
Method Selection
GAP tries to select the “best” method (of several) for a
particular operation (say NormalSubgroups) based on:

What kind of object (Category — group of permutations)
How is it stored (Representation — sparse polynomial)
What is known (Attributes — solvable of order 1234)

It basically tries to select the most specialized method that
still applies, assuming it is the best.
You can sometimes help GAP by explicitly setting
information, in particular Size for large groups.

Creating Groups
There are three ways to create groups:

Generators: Permutations, Matrices,
automorphisms, ... The group is the span of these
generators.

Presentations: Words in generators, subject to
relations (Finitely presented, special case:
PcGroups) Caveat: Different groups are unrelated.

Predefined Library of classes of groups GL, Sn,
small order, transitive of small degree, simple,...
Represented in appropriate ways.

Group Libraries, Constructors
Small Order (up to 2048, excluding 1024)

Transitive permutation groups, degree up to 30
Primitive permutation group, degree up to 2499

Perfect groups, Simple groups

Access as PropertyGroup(parameters). First three also
afford search AllPropertyGroups,
OnePropertyGroup with parameters
property,value,property,value.
Constructors (such as AbelianGroup, DihedralGroup)
often take category (e.g. IsPermGroup) as first argument.

Dependencies And Efficiency
Not all functionality is built in for every representation or
works equally well — in some case GAP will (or might)
calculate other representations and perform calculations there.

Permutation Finitely presented

Matrix

Polycyclic

Generic

M
or

e
Ef

fic
ie

nt Nice Monomorphism

Converting Representations
Given a group in one representation it is possible to
construct an isomorphic group in a different representation.
(They return a map to the new representation).
IsomorphismPermGroup
IsomorphismFpGroup,
IsomorphismFpGroupByGenerators
IsomorphismPcGroup
IsomorphismSpecialPcGroup
Also NaturalHomomorphismByNormalSubgroup
finds some way to represent factor group.

Homomorphisms
General Homomorphism operations:

Image(hom,elt) or Image(hom,subgroup)

ImagesRepresentative(hom,elt) (no membership test)

PreImages(hom,group) or
PreImagesRepresentative(hom,elt)

KernelOfMultiplicativeGeneralMapping(hom)

IsInjective, IsSurjective, etc.

Creating Homomorphisms

Besides the predefined homomorphisms to change
representations:

Homomorphisms to Sn induced by action on set.

Specify generators and their images:
GroupHomomorphismByImages(from,to,gens,genimgs) (will
test and return fail if not a homomorphism. NC version)

Underlying Machinery

To work in a group we need to perform arithmetic with its
elements and store them.

A permutation on n points takes roughly n·log2(n) bits.
n=105, 8GB memory: 40000 elements.

Thus store only some elements (represent a group by

generators plus supporting data structures).

This is what we will look at now.

2

Orbits And
Stabilizers

Basic Algorithmic Paradigms

Linear Algebra

Combinatorial Search

Rewriting (String replacement)

Group Actions

Group Actions
Assume that a group G acts on a set Ω, that is: g: ω↦ωg is a
bijection. Properties:

1. ω1=ω where 1 is the identity

2. ωgh=(ωg)h (Here and in GAP action always from the right —
matrices on row vectors)

e.g.Permutations on Points, Matrices on Vectors, Automorphisms

Orbit/Stabilizer theorem: Bijection between stabilizer cosets and
orbit elements:

StabG(ω)·g ↔ ωg

Computing With Actions

The natural algorithmic questions are to find:

ORBIT: ωG of ω∈Ω. (Length, Elements).

STAB: Stabilizer of ω∈Ω as subgroup (i.e. generators) of G.

TRANSPORTER: For ω,δ∈Ω find element g∈G such that
ωg = δ (or confirm that no such an element exists).

In all cases the group is given by generators.

Basic Orbit Algorithm
G acts on Ω. Orbit ωG of
ω∈Ω consists of all images ωg
for g∈G.

Each g is a product of
generators (and inverses if G is
infinite – assume included)

Take iteratively images of all
points obtained under all
generators.

Cost: |ωG|·#gens.

Input: G = ⟨g1,...,gm⟩, acting on
Ω. Seed ω ∈ Ω.
Output: The orbit ωG.
begin
∆ := [ω];
for δ ∈ ∆ do

for i ∈ {1,...,m} do
γ := δgi;
if γ∉ ∆ then

Append γ to ∆;
fi;

od;
od;
return ∆;

end.

Modification: Transporters
Keeping track, we also get a
Transversal of transporters

T [δ], such that ωT [δ]= δ.

