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1. Classification of finite simple groups is a major achievement of
twentieth century Mathematics. This programme has two aspects:

(a) Discovery of new simple groups;

(b) Proof of the completeness of the list of known simple groups.

From now on, “simple group” means “finite nonabelian simple
group”.



A. Before fifties: Galois defined normal subgroups and simple
groups.

• Jordan-Holder theorem, highlighting the central place of
simple groups in the study of finite groups.

• In the first book on finite groups, Jordan listed the alternating
groups and some matrix groups over fields of prime order.

• E. Galois (˜1832) work on PSL(2, p) p a prime and
establishing the relation between solvability of a group and
solvability of polynomial equations with integer coefficients.

• E. Mathieu’s construction of the five highly transitive groups
(1860-61).
Sylow foundational theorems.

• L. E. Dickson’s realization of a few groups as stabilizers of
certain multilinear forms on finite dimensional vector spaces,



• J. Dieudonne’s work on matrix groups,

• Representation theory developed by Frobenius, Burnside,
Schur,...

• P. Hall’s work on solvable groups and p-groups;

• Wielandt’s work on permutation groups,

• Brauer’s initiating the theory of modular representations;

• Grun’s work on transfer,

• Hall-Highman theory,..



B. The three major breakthrough in Fifties:

(i) Richard Brauer’s suggestion (in ICM 1954, at Amsterdam) that
simple groups of even order could be classified by the centralizers
of their involutions;

(ii) Claude Chevalley’s ‘algebraization of simple Lie groups’ in his
famous work in 1955 (Tohaku J.) and subsequent variations of his
theme due to Steinberg, Hertzig and Ree.

This gave a uniform construction of the then known matrix simple
groups.

Also, it constructed a few, then unknown, simple groups.



More significantly, it provided a general frame work to understand
the structure and the representation theory of all these groups.

Using a very special double coset decomposition (called Bruhat
decomposition) they all admit, Tits constructed a uniform
geometric structure to study these groups. These structures are
called spherical buildings.

A spherical building is a pair (∆,A) consisting of a regular
simplicial complex ∆ of finite rank n together with a family A of
pairwise isomorphic thin regular subcomplxes of rank n satisfying
some properties.



(iii). John Thompson’s thesis (1959) solving the Frobenius
conjecture and thus starting local analysis in finite groups (that is,
the study of finite groups from the normalizers of p-subgroups).

A Frobenius group is a transitive permutation group such that no
nontrivial element of it fixes more than one symbol and there exist
nontrivial elements that fix a symbol.

(i) (Frobenius) Let G be a Frobenius group and H be
the stabilizer of a point. Then, the subset K of G
consisting of identity together with those elements
which do not fix any element is a normal subgroup of
G of order [G : H]. K is called the Frobenius group
and H is called the Frobenius Kernel.

(ii) (Thompson,1959) The Frobenius kernel is nilpotent.



C. Sporadic groups: An important component of the classification
programme was the discovery and the construction of finite
(sporadic) simple groups.The most enigmatic of them all is the
Monster.

These groups were discovered in a variety of ways:

Some as sections (that is, factor groups of subgroups) of groups of
symmetries of some very special mathematical structures:

∗partitions of Fnq by spheres ( linear perfect Hamming codes);

∗an exceptional lattice in R24 (the Leech lattice);

∗Strongly regular graphs;



Some of them owe their existence to some very exceptional
mathematical situations:

∗ exceptional nonsplit extensions;

∗ direct sum decompositions of the Lie algebra of type E8

over complex numbers;

∗ groups generated by a conjugacy class of involutions with very few

possibilities for the orders of the product of any two of them;

∗ exceptions to the general pattern of groups with a given

class of involution centralizer.



In sixties and early seventies, simple groups satisfying some
additional conditions ( for example, groups with bounds on lengths
of flags of subgroups, groups with restrictions on the number of
prime divisors, special choices for possible centralizers of
involutions of finite simple groups, etc.) and some rather special
configurations (lattices; geometric/combinatorial configurations;
etc.) were examined in search of new simple groups.

Even as late as mid seventies, prominent players in classification
(Brauer 1979, Conway, for example) were not sure if- and some
even were hoping against - the number of the sporadic simple
groups is finite.



