Computational Group Cohomology Bangalore, November 2016

Graham Ellis NUI Galway, Ireland

Slides available at http://hamilton.nuigalway.ie/Bangalore

Password: **Dublin**

Outline

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups
- Lecture 3: Homotopy 2-types
- Lecture 4: Steenrod algebra
- Lecture 5: Curvature and classifying spaces of groups

 $A_p(G)$ = poset of non-trivial elementary abelian p-subgroups in G. $\Delta A_p(G)$ = order (simplicial) complex of $A_p(G)$

 $\mathcal{A}_p(G) = \text{poset of non-trivial elementary abelian } p\text{-subgroups in } G.$ $\Delta \mathcal{A}_p(G) = \text{order (simplicial) complex of } \mathcal{A}_p(G)$

• Quillen (Adv. Math. 1978) $\Delta A_p(G)$ contractible if G has a non-trivial normal p-subgroup. Converse is conjectured.

 $\mathcal{A}_p(G) = \text{poset of non-trivial elementary abelian } p\text{-subgroups in } G.$ $\Delta \mathcal{A}_p(G) = \text{order (simplicial) complex of } \mathcal{A}_p(G)$

- 1 Quillen (Adv. Math. 1978) $\Delta A_p(G)$ contractible if G has a non-trivial normal p-subgroup. Converse is conjectured.
- **2** Fumagalli (J. Algebra 2004) $\Delta A_p(G)$ is a wedge of spheres for soluble G when $p \neq 2$

 $\mathcal{A}_p(G)=$ poset of non-trivial elementary abelian p-subgroups in G. $\Delta\mathcal{A}_p(G)=$ order (simplicial) complex of $\mathcal{A}_p(G)$

- Quillen (Adv. Math. 1978) $\Delta A_p(G)$ contractible if G has a non-trivial normal p-subgroup. Converse is conjectured.
- **2** Fumagalli (J. Algebra 2004) $\Delta A_p(G)$ is a wedge of spheres for soluble G when $p \neq 2$
- 3 Shareshian (J. Combin. Theory Ser. A 2004) $\Delta A_3(S_{13})$ is not a wedge of spheres.

 $\mathcal{A}_p(G)=$ poset of non-trivial elementary abelian p-subgroups in G. $\Delta\mathcal{A}_p(G)=$ order (simplicial) complex of $\mathcal{A}_p(G)$

- Quillen (Adv. Math. 1978) $\Delta A_p(G)$ contractible if G has a non-trivial normal p-subgroup. Converse is conjectured.
- **2** Fumagalli (J. Algebra 2004) $\Delta A_p(G)$ is a wedge of spheres for soluble G when $p \neq 2$
- 3 Shareshian (J. Combin. Theory Ser. A 2004) $\Delta A_3(S_{13})$ is not a wedge of spheres.
- 4 GAP

$$\Delta \mathcal{A}_3(S_{10}) \simeq (\vee_1^{25200} \, \mathbb{S}^1) \vee \textit{K}$$

with K a 2-dimensional CW space having: 53 1-cells, 872 2-cells, nonabelian $\pi_1 K$, $(\pi_1 K)_{ab} = \mathbb{Z}^{42}$.

$$H^n(G,\mathbb{Z})=H^n(Hom_{\mathbb{Z}G}(C_*(EG),\mathbb{Z}))$$

G groupEG contractible CW-space with free G-action

$$H^n(G,\mathbb{Z})=H^n(Hom_{\mathbb{Z}G}(C_*(EG),\mathbb{Z}))$$

G groupEG contractible CW-space with free G-action

Example

$$G = \langle a, b | bab = a \rangle$$
, $EG = \mathbb{R}^2$,

$$H^n(G,\mathbb{Z})=H^n(Hom_{\mathbb{Z}G}(C_*(EG),\mathbb{Z}))$$

G group EG contra

contractible CW-space with free G-action

Example

$$G = \langle a, b | bab = a \rangle$$
, $EG = \mathbb{R}^2$, $G \setminus EG =$ Klein bottle

Computer input: a(x, y) = (x + 1, -y), b(x, y) = (x, y + 1)

Computer input: a(x,y) = (x+1,-y), b(x,y) = (x,y+1) $D(G,v) = \{ w \in \mathbb{R}^2 : ||w-v|| < ||w-g(v)|| \text{ for all } g \in G \}$

Computer input:
$$a(x, y) = (x + 1, -y), b(x, y) = (x, y + 1)$$

 $D(G, v) = \{ w \in \mathbb{R}^2 : ||w - v|| < ||w - g(v)|| \text{ for all } g \in G \}$

