
Method Selection
GAP tries to select the “best” method (of several) for a 
particular operation (say NormalSubgroups) based on: 

What kind of object (Category — group of permutations) 
How is it stored (Representation — sparse polynomial) 
What is known (Attributes — solvable of order 1234) 

It basically tries to select the most specialized method that 
still applies, assuming it is the best. 
You can sometimes help GAP by explicitly setting 
information, in particular Size for large groups.



Creating Groups
There are three ways to create groups: 

Generators: Permutations, Matrices, 
automorphisms, ... The group is the span of these 
generators. 

Presentations: Words in generators, subject to 
relations (Finitely presented, special case: 
PcGroups) Caveat: Different groups are unrelated. 

Predefined Library of classes of groups GL, Sn, 
small order, transitive of small degree, simple,... 
Represented in appropriate ways.



Group Libraries, Constructors
Small Order  (up to 2048, excluding 1024) 

Transitive permutation groups, degree up to 30 
Primitive permutation group, degree up to 2499 

Perfect groups, Simple groups 

Access as PropertyGroup(parameters). First three also 
afford search AllPropertyGroups, 
OnePropertyGroup with parameters 
property,value,property,value. 
Constructors (such as AbelianGroup, DihedralGroup) 
often take category (e.g. IsPermGroup) as first argument.



Dependencies And Efficiency
Not all functionality is built in for every representation or 
works equally well — in some case GAP will (or might) 
calculate other representations and perform calculations there. 
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Converting Representations
Given a group in one representation it is possible to 
construct an isomorphic group in a different representation. 
(They return a map to the new representation). 
IsomorphismPermGroup 
IsomorphismFpGroup, 
IsomorphismFpGroupByGenerators 
IsomorphismPcGroup 
IsomorphismSpecialPcGroup 
Also NaturalHomomorphismByNormalSubgroup 
finds some way to represent factor group.



Homomorphisms
General Homomorphism operations: 

Image(hom,elt) or Image(hom,subgroup) 

ImagesRepresentative(hom,elt)  (no membership test) 

PreImages(hom,group) or 
PreImagesRepresentative(hom,elt) 

KernelOfMultiplicativeGeneralMapping(hom) 

IsInjective, IsSurjective, etc.



Creating Homomorphisms

Besides the predefined homomorphisms to change 
representations:  

Homomorphisms to Sn induced by action on set. 

Specify generators and their images: 
GroupHomomorphismByImages(from,to,gens,genimgs) (will 
test and return fail if not a homomorphism. NC version)



Underlying Machinery

To work in a group we need to perform arithmetic with its 
elements and store them. 

A permutation on n points takes roughly n·log2(n) bits. 
n=105, 8GB memory: 40000 elements. 

Thus store only some elements (represent a group by 

generators plus supporting data structures). 

This is what we will look at now.
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Orbits And 
Stabilizers



Basic Algorithmic Paradigms

Linear Algebra 

Combinatorial Search 

Rewriting (String replacement) 

Group Actions



Group Actions
Assume that a group G acts on a set Ω, that is: g: ω↦ωg is a 
bijection. Properties: 

1. ω1=ω where 1 is the identity 

2. ωgh=(ωg)h (Here and in GAP action always from the right — 
matrices on row vectors) 

e.g.Permutations on Points, Matrices on Vectors, Automorphisms 

Orbit/Stabilizer theorem: Bijection between stabilizer cosets and 
orbit elements: 

StabG(ω)·g  ↔ ωg



Computing With Actions

The natural algorithmic questions are to find: 

ORBIT: ωG of ω∈Ω. (Length, Elements). 

STAB: Stabilizer of ω∈Ω as subgroup (i.e. generators) of G. 

TRANSPORTER: For ω,δ∈Ω find element g∈G such that 
ωg = δ (or confirm that no such an element exists). 

In all cases the group is given by generators.



Basic Orbit Algorithm
G acts on Ω. Orbit ωG of 
ω∈Ω consists of all images ωg 
for g∈G. 

