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But first: answers to some questions on yesterday’s material

Ap(G) = poset of non-trivial elementary abelian p-subgroups in G.
AA,(G) = order (simplicial) complex of A,(G)

@ Quillen (Adv. Math. 1978)
AA,(G) contractible if G has a non-trivial normal
p-subgroup. Converse is conjectured.

@® Fumagalli (J. Algebra 2004)
AAL(G) is a wedge of spheres for soluble G when p # 2

© Shareshian ( J. Combin. Theory Ser. A 2004)
AA3(S13) is not a wedge of spheres.

0 GAP
AAs(S10) =~ (V35200 81) v K

with K a 2-dimensional CW space having: 53 1-cells, 872
2-cells, nonabelian m K, (1K), = Z*.
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H"(G,Z) = H"(Homgg(C.(EG), Z))

G  group
EG contractible CW-space with free G-action

Example

G = (a,blbab = a), EG=R? G\ EG = Klein bottle

b
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Computer input: a(x,y) = (x+1,—y), b(x,y)=(x,y +1)
D(G,v) ={w e R?: ||lw —v|| < ||w — g(v)|| for all g € G}

C.(EG): Co(EG) —— C1(EG) —— Go(EG)

726 ——72G6DLG ——1G

d> di

Homyc(C.(EG), M): M

Mo M M

H"(G, M) = ker dpy1/imd, H*(G,7) = 7o
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Constructions such as homomorphisms H"(G, M) — H"(G', M)
need contractibility of EG

A GAP resolution R¢ = C,(EG) stores
e RankyzgR,
o Oy(e") for free generators e € R®

o hn(g.el) for free generators e € R and g € G
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Crystallographic groups

Above approach works (in principle) for discrete cocompact
subgroups G < Isom(R") that act fixed point freely.

The resolution R® = C,(EG) depends on v € R”.
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Finite groups
A representation p: G — GL,(R) and v € R” yields

P = P(G,a,v) = Convex hull{p(g)v : g€ G}

Example

Natural p: Ay — GL4(R) and v = (1,2,3,1)
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Non-free ZG-resolution C,P

eﬁf stabilized by some GA <G

P =EPzé ®, o L

[eX]

Cn-1P——Cyn2P GP GP

R

Cm-1P == Cpp_oP GP GoP

i

Cm-1P = Cp_oP C.P CoP

i

Cm-1P == Cpp_oP GP GoP
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Example where C,P is free

c=i(o %) = (147)

acts on v € R* with orbit polytope P having graph

The group

and C,P a free ZG-module for 0 < n < 3. We can thus compute
H"(Q,A) = H"(Q, A) for n > 1 and

Q = (i,j,k: ij = k,jk = i, ki = j,ikj = 1).
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Let’'s compute X = EG for G = S3

X0 = one free orbit of vertices, x = (1,2), y = (1,2,3)

)2 e
°
o xy-é€°
0
x-e e o xy°- e
° °
0 0



X1 = X% U enough free orbits of edges to ensure mo(X!) =0




Discrete vector field on X! ensures mo(X!) =0

L=

N
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X3 = X2 U enough free orbits of 3-cells to ensure m(X3) =0

Discrete vector field on X3 ensures that four orbits suffice.

i

s I == e

C.X is a free ZG-resolution of Z
gap> R:=ResolutionFiniteGroup(SymmetricGroup(6),6);;

gap> List([0..6],R!.dimension);
[1, 5, 15, 35, 70, 126, 196 ]



+ Cartan-Eilenberg double coset formula
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+ Cartan-Eilenberg double coset formula
For any finite group G there is a quotient
H,,(Sy/p(G),A) - Hn(GvA)p

with kernel determined by a formula involving representatives of
double cosets of Syl,(G) in G.

Example
0, n=12
Z1o, n=
Hn(Moa, 7) = 0 N n==4

(Zz)a D (Z4)b ) Z7, n=
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A perturbation lemma

Let

CG: >C—Ci1— =G

be a ZG-resolution of Z, where the ZG-modules C,, are not
assumed to be free.