Computer input:
$$a(x,y) = (x+1,-y), \ b(x,y) = (x,y+1)$$

 $D(G,v) = \{ w \in \mathbb{R}^2 : ||w-v|| < ||w-g(v)|| \text{ for all } g \in G \}$

Computer input: a(x,y) = (x+1,-y), b(x,y) = (x,y+1) $D(G,v) = \{ w \in \mathbb{R}^2 : ||w-v|| < ||w-g(v)|| \text{ for all } g \in G \}$

Computer input: a(x,y) = (x+1,-y), b(x,y) = (x,y+1) $D(G,v) = \{ w \in \mathbb{R}^2 : ||w-v|| < ||w-g(v)|| \text{ for all } g \in G \}$

Computer input:
$$a(x,y) = (x+1,-y), b(x,y) = (x,y+1)$$

 $D(G,v) = \{ w \in \mathbb{R}^2 : ||w-v|| < ||w-g(v)|| \text{ for all } g \in G \}$

Computer input:
$$a(x, y) = (x + 1, -y), b(x, y) = (x, y + 1)$$

 $D(G, v) = \{ w \in \mathbb{R}^2 : ||w - v|| < ||w - g(v)|| \text{ for all } g \in G \}$

•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•

Computer input:
$$a(x,y) = (x+1,-y), b(x,y) = (x,y+1)$$

 $D(G,v) = \{ w \in \mathbb{R}^2 : ||w-v|| < ||w-g(v)|| \text{ for all } g \in G \}$

$$C_*(EG):$$
 $C_2(EG) \longrightarrow C_1(EG) \longrightarrow C_0(EG)$

$$\mathbb{Z}G \longrightarrow \mathbb{Z}G \oplus \mathbb{Z}G \longrightarrow \mathbb{Z}G$$

Computer input:
$$a(x, y) = (x + 1, -y), b(x, y) = (x, y + 1)$$

$$D(G, v) = \{ w \in \mathbb{R}^2 : ||w - v|| < ||w - g(v)|| \text{ for all } g \in G \}$$

$$C_*(EG):$$
 $C_2(EG) \longrightarrow C_1(EG) \longrightarrow C_0(EG)$

$$\mathbb{Z}G \longrightarrow \mathbb{Z}G \oplus \mathbb{Z}G \longrightarrow \mathbb{Z}G$$

$$Hom_{\mathbb{Z},G}(C_*(EG),M): M \leftarrow \frac{d_2}{M} M \oplus M \leftarrow \frac{d_1}{M} M$$

Computer input:
$$a(x, y) = (x + 1, -y), b(x, y) = (x, y + 1)$$

$$D(G, v) = \{ w \in \mathbb{R}^2 : ||w - v|| < ||w - g(v)|| \text{ for all } g \in G \}$$

$$C_*(EG):$$
 $C_2(EG) \longrightarrow C_1(EG) \longrightarrow C_0(EG)$

$$\mathbb{Z}G \longrightarrow \mathbb{Z}G \oplus \mathbb{Z}G \longrightarrow \mathbb{Z}G$$

$$Hom_{\mathbb{Z}G}(C_*(EG), M)$$
: $M \leftarrow \frac{d_2}{M} M \oplus M \leftarrow \frac{d_1}{M} M$

$$H^n(G,M) = \ker d_{n+1}/\mathrm{im}d_n$$

Computer input: a(x, y) = (x + 1, -y), b(x, y) = (x, y + 1)

$$D(G, v) = \{ w \in \mathbb{R}^2 : ||w - v|| < ||w - g(v)|| \text{ for all } g \in G \}$$

$$C_*(EG): C_2(EG) \longrightarrow C_1(EG) \longrightarrow C_0(EG)$$

$$\mathbb{Z}G \longrightarrow \mathbb{Z}G \oplus \mathbb{Z}G \longrightarrow \mathbb{Z}G$$

$$Hom_{\mathbb{Z}G}(C_*(EG), M): M \leftarrow \stackrel{d_2}{\longrightarrow} M \oplus M \leftarrow \stackrel{d_1}{\longleftarrow} M$$

$$H^n(G,M)=\ker d_{n+1}/\mathrm{im}d_n$$
 $H^2(G,\mathbb{Z})=\mathbb{Z}_2$

Constructions such as homomorphisms $H^n(G, M) \longrightarrow H^n(G', M)$ need contractibility of EG

Constructions such as homomorphisms $H^n(G,M) \longrightarrow H^n(G',M)$ need contractibility of EG

Constructions such as homomorphisms $H^n(G, M) \longrightarrow H^n(G', M)$ need contractibility of EG

A GAP resolution $R_*^G = C_*(EG)$ stores

- Rank $\mathbb{Z}_G R_n$
- $\partial_n(e_i^n)$ for free generators $e_i^n \in R_n^G$
- $h_n(g.e_i^n)$ for free generators $e_i^n \in R_n^G$ and $g \in G$

Crystallographic groups

Above approach works (in principle) for discrete cocompact subgroups $G \leq Isom(\mathbb{R}^n)$

Crystallographic groups

Above approach works (in principle) for discrete cocompact subgroups $G \leq Isom(\mathbb{R}^n)$ that act fixed point freely.