Extra-special 2- groups play a significant role in simple groups.

“Failure of arguments in the presence of extra-special 2- groups
give rise to sporadic simple groups” -John G.Thompson (in essays
for Phillip Hall)

Extra special 2-groups are finite anologues of Heisenberg groups.

A majority of sporadic simple groups have large extra-special
groups. Not all though: M (22) and M (23) , for example, don’t.

Definition

An extraspecial 2-subgroup Q of G is said to be large in G if

CG (Q) = Z (Q) =: Z ; Q C CG (Z ) ; and

Q � NG (K ) for each 1 6= K < G and |K | is odd.



In his recent account of the theory of sporadic simple groups,
Aschbaher characterizes many sporadic simple groups G by the
following property:

Let L be a group and n be a positive integer.

Hypothesis H (n, L): G is a finite group containing an involution
z such that

(*) F ∗ (CG (z)) = Q ' 21+2n,

(**) CG (z) /Q ' L; and

(***) z is not weakly closed in Q with respect to G .



Here,

(i) F ∗ (G ) = F (G ) E (G ), called the generalized Fitting
subgroup of G , where F (G ) is the Fitting subgroup
of G and E (G ) is the layer of G . F (G ) and E (G )
are characteristic subgroups of G , maximal subject to
being nilpotent and semisimple, respectively.

A group X is said to be semi-simple if it is a product
of quasi-simple groups {Xi} with [Xi ,Xj ] = 1 for all
i 6= j . A group is quasi simple if X = [X ,X ] and
X/Z (X ) is simple.

(ii) If W < H < G , then W is said to be weakly closed
in H relative to G if W is the only G -conjugate of it
contained in H.



Following groups are characterized as simple groups satisfying the
hypothesis H (n, L):

[M24,H (3, L3 (2))]

[J2,H (2,A5)]

[Suz ,H (4,Sp6 (2))]

[J4,H (6,Aut (Z3 ·M22))][
Co1;H

(
4,Ω+

8 (2)
)]

[F3 = Th;H (4,A9)]

[F5 = Harada;H(4,A52Z2]

[F2 = BM,H (11,Co2)]

[F1 = M,H (12,Co1)]



Unlike the unifying notion of Bruhat decomposition for the groups
previously mentioned, a general unifying theme for all finite
nonabelian simple groups is not yet known. As Ronald Solomon
succinctly puts:

‘A still elusive will-O-the wisp is an elegant set of axioms, in the
spirit of Tits axioms for a building, defining a class of geometries
for all finite simple groups and perhaps more, but not too much
more!

Some recent expository articles:

1. Michael Aschbacher, Notices of AMS 51 (2), (2004) 736-740.
2. Ron Solomon, Notices of AMS 42 (2), (1995) 231-239.
3. Terry Gannon, Moonshine beyond Monster, CUP.
4. J. McKay, ed. Finite groups coming of age, AMS contemporary
Mathematics V.45 (1982).
5. Ronald Solomon, BAMS, V. 38 (2), 315-352.



Classification of finite simple groups

Theorem

Any finite simple group is isomorphic to one of the following:

(i) A cyclic group of prime order

(ii) An alternating group An (n ≥ 5)

(iii) A member of one of the 16 infinite families of groups
of Lie type

(iv) 26 sporadic simple groups



Remark

(a) The definition of each of these groups makes it not a very
simple statement.

(b) Every simple group contains an involution. Involutions play a
very central role in the structure of simple groups.
Remarkably, all simple groups, except for members of one infinite
family of groups (the Suzuki groups), contain elements of order 3.
Do they also play any major role?

(c) Most simple groups are of Lie type. They all admit uniform
construction, subgroup structure, geometric structures they are
symmetry groups of, representation theory. Also, they are
particular cases of a much larger class of (reductive algebraic and
Kac-Moody) groups, sharing all the above features.

In all groups of Lie type, the role of Coxeter groups is central.



(f)The dihedral groups and more generally the reflection groups,
extra special groups and the algebra of octonions play major role in
these groups.

(g) Most finite groups are nilpotent groups, but they exist in huge
numbers.