These T[δ] are also are reps.
for (right) cosets of
StabG(ω) in G.

If ωg=δ and ωh= γ, then
δx= γ for x=g -1h, solving
the general transporter case.

begin
∆ := [ω];T:=[1];
for δ ∈ ∆ do

for i ∈ {1,...,m} do
γ := δgi;
if γ∉ ∆ then

Append γ to ∆;
Append T[δ]·gi to T;

fi;
od;

od;
return ∆;

end.

Schreier’s Lemma
If ωa=δ, δb=γ, ωc=γ, then a·b/c ∈ StabG(ω).

SCHREIER’s lemma shows the converse, that is if we form such
elements systematically, they generate S=StabG(ω):

Lemma: G= g finitely gen., S≤G with [G:S]<∞.
Suppose r={r1,…,rn} a set of representatives for cosets of S in G,
such that r1=1.
For h∈G write h:=ri for the chosen coset representative, that is
Sri =Sh (i.e. ωh=ωri) Let

U:={ri gj(ri gj)−1 | ri ∈ r, gj ∈ g}
Then S= U .
U is called the set of Schreier generators for S.

Modification: Stabilizer

The transversal gives coset
representatives, the image
of ω identifies cosets.

Thus we can form Schreier
generators.

At this point
S:=⟨S, T[δ]·gi /T[γ]⟩
just produces a generating set.

begin
∆ := [ω];T:=[1];S:=⟨1⟩;
for δ ∈ ∆ do

for i ∈ {1,...,m} do
γ := δgi;
if γ∉ ∆ then

Append γ to ∆;
Append T[δ]·gi to T;

else
S:=⟨S, T [δ]·gi /T [γ]⟩;

fi;
od;

od;
return ∆;

end.

Consequences
The orbit algorithm and its variants let us solve

ORBIT, STABILIZER and TRANSPORTER as long as the orbit
fits into memory.

By keeping track of the transversal, we write transversal
elements as product of generators: HOMOMORPHISM.

If we let G act on itself this allows for element lists,
centralizer, normalizer in small groups.

To deal with larger cases, we need to use more group
theory!

Group Actions in GAP
In GAP group actions are done by the operations:

Orbit, Orbits, OrbitsDomain (assumes closed)
Stabilizer, RepresentativeAction (Orbit/Stabilizer algorithm,
sometimes backtrack, → lecture 2).
Action (Permutation image of action) and ActionHomomorphism
(homomorphism to permutation image with image in
symmetric group). (Also: Permutation)

The arguments are in general are:

A group G. (Will act by its GeneratorsOfGroup.)
A domain Ω (may be left out for Orbit, Stabilizer, but may
improve performance).
Point ω, or list of point seeds for Orbits.

gap> g:=SymmetricGroup(4);
Sym([1 .. 4])
gap> Orbit(g,1);
[1, 4, 2, 3]
gap> o:=Orbit(g,[1,2],OnSets);
[[1, 2], [2, 3], [3, 4], [1,3], [1,4], [2,4]]
gap> s:=Stabilizer(g,[3,4],OnSets);
Group([(1,2), (3,4)])
gap> RepresentativeAction(g,[3,4],[1,4],OnSets);
(1,2,3)
gap> RepresentativeAction(g,[1,3],[1,5],OnSets);
fail
gap> hom:=ActionHomomorphism(g,o,OnSets);
<action homomorphism>
gap> Orbits(Group((1,3),(1,2,3,4)),
> Combinations([1..4],2),OnSets);
[[[1,2],[2,3],[3,4], [1,4]], [[1,3], [2,4]]]

gap> a:=Action(g,o,OnSets);
Group([(1,2,3,5)(4,6), (2,4)(5,6)])
gap> hom:=ActionHomomorphism(g,o,OnSets);
<action homomorphism>
gap> a:=Action(g,Elements(g));
Group([(2,22,7,3)(4,16,12,9)(5,21,20,13) […]
gap> Orbits(a,MovedPoints(a));
[[2,22,7,6,3,15],[4,16,12,9,20,13,5,21],[8,24,17], […]
 [10, 14, 18, 11, 23, 19]]
gap> a:=Action(g,Elements(g),OnRight);
Group([(1,10,17,19)(2,9,18,20)(3,12,14,21) […]
gap> RepresentativeAction(g,(1,2,3),(2,4,1));
(3,4)
gap> r:=List(ConjugacyClassesSubgroups(g),Representative);
[Group(()), Group([(1,3)(2,4)]), Group([(3,4)]), […]
gap> all:=Concatenation(List(r,x->Orbit(g,x)));
[Group(()), Group([(1,3)(2,4)]),Group([(1,4)(2,3)]), […]
gap> a:=Action(g,all);
Group([(3,4)(5,6,7,9)(8,10)(11,12,13,14)(16,17) […]