Crystallographic groups

Above approach works (in principle) for discrete cocompact subgroups $G \leq Isom(\mathbb{R}^n)$ that act fixed point freely.

The resolution $R_*^{\mathcal{G}} = C_*(EG)$ depends on $v \in \mathbb{R}^n$.

The Bieberbach group **G=SpaceGroup(3,165)** has ten combinatorially distinct fundamental domains D(G, v).

The Bieberbach group **G=SpaceGroup(3,165)** has ten combinatorially distinct fundamental domains D(G, v).

These domains depend only on the x and y coordinates of $v \in \mathbb{R}^3$.

The Bieberbach group **G=SpaceGroup(3,165)** has ten combinatorially distinct fundamental domains D(G, v).

These domains depend only on the x and y coordinates of $v \in \mathbb{R}^3$.

Finite groups

A representation $\rho \colon G \longrightarrow GL_n(\mathbb{R})$ and $v \in \mathbb{R}^n$ yields

$$P = P(G, \alpha, v) = \text{Convex hull}\{\rho(g)v : g \in G\}$$

Finite groups

A representation $\rho \colon G \longrightarrow GL_n(\mathbb{R})$ and $v \in \mathbb{R}^n$ yields

$$P = P(G, \alpha, v) = \text{Convex hull}\{\rho(g)v : g \in G\}$$

Example

Natural $\rho \colon A_4 \longrightarrow \mathit{GL}_4(\mathbb{R})$ and v = (1,2,3,4)

$$P =$$

Finite groups

A representation $\rho \colon G \longrightarrow GL_n(\mathbb{R})$ and $v \in \mathbb{R}^n$ yields

$$P = P(G, \alpha, v) = \text{Convex hull}\{\rho(g)v : g \in G\}$$

Example

Natural $\rho \colon A_4 \longrightarrow \mathit{GL}_4(\mathbb{R})$ and v = (1,2,3,1)

Non-free $\mathbb{Z}G$ -resolution C_*P

 e_{λ}^{k} stabilized by some $G^{e_{\lambda}^{k}} < G$

Non-free $\mathbb{Z}G$ -resolution C_*P

 e_{λ}^{k} stabilized by some $G^{e_{\lambda}^{k}} < G$

$$C_k P = \bigoplus_{[e_{\lambda}^k]} \mathbb{Z} G \otimes_{\mathbb{Z} G^{e_{\lambda}^k}} \mathbb{Z}$$

Non-free $\mathbb{Z}G$ -resolution C_*P

 e_{λ}^{k} stabilized by some $G^{e_{\lambda}^{k}} < G$

$$C_k P = \bigoplus_{[e_{\lambda}^k]} \mathbb{Z}G \otimes_{\mathbb{Z}G^{e_{\lambda}^k}} \mathbb{Z}$$

$$C_{m-1}P \longrightarrow C_{m-2}P \longrightarrow \cdots \longrightarrow C_1P \longrightarrow C_0P$$

Non-free $\mathbb{Z}G$ -resolution C_*P

 e_{λ}^{k} stabilized by some $G^{e_{\lambda}^{k}} < G$

$$C_{k}P = \bigoplus_{[e_{\lambda}^{k}]} \mathbb{Z}G \otimes_{\mathbb{Z}G^{e_{\lambda}^{k}}} \mathbb{Z}$$

$$C_{m-1}P \longrightarrow C_{m-2}P \longrightarrow \cdots \longrightarrow C_{1}P \longrightarrow C_{0}P$$

$$C_{m-1}P \stackrel{\checkmark}{\longrightarrow} C_{m-2}P \longrightarrow \cdots \longrightarrow C_{1}P \longrightarrow C_{0}P$$

$$C_{m-1}P \stackrel{\checkmark}{\longrightarrow} C_{m-2}P \longrightarrow \cdots \longrightarrow C_{1}P \longrightarrow C_{0}P$$

$$C_{m-1}P \stackrel{\checkmark}{\longrightarrow} C_{m-2}P \longrightarrow \cdots \longrightarrow C_{1}P \longrightarrow C_{0}P$$