Each g is a product of 
generators (and inverses if G is 
infinite – assume included) 

Take iteratively images of all 
points obtained under all 
generators. 

Cost: |ωG|·#gens.

Input: G = ⟨g1,...,gm⟩, acting on 
Ω. Seed ω ∈ Ω. 
Output: The orbit ωG. 
begin 
∆ := [ω]; 
for δ ∈ ∆ do 

for i ∈ {1,...,m} do 
γ := δgi; 
if γ∉ ∆ then 

Append γ to ∆; 
fi; 

od; 
od; 
return ∆; 

end.



Modification: Transporters
Keeping track, we also get a 
Transversal of transporters  

T [δ], such that ωT [δ]= δ. 

These T[δ] are also are reps. 
for (right) cosets of 
StabG(ω) in G. 

If ωg=δ and ωh= γ, then 
δx= γ for x=g -1h, solving 
the general transporter case. 

begin 
∆ := [ω];T:=[1]; 
for δ ∈ ∆ do 

for i ∈ {1,...,m} do 
γ := δgi; 
if γ∉ ∆ then 

Append γ to ∆; 
Append T[δ]·gi to T; 

fi; 
od; 

od; 
return ∆; 

end.



Schreier’s Lemma
If ωa=δ, δb=γ, ωc=γ, then a·b/c ∈ StabG(ω). 

SCHREIER’s lemma shows the converse, that is if we form such 
elements systematically, they generate S=StabG(ω): 

Lemma:  G= g  finitely gen., S≤G with [G:S]<∞. 
Suppose r={r1,…,rn} a set of representatives for cosets of S in G, 
such that r1=1. 
For h∈G write h:=ri for the chosen coset representative, that is 
Sri =Sh (i.e. ωh=ωri ) Let  

U:={ri gj( ri gj)−1 | ri ∈ r, gj ∈ g} 
Then S= U .  
U is called the set of Schreier generators for S.



Modification: Stabilizer

The transversal gives coset 
representatives, the image 
of ω identifies cosets.  

Thus we can form Schreier 
generators. 

At this point 
S:=⟨S, T[δ]·gi /T[γ]⟩ 
just produces a generating set.

begin 
∆ := [ω];T:=[1];S:=⟨1⟩; 
for δ ∈ ∆ do 

for i ∈ {1,...,m} do 
γ := δgi; 
if γ∉ ∆ then 

Append γ to ∆; 
Append T[δ]·gi to T; 

else 
S:=⟨S, T [δ]·gi /T [γ]⟩; 

fi; 
od; 

od; 
return ∆; 

end.



Consequences
The orbit algorithm and its variants let us solve 

ORBIT, STABILIZER and TRANSPORTER as long as the orbit 
fits into memory. 

By keeping track of the transversal, we write transversal 
elements as product of generators: HOMOMORPHISM. 

If we let G act on itself this allows for element lists, 
centralizer, normalizer in small groups. 

To deal with larger cases, we need to use more group 
theory!



Group Actions in GAP
In GAP group actions are done by the operations: 

Orbit, Orbits, OrbitsDomain (assumes closed)  
Stabilizer, RepresentativeAction (Orbit/Stabilizer algorithm, 
sometimes backtrack, → lecture 2).  
Action (Permutation image of action) and ActionHomomorphism 
(homomorphism to permutation image with image in 
symmetric group). (Also: Permutation) 

The arguments are in general are: 

A group G. (Will act by its GeneratorsOfGroup.)  
A domain Ω (may be left out for Orbit, Stabilizer, but may 
improve performance).  
Point ω, or list of point seeds for Orbits.