Action functions
The last argument is an action function actfun(ω,g):=ωg. This is a
2-argument GAP function that implements the actual action.
Some predefined actions are:
- OnPoints: action via ^. The default if not given.
- OnTuples, OnSets: Lists or sets (i.e. sorted lists) of points.
- OnSetsSets, OnSetsTuples, etc.
- OnRight: right multiplication *. (e.g. on cosets)
- OnLines: Projective on vectors: scaled first nonzero entry 1.
- OnSubspacesByCanonicalBasis: Subspaces, given as list of RREF

basis vectors.
- Permuted: Permuting list entries.
- Your own function (a GAP function act(pnt,grpelm)),

e.g. AsAutom:=function(sub,hom) return Image(hom,sub);end;

gap> g:=MathieuGroup(12);;S12:=SymmetricGroup(12);
gap> sets:=Combinations([1..12],6);;
gap> orb:=OrbitsDomain(g,sets,OnSets);;List(orb,Length);
[792, 132]
gap> Stabilizer(S12,orb[2],OnSetsSets);
Error, Action not well-defined. […]

gap> Stabilizer(S12,Set(orb[2]),OnSetsSets);
Group([(1,11,10,9,8,7,6,5,4,3,2),(1,2,12, […]])
gap> Size(last);
95040

Optional Arguments
G may act via a homomorphism φ. (Say, a matrix group acting on
enumerated vectors.) One can compute (in particular stabilizers) by
giving two further list arguments:
gens A list of group generators,
imgs Images of these generators under φ.
Action Homomorphisms by default have codomain Sn. For large n this is
inefficient. Append the string argument “surjective" to force the
codomain equal to the image.

Action on cosets: Internal use of PositionCanonical (position of a
standard equivalent object) allows:
ActionHomomorphism(G,RightTransversal(G,U),OnRight, ”surjective"); to
get the action on the cosets of U in G.

FactorCosetAction produces the same result.

Example: Rubik’s Cube

For simplicity: 2⨉2⨉2.

Label faces with numbers, 1..24.

Fix bottom right corner (16/19/24).

Generators:
top:=(1,2,4,3)(5,17,13,9)(6,18,14,10);;
left:=(1,9,21,20)(5,6,8,7)(3,11,23,18);;

front:=(3,13,22,8)(4,15,21,6)(9,10,12,11);;

21

43

109

1211

2221

2423

65

87

1413

1615

1817

2019

top

left right back

bottom

front

Point 9 22 8 4 5 21 7 15 17 20

Rep L2TL L2F2 L2T3L L2T3F L2TLT L2TL2 LT3L2 LT3F2 L2TLT2 L2TL3

Point 23 18 14 3 10 1 11 13 6 12 2

Rep e L LT L2 LT2 L2T L3 L2F LT3 LT2F L2T2

Start an Orbit calculation:

E.g. 11F=9, so L3F/(L2TL) lies in the stabilizer.

We find (subgroup order calculation) StabG(23)=⟨T,F,L-1TL⟩,

Similarly StabG(22,23)=⟨T, L-1TL, FTF-1⟩ and

StabG(21,22,23)=⟨T, LT-1L-1T-1F-1LF ⟩.

Orbit of 23

Point 9 22 8 4 5 21 7 15 17 20

Rep L2TL L2F2 L2T3L L2T3F L2TLT L2TL2 LT3L2 LT3F2 L2TLT2 L2TL3

Point 23 18 14 3 10 1 11 13 6 12 2

Rep e L LT L2 LT2 L2T L3 L2F LT3 LT2F L2T2

Start an Orbit calculation:

E.g. 11F=9, so L3F/(L2TL) lies in the stabilizer.

We find (subgroup order calculation) StabG(23)=⟨T,F,L-1TL⟩,

Similarly StabG(22,23)=⟨T, L-1TL, FTF-1⟩ and

StabG(21,22,23)=⟨T, LT-1L-1T-1F-1LF ⟩.

Orbit of 23

(1,17,5,14,18,2)(4,10,13)

Brute-Force Solution
Use Orbit algorithm on elements to enumerate the group.
Transversal words then give (a) shortest representation.

cube:=Group(top,left,front);
map:=EpimorphismFromFreeGroup(cube:names:=[“T","L","F"]);
Factorization(cube,(1,22,8)(2,17,14)(3,7,6,20,9,23)(5,12,11)
(15,21,18));
returns L-1T-1FL2F-1L-1F2L-1T.