Example where C_{*}P is free

The group

$$G = \langle \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix} \text{ and } \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \rangle$$

acts on $v \in \mathbb{R}^4$

Example where C_{*}P is free

The group

$$G = \langle \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix} \text{ and } \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \rangle$$

acts on $v \in \mathbb{R}^4$ with orbit polytope P having graph

and C_nP a free $\mathbb{Z}G$ -module for $0 \le n \le 3$. We can thus compute $H^n(Q,A) = H^{n+4}(Q,A)$ for $n \ge 1$

Example where C_{*}P is free

The group

$$G = \langle \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix} \text{ and } \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \rangle$$

acts on $v \in \mathbb{R}^4$ with orbit polytope P having graph

and C_nP a free $\mathbb{Z}G$ -module for $0 \le n \le 3$. We can thus compute $H^n(Q,A) = H^{n+4}(Q,A)$ for $n \ge 1$ and

$$Q = \langle i, j, k : ij = k, jk = i, ki = j, ikj = 1 \rangle.$$

Let's compute X = EG for $G = S_3$

Let's compute X = EG for $G = S_3$

$$X^0$$
 = one free orbit of vertices, $x = (1, 2)$, $y = (1, 2, 3)$

$$y^2 \cdot e^0$$

•
$$xy \cdot e^0$$

$$x \cdot e^0$$

$X^1=X^0$ \cup enough free orbits of edges to ensure $\pi_0(X^1)=0$

Discrete vector field on X^1 ensures $\pi_0(X^1) = 0$

 $X^2=X^1\cup$ enough free orbits of 2-cells to ensure $\pi_1(X^2)=0$

 $X^2=X^1$ \cup enough free orbits of 2-cells to ensure $\pi_1(X^2)=0$

Discrete vector field on X^2

ensures that three orbits suffice.

 $X^3=X^2$ \cup enough free orbits of 3-cells to ensure $\pi_2(X^3)=0$

 $X^3 = X^2 \cup$ enough free orbits of 3-cells to ensure $\pi_2(X^3) = 0$ Discrete vector field on X^3 ensures that four orbits suffice.

 $X^3 = X^2 \cup$ enough free orbits of 3-cells to ensure $\pi_2(X^3) = 0$ Discrete vector field on X^3 ensures that four orbits suffice.

 C_*X is a free $\mathbb{Z}G$ -resolution of \mathbb{Z}

 $X^3 = X^2 \cup$ enough free orbits of 3-cells to ensure $\pi_2(X^3) = 0$ Discrete vector field on X^3 ensures that four orbits suffice.

 C_*X is a free $\mathbb{Z}G$ -resolution of \mathbb{Z}

gap> R:=ResolutionFiniteGroup(SymmetricGroup(6),6);;

 $X^3 = X^2 \cup$ enough free orbits of 3-cells to ensure $\pi_2(X^3) = 0$ Discrete vector field on X^3 ensures that four orbits suffice.

C_*X is a free $\mathbb{Z}G$ -resolution of \mathbb{Z}

```
gap> R:=ResolutionFiniteGroup(SymmetricGroup(6),6);;
gap> List([0..6],R!.dimension);
[ 1, 5, 15, 35, 70, 126, 196 ]
```

+ Cartan-Eilenberg double coset formula

For any finite group G there is a quotient

$$H_n(Syl_p(G),A) \rightarrow H_n(G,A)_p$$

with kernel determined by a formula involving representatives of double cosets of $Syl_p(G)$ in G.

+ Cartan-Eilenberg double coset formula

For any finite group G there is a quotient

$$H_n(Syl_p(G), A) \rightarrow H_n(G, A)_p$$

with kernel determined by a formula involving representatives of double cosets of $Syl_p(G)$ in G.

Example

$$H_n(M_{24}, \mathbb{Z}) = \begin{cases} 0, & n = 1, 2 \\ \mathbb{Z}_{12}, & n = 3 \\ 0, & n = 4 \\ (\mathbb{Z}_2)^a \oplus (\mathbb{Z}_4)^b \oplus \mathbb{Z}_7, & n = 5 \end{cases}$$

Let

$$C_*: \rightarrow C_n \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_0$$

be a $\mathbb{Z}G$ -resolution of \mathbb{Z} , where the $\mathbb{Z}G$ -modules C_n are **not** assumed to be free.