Is there a theory of groups with a given set of simple groups as
composite factors in analogy with the theory of solvable groups?



Consequences

Several basic questions in group theory are solved using
classification. At least, the first two below are proved by
case-by-case verification.

Some examples:

1. (Schrier’s conjecture) The outer automorphism group
of a finite simple group is solvable.

2. (Frobenius conjecture) Let G be a finite group and n
be a divisor of |G |. If G has exactly n solutions for
the equation xn = 1, then these solutions form a
subgroup of G .

3. Classification of t-transitive groups, t ≥ 2.

4. Classification of certain classes of permutation
polynomials.



Several questions are reduced to questions about simple groups
(for example the O’Nan-Scott theorem about the maximal
subgroups of symmetric groups and Aschbachers theorem about
the maximal subgroups of the classical groups). However, no such
reduction seems to be known about the question of realizing a
finite group as the Galois group of an extension field of Q.



(A) Finite simple groups of Lie type (Chevalley,
Steinberg, Hertzig, Ree,Tits)

With an indecomposable root system

Σ ∈ {An,Bn,Cn,Dn,F4,G2,E6,E7,E8}

in Rn and a field k, Chevalley associated a group GΣ (k) and all its
central nonsplit extensions (using an integral Lie basis for the
simple Lie algebra of type Σ over C), now called a Chevalley
group. The nonabelian sections of these groups when k is a finite
field are finite. Except those of order less than 60, they are all
simple. Explicitly, they are



(i) The classical groups (q, a prime power) :

An (q) ' Ln+1 (q) for n ≥ 1 except L2 (2) and L2 (3)

(general linear group)

Cn (q) ' PSp2n (q) for n ≥ 2 except PSp4 (2) (Symplectic group)

Bn (q) ' PΩ2n+1 (q) for n ≥ 3, q odd (orthogonal group)

Dn (q) ' PΩ+
2n (q) for n ≥ 4 (orthogonal group)

2Dn (q) ' PΩ−2n (q) for n ≥ 4 (orthogonal group)
2An (q) ' PSUn+1 (q) for n ≥ 2 except PSU3 (2) (unitary group)



(ii) The exceptional groups

G2 (q) , q ≥ 3; F4 (q) ; Ei (q) i ∈ {6, 7, 8}

(iii) The twisted groups: These are the fixed point subgroups of
some specific outer automorphism of order 2 (of order 3 in the
case of D4) outer automorphisms of some of the groups

G ∈ {An(q),B2

(
22n+1

)
,C2

(
22n+1

)
,D4(q),F4,G2

(
32n+1

)
,E6 (q)}

are also simple. These are

2B2

(
22n+1

)
' 2C2

(
22n+1

)
, The Suzuki groups (n ≥ 2)

2G2

(
32n+1

)
, Ree groups (n ≥ 1)

2F4

(
22n+1

)
, Ree groups

3D4 (q) The Steinberg’s triality groups
2E6 (q)
2F4 (2)′ The Tits group



The groups listed in (i),(ii),(iii) are collectively called Finite groups
of Lie type.

Except for some groups of “small” orders, they are all simple.

The isomorphisms among the above are:

L2 (4) ' L2 (5) ' A5; L2 (7) ' L3 (2) ;

L2 (q) ' A6; L4 (2) ' A8; U4 (2) ' PSp4 (3)



These isomorphisms correspond to different geometric realizations
of these groups.

• Steinberg (1968) gave a uniform construction and
characterization of all finite groups of Lie type as groups of
fixed points of endomorphisms of a linear Algebraic group over
the algebraic closure of a finite field.
The following embeddings hold:

• G2 (q) < F4 (q) < E6 (q) < E7 (q) < E8 (q).

The algebra of Octonions play a central role in the
construction of (at least) the following groups: G2 (q) ,
F4 (q) , E6 (q)



Geometrically, groups of Lie type are realized as nonabelian
sections of the automorphism groups of the following
geometries:

• Finite Desarguesian projective spaces of rank at least two:
the general linear group Ln+1 (q) , n ≥ 1.