gap> g:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> Orbit(g,1);
[ 1, 4, 2, 3 ]
gap> o:=Orbit(g,[1,2],OnSets);
[ [1, 2 ], [ 2, 3 ], [ 3, 4 ], [1,3], [1,4], [2,4] ]
gap> s:=Stabilizer(g,[3,4],OnSets); 
Group([ (1,2), (3,4) ])
gap> RepresentativeAction(g,[3,4],[1,4],OnSets);
(1,2,3)
gap> RepresentativeAction(g,[1,3],[1,5],OnSets);
fail
gap> hom:=ActionHomomorphism(g,o,OnSets);
<action homomorphism>
gap> Orbits(Group((1,3),(1,2,3,4)),
> Combinations([1..4],2),OnSets);
[ [ [1,2],[2,3],[3,4], [1,4] ], [ [1,3], [2,4] ] ]



gap> a:=Action(g,o,OnSets);
Group([ (1,2,3,5)(4,6), (2,4)(5,6) ])
gap> hom:=ActionHomomorphism(g,o,OnSets);
<action homomorphism>
gap> a:=Action(g,Elements(g));
Group([ (2,22,7,3)(4,16,12,9)(5,21,20,13) […]
gap> Orbits(a,MovedPoints(a));
[[2,22,7,6,3,15],[4,16,12,9,20,13,5,21],[8,24,17], […]
  [ 10, 14, 18, 11, 23, 19 ] ]
gap> a:=Action(g,Elements(g),OnRight);
Group([ (1,10,17,19)(2,9,18,20)(3,12,14,21) […]
gap> RepresentativeAction(g,(1,2,3),(2,4,1));
(3,4)
gap> r:=List(ConjugacyClassesSubgroups(g),Representative);
[ Group(()), Group([ (1,3)(2,4) ]), Group([ (3,4) ]), […]
gap> all:=Concatenation(List(r,x->Orbit(g,x)));
[ Group(()), Group([(1,3)(2,4)]),Group([(1,4)(2,3)]), […] 
gap> a:=Action(g,all);
Group([ (3,4)(5,6,7,9)(8,10)(11,12,13,14)(16,17) […]



Action functions
The last argument is an action function actfun(ω,g):=ωg. This is a 
2-argument GAP function that implements the actual action. 
Some predefined actions are: 
- OnPoints: action via ^. The default if not given.  
- OnTuples, OnSets: Lists or sets (i.e. sorted lists) of points.  
- OnSetsSets, OnSetsTuples, etc.  
- OnRight: right multiplication *. (e.g. on cosets)  
- OnLines: Projective on vectors: scaled first nonzero entry 1.  
- OnSubspacesByCanonicalBasis: Subspaces, given as list of RREF 

basis vectors.  
- Permuted: Permuting list entries.  
- Your own function (a GAP function act(pnt,grpelm)   ), 

e.g. AsAutom:=function(sub,hom) return Image(hom,sub);end;



gap> g:=MathieuGroup(12);;S12:=SymmetricGroup(12);
gap> sets:=Combinations([1..12],6);;
gap> orb:=OrbitsDomain(g,sets,OnSets);;List(orb,Length);
[ 792, 132 ]
gap> Stabilizer(S12,orb[2],OnSetsSets);
Error, Action not well-defined. […]

gap> Stabilizer(S12,Set(orb[2]),OnSetsSets);
Group([ (1,11,10,9,8,7,6,5,4,3,2),(1,2,12, […]])
gap> Size(last);
95040



Optional Arguments
G may act via a homomorphism φ. (Say, a matrix group acting on 
enumerated vectors.) One can compute (in particular stabilizers) by 
giving two further list arguments: 
gens A list of group generators, 
imgs Images of these generators under φ. 
Action Homomorphisms by default have codomain Sn. For large n this is 
inefficient. Append the string argument “surjective" to force the 
codomain equal to the image. 

Action on cosets: Internal use of PositionCanonical (position of a 
standard equivalent object) allows: 
ActionHomomorphism(G,RightTransversal(G,U),OnRight,   ”surjective"); to 
get the action on the cosets of U in G. 

FactorCosetAction produces the same result.



Example: Rubik’s Cube

For simplicity: 2⨉2⨉2. 

Label faces with numbers, 1..24.  