Let

$$C_*: \rightarrow C_n \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_0$$

be a $\mathbb{Z}G$ -resolution of \mathbb{Z} , where the $\mathbb{Z}G$ -modules C_n are **not** assumed to be free.

Suppose that, for each p, we have a **free** $\mathbb{Z}G$ -resolution of C_p

$$D_{p*}: \rightarrow D_{p,q} \rightarrow D_{p,q-1} \rightarrow \cdots \rightarrow D_{p,0} \rightarrow C_p$$

Let

$$C_*: \rightarrow C_n \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_0$$

be a $\mathbb{Z}G$ -resolution of \mathbb{Z} , where the $\mathbb{Z}G$ -modules C_n are **not** assumed to be free.

Suppose that, for each p, we have a **free** $\mathbb{Z}G$ -resolution of C_p

$$D_{p*}: \rightarrow D_{p,q} \rightarrow D_{p,q-1} \rightarrow \cdots \rightarrow D_{p,0} \rightarrow C_p$$

Lemma (C.T.C. Wall)

There exists a free $\mathbb{Z}G$ -resolution $R_* \to \mathbb{Z}$ with

$$R_n = \bigoplus_{p+q=n} D_{p,q}.$$

but for $d^1d^1 \neq 0$

but for $d^2d^2 \neq 0$ etc

Lemma (C.T.C. Wall)

There is a free $\mathbb{Z}G$ -resolution $R_* \to M$ with

$$R_n = \bigoplus_{p+q=n} D_{p,q}$$

and boundary homomorphism

$$\partial = d^0 + d^1 + d^2 + d^3 + \cdots$$

On any summand $D_{p,q}$ all but finitely many d^i are zero.

Lemma (C.T.C. Wall)

There is a free $\mathbb{Z}G$ -resolution $R_* \to M$ with

$$R_n = \bigoplus_{p+q=n} D_{p,q}$$

and boundary homomorphism

$$\partial = d^0 + d^1 + d^2 + d^3 + \cdots$$

On any summand $D_{p,q}$ all but finitely many d^i are zero.

The d^i can be constructed using the contracting homotopy on D_{p*} .

Lemma (C.T.C. Wall)

There is a free $\mathbb{Z}G$ -resolution $R_* \to M$ with

$$R_n = \bigoplus_{p+q=n} D_{p,q}$$

and boundary homomorphism

$$\partial = d^0 + d^1 + d^2 + d^3 + \cdots$$

On any summand $D_{p,q}$ all but finitely many d^i are zero.

The d^i can be constructed using the contracting homotopy on D_{p*} .

A contracting homotopy on R_* can be constructed using homotopies on D_{p*} and C_*

for each cell stabilizer group $G^{e_{\lambda}^{k}}$

for each cell stabilizer group $G^{e_{\lambda}^k}$, then we have free resolutions

$$\bigoplus (R_*^{G^{e^k_\lambda}} \otimes_{\mathbb{Z}G^{e^k_\lambda}} \mathbb{Z}G) \twoheadrightarrow \bigoplus_{[e^k_\lambda]} \mathbb{Z}G \otimes_{\mathbb{Z}G^{e^k_\lambda}} \mathbb{Z}$$

for each cell stabilizer group $G^{e_{\lambda}^k}$, then we have free resolutions

$$D_* = \bigoplus (R_*^{G^{e_\lambda^k}} \otimes_{\mathbb{Z}G^{e_\lambda^k}} \mathbb{Z}G) \twoheadrightarrow \bigoplus_{[e_\lambda^k]} \mathbb{Z}G \otimes_{\mathbb{Z}G^{e_\lambda^k}} \mathbb{Z} = C_k P$$

for each cell stabilizer group $G^{e_{\lambda}^k}$, then we have free resolutions

$$D_* = \bigoplus (R_*^{G^{e_\lambda^k}} \otimes_{\mathbb{Z}G^{e_\lambda^k}} \mathbb{Z}G) \twoheadrightarrow \bigoplus_{[e_\lambda^k]} \mathbb{Z}G \otimes_{\mathbb{Z}G^{e_\lambda^k}} \mathbb{Z} = C_k P$$

and hence a free $\mathbb{Z}G$ -resolution

$$R_*^G woheadrightarrow \mathbb{Z}$$
.

$$A\rightarrowtail G\twoheadrightarrow Q$$
 A abelian, $class(G)>class(Q)$

$$A \rightarrowtail G \twoheadrightarrow Q$$

A abelian, class(G) > class(Q)

Free $\mathbb{Z}Q$ -resolution R_*^Q is a non-free $\mathbb{Z}G$ -resolution $C_*=R_*^Q$

$$A \rightarrowtail G \twoheadrightarrow Q$$

A abelian, class(G) > class(Q)

Free $\mathbb{Z}Q$ -resolution R_*^Q is a non-free $\mathbb{Z}G$ -resolution $C_*=R_*^Q$

Each generator of C_* stabilizer by A < G.

$$A \rightarrowtail G \twoheadrightarrow Q$$

A abelian, class(G) > class(Q)

Free $\mathbb{Z}Q$ -resolution R_*^Q is a non-free $\mathbb{Z}G$ -resolution $C_*=R_*^Q$

Each generator of C_* stabilizer by A < G.