• Finite classical polar spaces of rank at least two (due to
Fredenthal,Tits, Buekenhout-Shult): the symplectic, unitary
and orthgonal groups)

• Thick generalized n-gons (Tits), n = 6, 8: G2 (q) and 3D4 (q)
for n = 6; and 2F4

(
22n+1

)
with n = 8

• Finite metasymplectic spaces (Tits): F4 (q) and 2E6 (q)

• Spherical buildings (Tits) for all groups of Lie type

• A (specific) inversive plane of order q, q = 22n+1; that is, a
3−

(
q2 + 1, q + 1, 1

)
design: the Suzuki group 2B2

(
22n+1

)
• A (specific) unital of order q, q = 32n+1; that is, a

2−
(
q3 + 1, q + 1, 1

)
design: the Ree group 2G2

(
32n+1

)



Classification of generalized polygons, the inversive planes and the
unitals are major problems in incidence geometry.

• The group G of isomorphisms of the poset P (V ) of all
nontrivial subspaces (that is, the projective space of dimension
n over Fq ) of a n + 1 dimensional vector space V over Fq;

• The subgroup of G consisting of all its elements commuting
with a given, order reversing, involutory bijection of P (V )

(Equivalent, the stabilizer in G of a nondegenerate symplectic,
unitary or quadratic form on V .

Also, from the order preserving bijections of the subposet of
P (V ) consisting of isotropic subspaces relative to the defining
nondegenerate symplectic, hermitian or quadratic form.



• Some of the groups are also realized as the stabilizer in G of a
system of certain multilinear forms on V :

G2 (q) : (V , f ,T ) with dim.V = 7, f is a specific n.d.

symmetric bilinear, T is Dicksons alternating trilinear form;

F4 (q) :

E6 (q) :
(
M3 (q)3 ,N

)
with N (A,B,C ) = det (A) + det (B)

+ det (C )− tr (ABC ) , a cubic form on M3 (q)3 ;

E7 (q) :

• G2 (q) is the automorphism group of the algebra of octonions
over Fq; it is also a section of the automorphism group of the
generalized hexagon H(q).

F4 (q) is the automorphism group of the 27- dimensional
exceptional Jordan algebra over Fq;

E6 (q) is a section of the automorphism group of the octonion
projective plane.



Special features of groups of Lie type

• Most finite simple groups are of Lie type.

• They all admit (B,N)− structure, i.e., each such group G
contains subgroups B and N such that:

(i) G = < B,N >;

(ii) B ∩ N = T C N and W = N/T is a Coxeter group with
s ′1, · · · , s ′n as a basic set of generating involutions of W ;

(iii) if si , i = 1, · · · , n, is a set of elements of N such that
their images s

′
i in W are as in (ii), then

(BsiB)(BwB) ⊆ BwB ∪ BsiwB

for all si and w ∈W ;

(iv) siBsi 6= B for each si .



Remark

(a) (i) and (iii) imply that G = BNB.

(b) Invert (iii) and replace w−1 by w to get
(BwB)(BsiB) ⊆ BwB ∪ BwsiB for all si and w ∈W .

Remark

Let X = G/B = {gB : g ∈ G}. Then BwB is the union of the
elements of the B- orbit under the G- action on X by left
multiplication. Condition (iii) says that si leaves this orbit invariant
or takes it to the B- orbit containing siwB.

Groups admitting (B,N)− structure share several uniform features:
simplicity; poset of subgroups containing conjugates of B leading
to the construction of the corresponding building.



Bruhat decomposition

G = ∪w∈W BwB,

G = ∪w∈W BwBw ,

where Bw is the subgroup of B generated by the root subgroups
corresponding to the positive roots which are mapped to negative
roots by w . In fact, each element of G can be written uniquely as
bwb′ with b ∈ B,w ∈W and b′ ∈ Bw . In particular, if k is finite,
then

|GΣ(q)| = |B|
∑
w∈W

qn(w); |B| = q|Σ
+|, and

∑
w∈W

qn(w) =
n∏

i=1

(1− qdi )

(1− q)
.