Suppose that, for each p, we have a free ZG-resolution of C,

Dot = Dpg— Dpg-1—= = Dpo— Cp

Lemma (C.T.C. Wall)
There exists a free ZG-resolution R, — 7Z with

Ro= P Dpg-

p+q=n
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Dox

Doo

D3; Do D15
D3 Doy D11
dO
dl
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G G G
0=d+d

but for dtd #0
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but for d?d® # 0 etc
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Lemma (C.T.C. Wall)
There is a free Z.G-resolution R, — M with

Rn = @ Dp.q

p+q=n
and boundary homomorphism
d=d"+d' +d+d*+-
On any summand Dy, 4 all but finitely many d’ are zero.

The d' can be constructed using the contracting homotopy on Dpy.

A contracting homotopy on R, can be constructed using
homotopies on D, and C,
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k
e
If we can compute a free resolution R

.. k .
for each cell stabilizer group G€, then we have free resolutions

k
- G2 -
D.= PR ®, & Z6) » (PLC®, & L=CcP

[eX]
and hence a free ZG-resolution

RS - 7.
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Free resolutions for nilpotent groups G

A—G—Q
A abelian, class(G) > class(Q)

Free ZQ-resolution RQ is a non-free ZG-resolution C, = RY

Each generator of C, stabilizer by A < G.

RS constructed from R and R
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. where, for abelian groups G

G=(x|), EG=S!, RS = C.(EG)

G=(x|x"=1), EG=S>, RS =C,(EG)

G=G xG" RS = C.(EG' x EG")



Free resolutions for

crystallographic groups
arbitrary Coxeter groups

various arithmetic groups
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Some computations using above techniques

H®(Mos, Z) = Z7

Hy(F/[F,[F,[F,Fll,Z) = (Z2)* ® Z'"°, for F = F(x,y,z)

HB(SLy( O(Q(V—43) ), Z) = Zy ® Ly ® Zng

Hs(PSL4(Z),7) = (2,)"3

Let's give some details on the last example.
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A real symmetric n x n matrix Q is positive definite if viQv >0
for all v € R™\ {0}. SZ, is the space (cone) of all such matrices.

o~ 7)

Qv] = v Qv Qlx,y] = x>+ xy + y°
min(Q) = ming, ez Q[v] min(Q) =1

Min(Q) = {v € Z" : Q[v] = min(Q)} six vectors

p(v) = vtv € 57, p(1,1) : x% 4 2xy + y?
Q perfect if P[v] = min(Q) for all v € Min(Q) implies P = Q.

Q well-rounded if Span( Min(Q) ) = n.
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THEOREM (Voronoi) There are only finitely many perfect forms
Q up to SL,(Z)-equivalence, and the cells

Dom(Q) = Z Avp(v) @ A, >0

veMin(Q)

n
>0

THEOREM (Ash) There is an SL,(Z)-invariant (5)-dimensional
homotopy retract S/, C S";

tessellate (the rational closure of) and restrict to S”;.
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G = SL,(Z) acts cellularly on the contractible CW-complex S, by
the formula (g, Q) — gQg®, each cell e having finite stabilizer
group Ge.

gap> C:=ContractibleGcomplex("SL(3,Z2)");;
gap> R:=FreeGResolution(C,4);;

gap> Homology(TensorWithIntegers(R),3);

[ 12, 12 ]

A discrete vector field on S/, would yield a contracting homotopy
on the resolution R.
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SLy(Z) is generated by

0 -1 11
=( o) =(1)
and acts on the cubic tree T (every vertex of degree 3). Note
S* = (ST)® = 1. Vertices of T are the left cosets of U = (ST).
Two vertices xU, yU are connected by an edge iff x 1y € USU.
A discrete vector field on 7 with one critical cell is an

algorithm for expressing an element A € SL»(Z) as a word in
Sand T.

b
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(K. Conrad) To express

17 29 . (0 -1 _
A—<7 12> 1ntermsof5—<1 0 >, T—<

note that 17 =2-7 + 3 and so

2, (35
TA_(? 12

o [ T -12
ST A_< -

ST2ST2ST3ST2A = ( _01 j >

S3T2ST?ST3ST A=