 R_*^G constructed from R_*^Q and R_*^A

\dots where, for abelian groups G

$$G = \langle x \mid \rangle,$$
 $EG = \widetilde{\mathbb{S}^1}, \quad R_*^G = C_*(EG)$

\dots where, for abelian groups G

$$G = \langle x \mid \rangle,$$
 $EG = \widetilde{\mathbb{S}^1}, \quad R_*^G = C_*(EG)$

$$G = \langle x \mid x^r = 1 \rangle, \quad EG = \widetilde{\mathbb{S}^{\infty}}, \quad R_*^G = C_*(EG)$$

... where, for abelian groups G

$$G = \langle x \mid \rangle,$$
 $EG = \widetilde{\mathbb{S}^1},$ $R_*^G = C_*(EG)$

$$G = \langle x \mid x^r = 1 \rangle, \quad EG = \widetilde{\mathbb{S}^{\infty}}, \quad R_*^G = C_*(EG)$$

$$G = G' \times G'',$$
 $R_*^G = C_*(EG' \times EG'')$

Free resolutions for

- crystallographic groups
- arbitrary Coxeter groups
- various arithmetic groups
- ..

$$H^6(M_{23},\mathbb{Z})=\mathbb{Z}_7$$

$$H^6(M_{23},\mathbb{Z})=\mathbb{Z}_7$$

$$H_4(F/[F,[F,[F,F]]],\mathbb{Z})=(\mathbb{Z}_2)^3\oplus\mathbb{Z}^{170},\quad \mathrm{for}\ F=F(x,y,z)$$

$$H^6(M_{23},\mathbb{Z})=\mathbb{Z}_7$$

$$H_4(F/[F,[F,[F,F]]],\mathbb{Z}) = (\mathbb{Z}_2)^3 \oplus \mathbb{Z}^{170}, \quad {
m for} \ F = F(x,y,z)$$

$$H^8(\mathit{SL}_2(\ \mathcal{O}(\mathbb{Q}(\sqrt{-43})\),\ \mathbb{Z})\cong \mathbb{Z}_2\oplus \mathbb{Z}_2\oplus \mathbb{Z}_{24}$$

$$H^6(M_{23},\mathbb{Z})=\mathbb{Z}_7$$

$$H_4(F/[F,[F,[F,F]]],\mathbb{Z})=(\mathbb{Z}_2)^3\oplus\mathbb{Z}^{170},\quad \mathrm{for}\ F=F(x,y,z)$$

$$H^8(\mathit{SL}_2(\ \mathcal{O}(\mathbb{Q}(\sqrt{-43})\),\ \mathbb{Z})\cong \mathbb{Z}_2\oplus \mathbb{Z}_2\oplus \mathbb{Z}_{24}$$

$$H_5(PSL_4(\mathbb{Z}),\mathbb{Z})=(Z_2)^{13}$$

$$H^6(M_{23},\mathbb{Z})=\mathbb{Z}_7$$

$$H_4(F/[F,[F,[F,F]]],\mathbb{Z}) = (\mathbb{Z}_2)^3 \oplus \mathbb{Z}^{170}, \text{ for } F = F(x,y,z)$$

$$H^8(\mathit{SL}_2(\ \mathcal{O}(\mathbb{Q}(\sqrt{-43})\),\ \mathbb{Z})\cong \mathbb{Z}_2\oplus \mathbb{Z}_2\oplus \mathbb{Z}_{24}$$

$$H_5(PSL_4(\mathbb{Z}),\mathbb{Z})=(Z_2)^{13}$$

Let's give some details on the last example.