Here n(w) is the number of positive roots which are mapped to
negative roots by w ; and d1, · · · , dn are the degrees of
homogeneous, algebraically independent, polynomials I1, · · · , In
over C in n variables which form a set of generators for the ring
I (V ) of invariants for the action of the Weyl group on the
symmetric algebra S(V ) via the faithful action of W on the real
vector space V . By a theorem of Chevalley, the action of W on
S(V )/I (V ) is the regular representation.



Some basic facts about d ′i s.
The numbers {di} are uniquely determined by W and satisfy:

(a) |W | =
∏n

i=1 di ;∑n
i=1(di − 1) = |Σ+|∏n
i=1(1− tdi )−1 = 1

|W |(
∑

w∈W det(1− wt)−1).

These numbers
for An are (2, 3, · · · , n + 1)
for Bnand Cn are (2, 4, · · · , 2n)
for Dn are (2, 4, · · · , 2n − 2, n)
for E6 are (2, 5, 6, 8, 9, 12)
for E7 are (2, 6, 8, 10, 12, 14, 18)
for E8 are (2, 8, 12, 14, 18, 20, 24, 30)
for F4 are (2, 6, 8, 12) and
for G2 are (2, 6)



Characteristic of a finite group:

• A prime number p is defined to be a characteristic of a finite
group G if CH(Op(H)) ⊆ Op(H) for each p-local subgroups
H of G .

• A group may have several characteristics. If G is of Lie type,
its characteristic is that of the field over which it is defined
and the parabolic subgroups of G are characterized as the
subgroups Q of G such that Q = NG (Op(Q)).
We define a subgroup Q of G to be p−parabolic if
Q = NG (Op(Q)).

• Some groups may have more than one characteristic
associated with it, for example 2A3(2) w U4(2, 22) w C2(3)
and some may not have a characteristic associated with it
[example, An].

• However, if a group admits a characteristic, then taking
B = NG (P) = PH and N = NG (H) , we can try to construct
a building-like geometry.



(B) The 26 sporadic simple groups

• The five Mathieu groups: M11, M12, M22, M23, M24;

• The seven groups from the Leech lattice: ·1, ·2, ·3 (the
Conway groups); McL; HS ; Suz ; J2

• The five Monster groups: M (Monster); BM (Baby Monster);
Th (Thompson group); HN (Harada-Norton); He (Held)

• Fischer’s three transposition groups: Fi22,Fi23,Fi ′24(Fischer
groups)

• The six groups not involved in M: J1, J3, J4, O ′N
(O′nan group), Ly , Ru



Methods of discovery:

I The Mathieu groups: They were discovered as automorphism
groups of Witt designs:

2− (9, 3, 1) → 3− (10, 4, 1)→ 4− (11, 5, 1)→ 5− (12, 6, 1) ;

2− (21, 5, 1) → 3− (22, 6, 1)→ 4− (23, 7, 1)→ 5− (24, , 8, 1).

Later, they were also realized as sections of automorphism groups
of linear codes:

• M11 from [11, 6, 5] Golay code over F3 and M12 from [12, 6, 5]
Golay code over F3

• M22 from [22, 12, 6] Golay code over F2; M23 from [23, 12, 7]
Golay code over F2;

M24 from [24, 12, 8] Golay code over F2.

Along with alternating and symmetric groups, these are the only
t-transitive groups, t ≥ 4.



Definition of the [24, 8, 5] Golay code over F2 and M24:

• Ω = F23 ∪ {∞}
• P (Ω) ' F24

2 , the power set of Ω considered an abelian group
with symmetric difference as group operation;

• π : P (Ω)× P (Ω)→ F2 taking (A,B) to |A ∩ B| (mod 2), a
symmetric nondengerate bilinear form.

• N = {xr : x ∈ F23}
Ω = {N − i : i ∈ F23} ⊂ P(Ω)

• G12 := 〈A : A ∈ O〉 ≤ P (Ω), the Golay code; a self-dual,
binary [24, 12, 8]-code with weight enumerator

01 8759 122576 8759 241

• M24 := Stab (O) in Sym (Ω), the Mathieu-group; it is a
simple group and acts 5-transitively on Ω.



II. The Conway groups: ·1, ·2, ·3; the Maclaughlin group and
the Highman-Sims group

Recall that a lattice of rank n is a free abelian groups of rank n
with an integer valued, positive definite, symmetric bilinear form.