Fix bottom right corner (16/19/24). 

Generators: 
top:=(1,2,4,3)(5,17,13,9)(6,18,14,10);; 
left:=(1,9,21,20)(5,6,8,7)(3,11,23,18);; 

front:=(3,13,22,8)(4,15,21,6)(9,10,12,11);;
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Point 9 22 8 4 5 21 7 15 17 20

Rep L2TL L2F2 L2T3L L2T3F L2TLT L2TL2 LT3L2 LT3F2 L2TLT2 L2TL3

Point 23 18 14 3 10 1 11 13 6 12 2

Rep e L LT L2 LT2 L2T L3 L2F LT3 LT2F L2T2

Start an Orbit calculation: 

E.g. 11F=9, so L3F/(L2TL) lies in the stabilizer. 

We find (subgroup order calculation) StabG(23)=⟨T,F,L-1TL⟩, 

Similarly StabG(22,23)=⟨T, L-1TL, FTF-1⟩ and 

StabG(21,22,23)=⟨T, LT-1L-1T-1F-1LF ⟩.

Orbit of 23



Point 9 22 8 4 5 21 7 15 17 20

Rep L2TL L2F2 L2T3L L2T3F L2TLT L2TL2 LT3L2 LT3F2 L2TLT2 L2TL3

Point 23 18 14 3 10 1 11 13 6 12 2

Rep e L LT L2 LT2 L2T L3 L2F LT3 LT2F L2T2

Start an Orbit calculation: 

E.g. 11F=9, so L3F/(L2TL) lies in the stabilizer. 

We find (subgroup order calculation) StabG(23)=⟨T,F,L-1TL⟩, 

Similarly StabG(22,23)=⟨T, L-1TL, FTF-1⟩ and 

StabG(21,22,23)=⟨T, LT-1L-1T-1F-1LF ⟩.

Orbit of 23

(1,17,5,14,18,2)(4,10,13)



Brute-Force Solution
Use Orbit algorithm on elements to enumerate the group. 
Transversal words then give (a) shortest representation. 

cube:=Group(top,left,front); 
map:=EpimorphismFromFreeGroup(cube:names:=[“T","L","F"]); 
Factorization(cube,(1,22,8)(2,17,14)(3,7,6,20,9,23)(5,12,11)
(15,21,18)); 
returns L-1T-1FL2F-1L-1F2L-1T. 

Limited by storage (here: ~107 elements). Otherwise:  

PreImagesRepresentative(map,(1,22,8)(2,…) returns 

T -1F2L-1TL-1T -1FT -1F -1T -3L-1TLTL-1TF -1LFT -1LT -1



Variants: Stabilizer Order

If storage or time requirements are an issue the following 
variants might help if |G| is known: 

Known orbit length, partial stabilizer order can give early 
termination. If we can calculate subgroup orders, can stop if the 
largest proper divisor of [G:S] is smaller than the orbit length. 

Use of Birthday paradox to estimate orbit length (coincidence 
at √|Ω|) – indicate that full stabilizer is known. 

More often than not I have ended up re-implementing an orbit 
algorithm instead of using a generic default...



Remarks on Performance

Need to store whole orbit – memory limits scope. 

Store transversal T in factored form to save memory – 
Schreier vector. (Issue: balanced tree of low depth) 

Cost of basic algorithm is dominated by test γ∈∆? to 
check for new points – Data structures. 

There is a huge number of Schreier generators: Index of 
stabilizer ⨉ # group generators. 

Usually many of them are redundant (or even trivial).



Dictionaries
To test γ∈∆? (and to determine T [γ]) one can 

Search linearly though ∆. (Orbit length n requires O (n2) 
element comparisons) 

Keep a sorted copy of ∆. (needs < test,O (n log(n)) 

Determine index number for γ. (bit list, O (n) ) 

#  Search in a hash table. (Hash key, almost O (n) ) 

In GAP, the Dictionary data type provides a uniform interface. 