A real symmetric $n \times n$ matrix Q is **positive definite** if $v^t Q v > 0$ for all $v \in \mathbb{R}^n \setminus \{0\}$.

$$Q = \left(\begin{array}{cc} 1 & 1/2 \\ 1/2 & 1 \end{array}\right)$$

$$Q[v] = v^t Q v$$

$$Q[x,y] = x^2 + xy + y^2$$

$$Q = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}$$

$$Q[v] = v^t Q v$$

$$Q[x, y] = x^2 + xy + y^2$$

$$\min(Q) = \min_{0 \neq v \in \mathbb{Z}^n} Q[v]$$

$$\min(Q) = 1$$

$$Q=\left(egin{array}{cc} 1 & 1/2 \ 1/2 & 1 \end{array}
ight)$$

$$Q[v] = vtQv Q[x, y] = x2 + xy + y2$$

$$\min(Q) = \min_{0 \neq v \in \mathbb{Z}^n} Q[v]$$
 $\min(Q) = 1$

$$\operatorname{Min}(Q) = \{ v \in \mathbb{Z}^n : Q[v] = \min(Q) \}$$
 six vectors

$$Q = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}$$

$$Q[v] = v^t Q v \qquad \qquad Q[x, y] = x^2 + xy + y^2$$

$$\min(Q) = \min_{0 \neq v \in \mathbb{Z}^n} Q[v] \qquad \qquad \min(Q) = 1$$

$$\min(Q) = \{ v \in \mathbb{Z}^n : Q[v] = \min(Q) \} \quad \text{six vectors}$$

$$\rho(v) = v^t v \in S_{>0}^n \qquad \qquad \rho(1, 1) : x^2 + 2xy + y^2$$

$$Q = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}$$

$$Q[v] = v^t Q v \qquad \qquad Q[x, y] = x^2 + xy + y^2$$

$$\min(Q) = \min_{0 \neq v \in \mathbb{Z}^n} Q[v] \qquad \qquad \min(Q) = 1$$

$$\min(Q) = \{ v \in \mathbb{Z}^n : Q[v] = \min(Q) \} \quad \text{six vectors}$$

$$\rho(v) = v^t v \in S_{>0}^n \qquad \qquad \rho(1, 1) : x^2 + 2xy + y^2$$

Q perfect if $P[v] = \min(Q)$ for all $v \in \min(Q)$ implies P = Q.

$$Q=\left(egin{array}{cc} 1 & 1/2 \ 1/2 & 1 \end{array}
ight)$$

$$Q[v] = vtQv Q[x,y] = x2 + xy + y2$$

$$\min(Q) = \min_{0 \neq v \in \mathbb{Z}^n} Q[v]$$
 $\min(Q) = 1$

$$\operatorname{Min}(Q) = \{ v \in \mathbb{Z}^n : Q[v] = \min(Q) \}$$
 six vectors

$$\rho(v) = v^t v \in S_{>0}^n \qquad \qquad \rho(1,1) : x^2 + 2xy + y^2$$

Q perfect if $P[v] = \min(Q)$ for all $v \in \min(Q)$ implies P = Q.

Q well-rounded if Span(Min(Q)) = n.

THEOREM (Voronoi) There are only finitely many perfect forms Q up to $SL_n(\mathbb{Z})$ -equivalence, and the cells

$$\operatorname{Dom}(Q) = \left\{ \sum_{v \in \operatorname{Min}(Q)} \lambda_v \rho(v) : \lambda_v \geq 0 \right\}$$

tessellate (the rational closure of) $S_{>0}^n$

THEOREM (Voronoi) There are only finitely many perfect forms Q up to $SL_n(\mathbb{Z})$ -equivalence, and the cells

$$\operatorname{Dom}(Q) = \left\{ \sum_{v \in \operatorname{Min}(Q)} \lambda_v \rho(v) : \lambda_v \geq 0 \right\}$$

tessellate (the rational closure of) $S_{>0}^n$, and restrict to $S_{=1}^n$.

THEOREM (Voronoi) There are only finitely many perfect forms Q up to $SL_n(\mathbb{Z})$ -equivalence, and the cells

$$\operatorname{Dom}(Q) = \left\{ \sum_{v \in \operatorname{Min}(Q)} \lambda_v \rho(v) : \lambda_v \geq 0 \right\}$$

tessellate (the rational closure of) $S_{>0}^n$, and restrict to $S_{=1}^n$.

THEOREM (Ash) There is an $SL_n(\mathbb{Z})$ -invariant $\binom{n}{2}$ -dimensional homotopy retract $S^n_{wr} \subset S^n_{=1}$

 $G=SL_n(\mathbb{Z})$ acts cellularly on the contractible CW-complex S^n_{wr} by the formula $(g,Q)\mapsto gQg^t$

 $G = SL_n(\mathbb{Z})$ acts cellularly on the contractible CW-complex S_{wr}^n by the formula $(g,Q) \mapsto gQg^t$, each cell e having **finite** stabilizer group G_e .