Limited by storage (here: ~107 elements). Otherwise:

PreImagesRepresentative(map,(1,22,8)(2,…) returns

T -1F2L-1TL-1T -1FT -1F -1T -3L-1TLTL-1TF -1LFT -1LT -1

Variants: Stabilizer Order

If storage or time requirements are an issue the following
variants might help if |G| is known:

Known orbit length, partial stabilizer order can give early
termination. If we can calculate subgroup orders, can stop if the
largest proper divisor of [G:S] is smaller than the orbit length.

Use of Birthday paradox to estimate orbit length (coincidence
at √|Ω|) – indicate that full stabilizer is known.

More often than not I have ended up re-implementing an orbit
algorithm instead of using a generic default...

Remarks on Performance

Need to store whole orbit – memory limits scope.

Store transversal T in factored form to save memory –
Schreier vector. (Issue: balanced tree of low depth)

Cost of basic algorithm is dominated by test γ∈∆? to
check for new points – Data structures.

There is a huge number of Schreier generators: Index of
stabilizer ⨉ # group generators.

Usually many of them are redundant (or even trivial).

Dictionaries
To test γ∈∆? (and to determine T [γ]) one can

Search linearly though ∆. (Orbit length n requires O (n2)
element comparisons)

Keep a sorted copy of ∆. (needs < test,O (n log(n))

Determine index number for γ. (bit list, O (n))

Search in a hash table. (Hash key, almost O (n))

In GAP, the Dictionary data type provides a uniform interface.

All nontrivial approaches require dedicated handling for each
data type. (Many objects do not have unique representations!)

Dictionaries
To test γ∈∆? (and to determine T [γ]) one can

Search linearly though ∆. (Orbit length n requires O (n2)
element comparisons)

Keep a sorted copy of ∆. (needs < test,O (n log(n))

Determine index number for γ. (bit list, O (n))

Search in a hash table. (Hash key, almost O (n))

In GAP, the Dictionary data type provides a uniform interface.

All nontrivial approaches require dedicated handling for each
data type. (Many objects do not have unique representations!)

Operation:
SparseIntKey(dom,elm)
to get hash key function.

Reducing Schreier Generators
The number of Schreier generators cannot be reduced in
general, as in free groups (later) all are needed.

If membership test in partial stabilizer, test every new
generator. (Does not produce minimal sets!)
Randomization: Let S={s1,s2,…,sn} be a generating set. A

random subproduct of S is a product x =∏i si
ϵi with the ϵi

chosen independently by random from {0,1}.
Lemma: (BABAI, COOPERMAN, FINKELSTEIN, LUKS, SERESS, ’95) Let
U= S . Subgroup chains of maximum length m≤log2(|U|).
Then for every δ > 0 there exists a constant c , such that c·m
random subproducts generate U with probability 1−δ.

3

Permutation
Groups

Some Fundamental Tasks
Groups of permutations of degree up to a few 106, order easily
109 (so element orbit approach is infeasible), we want to solve:

ORDER: find the order of a group. (Implies element
membership test.)

HOMOMORPHISM: decompose element as generator
product. (Rewriting problem, Constructive Membership.)

We want to identify the groups composition STRUCTURE,
possibly identify composition factors.

Also subgroup centralizers, normalizers, if index is huge.

gap> cube := Group(
> (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19),
> (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)…,…);;
<permutation group with 6 generators>
gap> Size(cube);
43252003274489856000
gap> DisplayCompositionSeries(cube);
G (6 gens, size 43252003274489856000)
 | Z(2)
S (12 gens, size 21626001637244928000)
 | A(8) ~ A(3,2) = L(4,2) ~ D(3,2) = O+(6,2)
S (9 gens, size 1072718335180800)
 | Z(3)
 ⁞ 7 copies in total
S (21 gens, size 490497638400)
 | A(12)
S (11 gens, size 2048)
 | Z(2)
 ⁞ 11 copies in total
1 (0 gens, size 1)

Use Subgroups
The principal idea now is to use subgroups/cosets to factor
the problem: As |G|=|U|·[G:U] this logarithmizes the
problem.

Suitable subgroups: Point stabilizers U=StabG(ω), index at
most |Ω|.

We can iterate this process for U thus storage |Ω|log2(|G|).

Caveat: This works for any group and any action (matrix,
automorphism, etc.) but often the problem is that
[G:StabG(ω)] is not small.

Case in point: GLn(q), orbit length qn.

