \operatorname{Pc}\langle\,a_1,a_2,a_3 & | & a_1^2=a_3, \ a_2^2=a_3, \ a_3^2=1, \ [a_2,a_1]=a_3\,\rangle \cong Q_8 \\ \operatorname{Pc}\langle\,a_1,a_2,a_4 & | & a_1^2=a_4, \ a_2^2=a_4^2=1\,\rangle \cong C_2 \times C_4 \end{array}$$

p-group generation: example

Immediate descendants of $G = C_2 \times C_2$ of order 16

Recall that

$$G^* = \text{Pc}\langle a_1, \dots, a_5 \mid a_1^2 = a_4, \ a_2^2 = a_5, \ [a_1, a_2] = a_3, \ a_3^2 = a_4^2 = a_5^2 = 1 \rangle.$$

Allowable subgroups of index 4 are $\langle a_3 \rangle$, $\langle a_3^{\delta} a_4^{\gamma} a_5 \rangle$, $\langle a_3^{\zeta} a_4 \rangle$, with $\delta, \gamma, \zeta \in \{0, 1\}$. The orbits induced by α_1^* and α_2^* are

$$\{\langle a_3\rangle\}, \ \{\langle a_5\rangle, \langle a_3a_4a_5\rangle, \langle a_4\rangle\}, \ \{\langle a_4a_5\rangle, \langle a_3a_5\rangle, \langle a_3a_4\rangle\}.$$

Choose one rep from each orbit to obtain 3 immediate descendants of order 16. Get $C_4 \times C_4$ and $C_2 \ltimes (C_2 \times C_4)$ and $C_4 \ltimes C_4$, for example,

$$G^*/\langle a_3 \rangle = \operatorname{Pc}\langle a_1, a_2, a_4, a_5 \mid a_1^2 = a_4, a_2^2 = a_5, a_4^2 = a_5^2 = 1 \rangle \cong C_4 \times C_4.$$

Immediate descendants of $G = C_2 \times C_2$ of order 32

There is one immediate descendant of order 2^5 , namely G^* .

p-group generation: practical issues

Descendants

Central problem: number of allowable subspaces (and size of orbits)

Example: The immediate descendants of $G = C_p^d$ of order p^{d+s} have p-class 2. For this group, $M = R/R^* = P_1(G^*)$ has rank m = d(d+1)/2; and each of the $O(p^{(m-s)s})$ subspaces of dim m-s is allowable.

Approach: exploit characteristic structure.

Each $\alpha \in \operatorname{Aut}(G)$ acts on $M \leq G^*$ via $\alpha^* \in \operatorname{Aut}(G^*)$; so M is $\operatorname{Aut}(G)$ -module. In the example, $M = P_1(G^*) = (G^*)^2(G^*)'$ is a characteristic decomposition. In general, identify characteristic submodules, then process chain of submodules.

More comments on practical issues: see O'Brien (1999)

Classifying p-groups

- ▶ Go to p-Group Generation
- ▶ Go to Isomorphisms

GNU: group number

How many groups of order p^n exist?

The number gnu(n) of groups of order n (up to isomorphism) has been studied in detail⁵; we recall a few bounds:

GNII

- Pyber (1993): $gnu(n) \le n^{(2/27+o(1))\mu(n)^2}$, where $\mu(n)$ is largest exponent in the prime-power factorisation of n. Idea: count choices for Sylow subgroups, Fitting subgroup, quotients, extensions,...
- Higman (1960): $gnu(p^n) \ge p^{2/27(n^3-6n^2)}$ Idea: count groups of p-class 2
- Sims (1965), Newman & Seeley (2007): $\operatorname{gnu}(p^n) \leq p^{2n^3/27 + O(n^{5/3})}$ Idea: enumerate presentations which define groups of order p^n Trivial bound: $\operatorname{gnu}(p^n) \leq p^{(n^3-n)/6}$

In conclusion: $p^{(2/27)n^3 - O(n^2)} \le \text{gnu}(p^n) \le p^{(2/27)n^3 + O(n^{5/3})}$ as $n \to \infty$.

⁵Blackburn, Neuman, Venkataraman "Enumeration of finite groups", 2007

GNU: some 2-groups

Besche, Eick & O'Brien (2001) used 2-group generation:

order	#
1	1
2	1
4	2
8	5
16	14
32	51
64	267

order		#
	128	2,328
	256	56,092
	512	10,494,213
	1024	49,487,365,422
	2048	>1,774,274,116,992,170

Number of groups of order ≤ 2000 :

49,910,529,484

Number of groups of order 2^{10} :

49,487,365,422

Number of groups of order 2^{10} and class 2:

2: 48,803,495,722

Folklore Conjecture

Almost all groups are 2-groups of 2-class 2.

GNU: *p*-groups of small order

Number of groups of order p^k , for k = 1, 2, ..., 6:

$\# \setminus p$	2	3	≥ 5
p	1	1	1
p^2	2	2	2
p^3	5	5	5
p^4	14	15	15
p^5	51	67	\overline{X}
p^6	267	504	\overline{Y}

where

$$X = 2p + 61 + 2\gcd(p-1,3) + \gcd(p-1,4)$$

$$Y = 3p^2 + 39p + 344 + 24\gcd(p-1,3) + 11\gcd(p-1,4) + 2\gcd(p-1,5)$$

Order dividing p^4 : Cole, Glover, Hölder, Young (all \sim 1893)

Order p^5 : Bagnera, Miller, de Séguier, James (1898-1980)

Order p^6 : many faulty classifications; eventually Newman, O'Brien, Vaughan-Lee (2004)

GNU: *p*-groups of small order

Number of groups of order p^7 : O'Brien & Vaughan-Lee (2005) computed

where

$$Z = 3p^5 + 12p^4 + 44p^3 + 170p^2 + 707p + 2455$$
$$+ (4p^2 + 44p + 291)\gcd(p - 1, 3) + (p^2 + 19p + 135)\gcd(p - 1, 4)$$
$$+ (3p + 31)\gcd(p - 1, 5) + 4\gcd(p - 1, 7) + 5\gcd(p - 1, 8) + \gcd(p - 1, 9)$$

Approach for n = 5, 6, 7:

- For p < n use p-group generation.
- For $p \ge n$ use Baker-Campbell-Hausdorff formula and Lazard correspondence between category of nilpotent Lie rings of order p^n and category of p-groups of order p^n . Use analogue of p-group generation algorithm to classify the Lie rings.

GNU: PORC conjecture⁶

PORC Conjecture (Higman 1960)

For n fixed, $gnu(p^n)$ is Polynomial On Residue Classes.

That is, there exists $m \in \mathbb{N}$ and polynomials $f_0, f_1, \ldots, f_{m-1}$ such that

$$\operatorname{gnu}(p^n) = f_{p \bmod m}(n).$$

Higman (1960): # groups of order p^n and p-class 2 is PORC.

GNIII

Evseev (2008): # groups of order p^n whose Frattini subgroup is central is PORC.

Vaughan-Lee (2015): # groups of order p^8 and exponent p is PORC.

⁶For a survey see Vaughan-Lee "Graham Higman's PORC Conjecture" (2012)

Conclusion Lecture 3

Things we have discussed in the third lecture:

- (immediate) descendants
- p-group generation algorithm
- p-cover, nucleus, multiplicator, allowable subgroups, extended auts
- automorphism groups of immediate descendants
- the group number gnu for group order p^5, p^6, p^7
- PORC conjecture