All nontrivial approaches require dedicated handling for each 
data type. (Many objects do not have unique representations!)



Dictionaries
To test γ∈∆? (and to determine T [γ]) one can 

Search linearly though ∆. (Orbit length n requires O (n2) 
element comparisons) 

Keep a sorted copy of ∆. (needs < test,O (n log(n)) 

Determine index number for γ. (bit list, O (n) ) 

#  Search in a hash table. (Hash key, almost O (n) ) 

In GAP, the Dictionary data type provides a uniform interface. 

All nontrivial approaches require dedicated handling for each 
data type. (Many objects do not have unique representations!)

Operation: 
SparseIntKey(dom,elm) 
to get hash key function.



Reducing Schreier Generators
The number of Schreier generators cannot be reduced in 
general, as in free groups (later) all are needed. 

If membership test in partial stabilizer, test every new 
generator. (Does not produce minimal sets!) 
Randomization: Let S={s1,s2,…,sn} be a generating set. A 

random subproduct  of S is a product x =∏i si
ϵi with the ϵi 

chosen independently by random from {0,1}. 
Lemma: (BABAI, COOPERMAN, FINKELSTEIN, LUKS, SERESS, ’95) Let 
U= S . Subgroup chains of maximum length m≤log2(|U|). 
Then for every δ > 0 there exists a constant c , such that c·m 
random subproducts generate U with probability 1−δ.
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Permutation 
Groups



Some Fundamental Tasks
Groups of permutations of degree up to a few 106, order easily 
109  (so element orbit approach is infeasible), we want to solve: 

ORDER: find the order of a group. (Implies element 
membership test.) 

HOMOMORPHISM: decompose element as generator 
product. (Rewriting problem, Constructive Membership.) 

We want to identify the groups composition STRUCTURE, 
possibly identify composition factors. 

Also subgroup centralizers, normalizers, if index is huge.



gap> cube := Group(
> (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19),
> (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)…,…);;
<permutation group with 6 generators>
gap> Size(cube);
43252003274489856000
gap> DisplayCompositionSeries(cube);
G (6 gens, size 43252003274489856000)
 | Z(2)
S (12 gens, size 21626001637244928000)
 | A(8) ~ A(3,2) = L(4,2) ~ D(3,2) = O+(6,2)
S (9 gens, size 1072718335180800)
 | Z(3)
  ⁞          7 copies in total     
S (21 gens, size 490497638400)
 | A(12)
S (11 gens, size 2048)
 | Z(2)
   ⁞          11 copies in total     
1 (0 gens, size 1)



Use Subgroups
The principal idea now is to use subgroups/cosets to factor 
the problem: As |G|=|U|·[G:U] this logarithmizes the 
problem. 

Suitable subgroups: Point stabilizers U=StabG(ω), index at 
most |Ω|. 

We can iterate this process for U thus storage |Ω|log2(|G|). 

Caveat: This works for any group and any action (matrix, 
automorphism, etc.) but often the problem is that 
[G:StabG(ω)] is not small. 

Case in point: GLn(q), orbit length qn.



Use Subgroups
The principal idea now is to use subgroups/cosets to factor 
the problem: As |G|=|U|·[G:U] this logarithmizes the 
problem. 

Suitable subgroups: Point stabilizers U=StabG(ω), index at 
most |Ω|. 

We can iterate this process for U thus storage |Ω|log2(|G|). 

Caveat: This works for any group and any action (matrix, 
automorphism, etc.) but often the problem is that 
[G:StabG(ω)] is not small. 

Case in point: GLn(q), orbit length qn.

Lemma: Any subgroup chain G>U1>U2>…>Uk= 1 has at 
most log2(|G|) steps. 
Proof: If U>V, U≠V, then [U:V]≧2, so |U|≧2|V|.  
Thus |G|≧2k.



Stabilizer Chains
Let G ≤ SΩ. A list of points B=(β1,…,βm), βi ∈ Ω is called 
a base, if the identity is the only element g∈G such that 

βig=βi for all i. 