Use Subgroups
The principal idea now is to use subgroups/cosets to factor
the problem: As |G|=|U|·[G:U] this logarithmizes the
problem.

Suitable subgroups: Point stabilizers U=StabG(ω), index at
most |Ω|.

We can iterate this process for U thus storage |Ω|log2(|G|).

Caveat: This works for any group and any action (matrix,
automorphism, etc.) but often the problem is that
[G:StabG(ω)] is not small.

Case in point: GLn(q), orbit length qn.

Lemma: Any subgroup chain G>U1>U2>…>Uk= 1 has at
most log2(|G|) steps.
Proof: If U>V, U≠V, then [U:V]≧2, so |U|≧2|V|.
Thus |G|≧2k.

Stabilizer Chains
Let G ≤ SΩ. A list of points B=(β1,…,βm), βi ∈ Ω is called
a base, if the identity is the only element g∈G such that

βig=βi for all i.

The associated Stabilizer Chain is the sequence

G=G(0) > G(1) > … > G(m)= 1
defined by G(0):=G, G(i):=StabG(i−1)(βi). (Base property
guarantees that G(m)= 1 .)
Note that every g ∈ G is defined uniquely by base images
β1g,…,βmg. (If g,h have same images, then g/h fixes base.)

Base Length
The base length m often is short (m ≤ log2(|G|)). In
practice often m < 10.

We say that G is short-base if log|G|≤logc |Ω| for some c.
(Important to make polynomial in input size!)

Bounds on base length have been studied in theory. If
there is no short base the groups must be essentially
alternating An and relatives/products.

Same concept also possible for other kinds of groups, or
different actions, but then no good orbit length/base
length estimates.

Data structure
We will store for a stabilizer chain:

• The base points (β1,…,βm).

• Generators for all stabilizers G(i). (Union of all
generators is strong generating set, as it permits
reconstruction of the G(i).) Data structure thus is often
called Base and Strong Generating Set.

• The orbit of βi under G(i−1) and an associated
transversal for G(i) in G(i−1) (possibly as Schreier tree).

Storage cost thus is O(m ·|Ω|)

Data structure
We will store for a stabilizer chain:

• The base points (β1,…,βm).

• Generators for all stabilizers G(i). (Union of all
generators is strong generating set, as it permits
reconstruction of the G(i).) Data structure thus is often
called Base and Strong Generating Set.

• The orbit of βi under G(i−1) and an associated
transversal for G(i) in G(i−1) (possibly as Schreier tree).

Storage cost thus is O(m ·|Ω|)

Construction: Later

Consequences

• Group order: G = [G(0):G(1)]·…[G(m−1):G(m)] and
thus G=∏i |βiG(i−1)|.

• Membership test in G for x ∈ SΩ:

1. Is ω = β1x ∈ β1G? If not, terminate.

2. If so, find transversal element t ∈ G(0) such that
β1t=β1x.

3. Recursively: Is x/t (stabilizing β1) in G(1).
(Respectively: test x/y=() in last step.)

More Consequences
Bijection g ∈ G ⇔ base image (β1g,β2g,…).

• Enumerate G, equal distribution random elements.
• Write g∈G as product in transversal elts.

• Write g∈G as product in strong generators.

• If strong gens. are words in group gens.: Write g∈G
in generators of G. (Caveat: Long words)

• Chosen base: Find stabilizers, transporter elements,
for point tuples.

More Consequences
Bijection g ∈ G ⇔ base image (β1g,β2g,…).

• Enumerate G, equal distribution random elements.
• Write g∈G as product in transversal elts.

• Write g∈G as product in strong generators.

• If strong gens. are words in group gens.: Write g∈G
in generators of G. (Caveat: Long words)

• Chosen base: Find stabilizers, transporter elements,
for point tuples.

Computable Bijection G↔{1,2,…,|G|}

Generic Decomposition
remember:

cube:=Group(top,left,front);
map:=EpimorphismFromFreeGroup(cube:names:=[“T","L","F"]);
Factorization(cube,(1,22,8)(2,17,14)(3,7,6,20,9,23)(5,12,11)
(15,21,18));

returned L-1T-1FL2F-1L-1F2L-1T, but at high memory cost.

PreImagesRepresentative(map,(1,22,8)(2,17,14)(3,7,6,20,9,23)
(5,12,11)(15,21,18));

returns T-1F2L-1TL-1T-1FT-1F-1T-3L-1TLTL-1TF-1LFT-1LT-1

Faster, less memory, but longer word.

Heuristics on trying short Schreier generators gets 3x3x3 cube
word length to ~100 (naively: Millions)