 $G = SL_n(\mathbb{Z})$ acts cellularly on the contractible CW-complex S_{wr}^n by the formula $(g,Q) \mapsto gQg^t$, each cell e having **finite** stabilizer group G_e .

```
gap> C:=ContractibleGcomplex("SL(3,Z)");;
gap> R:=FreeGResolution(C,4);;
gap> Homology(TensorWithIntegers(R),3);
[ 12, 12 ]
```

 $G = SL_n(\mathbb{Z})$ acts cellularly on the contractible CW-complex S_{wr}^n by the formula $(g,Q) \mapsto gQg^t$, each cell e having **finite** stabilizer group G_e .

```
gap> C:=ContractibleGcomplex("SL(3,Z)");;
gap> R:=FreeGResolution(C,4);;
gap> Homology(TensorWithIntegers(R),3);
[ 12, 12 ]
```

A discrete vector field on S_{wr}^n would yield a contracting homotopy on the resolution R.

$$S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \ \ T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right).$$

and acts on the cubic tree \mathcal{T} (every vertex of degree 3).

$$S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \ \ T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right).$$

and acts on the cubic tree \mathcal{T} (every vertex of degree 3). Note $S^4=(S\mathcal{T})^6=1$.

$$S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \ T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right).$$

and acts on the cubic tree \mathcal{T} (every vertex of degree 3). Note $S^4 = (ST)^6 = 1$. Vertices of \mathcal{T} are the left cosets of $\mathcal{U} = \langle ST \rangle$.

$$S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \ T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right).$$

and acts on the cubic tree \mathcal{T} (every vertex of degree 3). Note $S^4=(ST)^6=1$. Vertices of \mathcal{T} are the left cosets of $\mathcal{U}=\langle ST\rangle$. Two vertices $x\mathcal{U},\ y\mathcal{U}$ are connected by an edge iff $x^{-1}y\in\mathcal{U}S\mathcal{U}$.

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

and acts on the cubic tree \mathcal{T} (every vertex of degree 3). Note $S^4 = (ST)^6 = 1$. Vertices of \mathcal{T} are the left cosets of $\mathcal{U} = \langle ST \rangle$. Two vertices $x\mathcal{U}$, $y\mathcal{U}$ are connected by an edge iff $x^{-1}y \in \mathcal{U}S\mathcal{U}$. A discrete vector field on \mathcal{T} with one critical cell is an algorithm for expressing an element $A \in SL_2(\mathbb{Z})$ as a word in S and T.

$$A = \begin{pmatrix} 17 & 29 \\ 7 & 12 \end{pmatrix}$$
 in terms of $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

$$A = \left(\begin{array}{cc} 17 & 29 \\ 7 & 12 \end{array} \right) \ \text{ in terms of } \ S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \ \ T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$$

note that $17 = 2 \cdot 7 + 3$ and so

$$T^{-2}A = \left(\begin{array}{cc} 3 & 5 \\ 7 & 12 \end{array}\right)$$

$$A = \begin{pmatrix} 17 & 29 \\ 7 & 12 \end{pmatrix} \text{ in terms of } S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

note that $17 = 2 \cdot 7 + 3$ and so

$$T^{-2}A = \left(\begin{array}{cc} 3 & 5 \\ 7 & 12 \end{array}\right)$$

$$ST^{-2}A = \left(\begin{array}{cc} -7 & -12\\ 3 & 5 \end{array}\right)$$

$$A = \begin{pmatrix} 17 & 29 \\ 7 & 12 \end{pmatrix}$$
 in terms of $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

note that $17 = 2 \cdot 7 + 3$ and so

$$T^{-2}A = \left(\begin{array}{cc} 3 & 5 \\ 7 & 12 \end{array}\right)$$

$$ST^{-2}A = \left(\begin{array}{cc} -7 & -12\\ 3 & 5 \end{array}\right)$$

. . .

$$ST^2ST^2ST^3ST^{-2}A = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$$

$$A = \left(\begin{array}{cc} 17 & 29 \\ 7 & 12 \end{array} \right) \ \text{ in terms of } \ S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \ \ T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$$

note that $17 = 2 \cdot 7 + 3$ and so

$$T^{-2}A = \left(\begin{array}{cc} 3 & 5 \\ 7 & 12 \end{array}\right)$$

$$ST^{-2}A = \left(\begin{array}{cc} -7 & -12\\ 3 & 5 \end{array}\right)$$

. . .

$$ST^2ST^2ST^3ST^{-2}A = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$$

$$S^3T^2ST^2ST^3ST^{-2}A = I$$