By Neumier’s classification, among the 26 mutually nonequivalent
lattices of rank 24 , the Leech lattice Λ is the unique one (up to,
equivalence) such that

(a) ||x ||2 ∈ 2Z for each x ∈ Λ (i.e, even);

(b) det (〈xi , xj〉1≤i ,j≤24) = ±1 for any basis x1, · · · , xn of Λ ( i.e.,
unimodular ; equivalently, this means that Λ has only one
point per unit volume);

(c) ||x ||2 6= 2 for each x ∈ Λ and there are elements x ∈ Λ with
||x ||2 = 4 (i.e., without roots)

(d) there is no y ∈ Rn \ Λ with 〈x , y〉 ∈ Z for each x ∈ Λ.



Explicitly: Let
V = ⊕

x∈Ω
Rx

(∑
x∈Ω

λxx ,
∑
y∈Ω

µyy

)
=
∑
λxµx , a nondegenerate symmetric bilinear form on V

q (v) = (v , v) /16, a positive definite quadratic form on V

For A ⊆ Ω, define eA =
∑
a∈A
∈ V .

For x ∈ Ω, define λx = eΩ \ 4x .



Then, the Leech lattice Λ is can be taken as the set of all vectors
v =

∑
nxx ∈ V such that:

(i) nx ∈ Z for all x ∈ Ω.

(ii) m (v) = (
∑

nx) /4 ∈ Z.

(iii) nx ≡ m (v) mod 2 for all x ∈ Ω.

(iv) C (v) = {x ∈ Ω : nx 6= m (v) mod 4} ∈ G.



For n = 1, 2, 3, . . ., define

Λn = {v ∈ Λ : q (v) = n}

Then,
Λ = Λ1 ∪ Λ2 ∪ · · ·

and the isometry group ·0 of Λ is a nonsplit extension of the simple
group ·1 by its centre 〈−Id〉 of order 2.

The simple groups ·2, ·3, McL, HS appear as follows:

C2 × ·2 = Stab·0 (x) for x ∈ Λ2; C2 × ·3 = Stab·0 (x) for x ∈ Λ3

McL = Stab·0 (x) for x ∈ Λ5; HS = Stab·0 (x) for x ∈ Λ7



III. Centralizers of involutions (Brauer’s programme)

Some time in the late 40’s, Richard Brauer realized that some very
simple properties of involutions lead to deep insights into the
structure of finite groups.

The following simple, but very unique, property of a pair of
involutions of a group is very significant:

(a) (Brauer and Fowler,1953) If t and u are involutions in a
group G , then the subgroup H of G generated by them is a
dihedral group of order 2n, where n = |tu|.

• If n is odd, then t and u are conjugate in H.

• If n is even, then 〈tu〉 contains a unique involution.



This and a very simple counting argument leads to:
(b) (Thompson’s order formula) Let G be a finite group with at
least two conjugacy classes uG , vG of involutions. Let u1 = u,
u2 = v , u3, . . . , ut be representatives of distinct conjugacy classes
of involutions in G . For every pair (x , y) ∈ uG × vG , there is a
unique integer n (x , y) and a unique i ∈ {1, 2, . . . , t} such that

w = (xy)n(x ,y) ∈ uG
i

Define

R (u, v , ui ) =
{

(x , y) ∈ uG × vG : (xy)n(x ,y) ∈ uG
i

}
.

Then,

(i) R (u, v , ui ) ={
(x , y) ∈ [uG ∩ CG (u]× [vG ∩ CG (v))] : (xy)n(x ,y) = ui

}

(ii) |G | =
t∑

i=1
|R (u, v , ui ) | |CG (u)||CG (v)|

|CG (ui )| .



Thus, the order of G can be computed from the character table of
CG (ui ) and the fusion pattern of the conjugacy classes of their
involutions.

Proof.

|G |
|CG (u)|

· |G |
|CG (v)|

=
∣∣∣uG
∣∣∣ ∣∣∣vG

∣∣∣ =
t∑

i=1
|R (u, v , ui )|·

∣∣∣uG
i

∣∣∣ =
t∑

i=1
|R (u, v , ui )|

|G |
|CG (ui )|

.