The associated Stabilizer Chain is the sequence  

G=G(0) > G(1) > … > G(m)= 1  
defined by G(0):=G, G(i):=StabG(i−1)(βi). (Base property 
guarantees that G(m)= 1 .) 
Note that every g ∈ G is defined uniquely by base images 
β1g,…,βmg. (If g,h have same images, then g/h fixes base.)



Base Length
The base length m often is short (m ≤ log2(|G|)). In 
practice often m < 10. 

We say that G is short-base if log|G|≤logc |Ω| for some c. 
(Important to make polynomial in input size!) 

Bounds on base length have been studied in theory. If 
there is no short base the groups must be essentially 
alternating An and relatives/products. 

Same concept also possible for other kinds of groups, or  
different actions, but then no good orbit length/base 
length estimates.



Data structure
We will store for a stabilizer chain: 

• The base points (β1,…,βm).  

• Generators for all stabilizers G(i). (Union of all 
generators is strong generating set, as it permits 
reconstruction of the G(i).) Data structure thus is often 
called Base and Strong Generating Set. 

• The orbit of βi under G(i−1) and an associated 
transversal for G(i) in G(i−1) (possibly as Schreier tree). 

Storage cost thus is O(m ·|Ω|) 



Data structure
We will store for a stabilizer chain: 

• The base points (β1,…,βm).  

• Generators for all stabilizers G(i). (Union of all 
generators is strong generating set, as it permits 
reconstruction of the G(i).) Data structure thus is often 
called Base and Strong Generating Set. 

• The orbit of βi under G(i−1) and an associated 
transversal for G(i) in G(i−1) (possibly as Schreier tree). 

Storage cost thus is O(m ·|Ω|) 

Construction: Later



Consequences

• Group order:  G = [G(0):G(1)]·…[G(m−1):G(m)] and 
thus G=∏i |βiG(i−1)|.  

•  Membership test in G for x ∈ SΩ:  

1.  Is ω = β1x ∈ β1G? If not, terminate.  

2.  If so, find transversal element t ∈ G(0) such that 
β1t=β1x.  

3.  Recursively: Is x/t (stabilizing β1) in G(1).                                     
(Respectively: test x/y=( ) in last step.) 



More Consequences
Bijection g ∈ G ⇔ base image (β1g,β2g,…).  

• Enumerate G, equal distribution random elements.  
• Write g∈G as product in transversal elts.  

• Write g∈G as product in strong generators.  

• If strong gens. are words in group gens.: Write g∈G 
in generators of G. (Caveat: Long words)  

• Chosen base: Find stabilizers, transporter elements, 
for point tuples.



More Consequences
Bijection g ∈ G ⇔ base image (β1g,β2g,…).  

• Enumerate G, equal distribution random elements.  
• Write g∈G as product in transversal elts.  

• Write g∈G as product in strong generators.  

• If strong gens. are words in group gens.: Write g∈G 
in generators of G. (Caveat: Long words)  

• Chosen base: Find stabilizers, transporter elements, 
for point tuples.

Computable Bijection G↔{1,2,…,|G|}



Generic Decomposition
remember: 

cube:=Group(top,left,front); 
map:=EpimorphismFromFreeGroup(cube:names:=[“T","L","F"]); 
Factorization(cube,(1,22,8)(2,17,14)(3,7,6,20,9,23)(5,12,11)
(15,21,18)); 

returned L-1T-1FL2F-1L-1F2L-1T, but at high memory cost. 

PreImagesRepresentative(map,(1,22,8)(2,17,14)(3,7,6,20,9,23)
(5,12,11)(15,21,18)); 

returns T-1F2L-1TL-1T-1FT-1F-1T-3L-1TLTL-1TF-1LFT-1LT-1 

Faster, less memory, but longer word. 

Heuristics on trying short Schreier generators gets 3x3x3 cube 
word length to ~100 (naively: Millions)