The case when G has a single class of involutions is more involved:

(3) (Michler) Let G be a finite group with a unique conjugacy
class zG , z 6= 1, of involutions. Let H = CG (z). Let π be the
smallest set of primes p dividing |H| and is such that CG (g) is a
π-subgroup of G for each π-element 1 6= g ∈ G . Let

• r1, . . . , rs be a set of representatives of strongly real conjugacy
classes of π- elements of G ; and

• b1, . . . , bt be a set of representatives of the strongly real
conjugacy classes of π′-elements of G .



Then, the following holds:

(a) d (ri ) =
∣∣{(x , y) ∈ zG × zG : xy = ri

}∣∣ ≤ |CG (ri )| for
1 ≤ i ≤ s.

(b) d (bj) =
∣∣{(x , y) ∈ zG × zG : xy = bj

}∣∣ = |CG (bj)| for
1 ≤ j ≤ t.

(c) c = 1 +
s∑

i=1
d (ri )

|H|
|CG (ri )| is a positive integer and is uniquely

determined by H are the s extended centralizer C ∗G (ri ).

(d) |G | = C |H|+ t |H|2.



The following result is elementary and fundamental:

Theorem

(Brauer and Fowler, Annals 1953) If t is an involution of a
nonabelian simple group G and |CG (t) | = n, then G can be
embedded in An2−1. In particular, there are only a finite number of
finite simple groups with a given involution centralizer.



In view of this, Brauer initiated the programme to determine all
finite simple groups with a given centralizer of an involution. This
programme, along with the plethora of new ideas introduced in the
monumental works

• proving that a finite group admitting a fixed point free
automorphism of prime order is nilpotent (Thompson, Math.
Zeit. 1959);

• that each nonabelian finite simple group contains an
involution (W. Feit and J. Thompson, PJM1963); and

• the classification of nonabelian simple groups such that the
normalizer of each p-subgroup is solvable ( the so called
N-groups) (J. Thompson, I to VI, 1968-1974)

brought in a sea change in the approach to the study of simple
groups. The methods of local analysis introduced were central to
the whole classification programme.



While some of the earlier theorems (for example, Grun’s theorems)
gave conditions under which a group admits a nontrivial
homomorphism, some of the later theorems (for example,
Thompson’s factorization theorems, Glauberman’s Z ∗-theorem)
gave conditions for the existence of normal subgroups.

Theorem

(Thompson’s theorem on N-groups) Let G be a simple group in
which the normalizer of any solvable subgroup of order greater
than 1 is solvable. Then G is one of the following groups

(i) L2 (q) , q > 3
(ii) Sz

(
22m+1

)
,m ≥ 1

(iii) PSL3 (3)
(iv) M11

(v) A7

(vi) PSU3 (3)
(vii) 2F4 (2)′



An interesting consequence is the following characterizations of
solvable groups:

Theorem

(Thompson) The following conditions are equivalent for a group G.
(i) G is solvable.
(ii) Every pair of elements of G generate a solvable group.
(iii) If x , y , z are three nonidentity elements of G of pairwise
coprime order, then xyz 6= 1.
(iv) If x1, x2, . . . are nonidentity elements of G of coprime order,
then x1x2 . . . 6= 1.
(v) For any nonprincipal irreducible character χ of G , there exists a
prime p and a Sylow p-subgroup P of G such that the restriction
of χ to P does not contain the principal character of P as a
constituent.



Brauer’s programme turned out to be so successful that many new
sporadic simple groups were discovered in pursuit of this
programme and many sporadic simple groups were characterized by
their involution centralizers.

Many sporadic groups appeared as exceptions to general patterns.
Here is an example of an early result in this programme:



Theorem

(Brauer,1966), Let G be a finite group satisfying the following
properties:

(i) There exists an involution t such that CG (t) ' GL2 (q).

(ii) If s is an element of the centre of CG (t), s 6= 1, then
CG (t) = CG (s).

(iii) G = G ′.

If q ≡ −1 (mod 4), q 6= 1 (mod 3), then either G is isomorphic to
PSL3 (q) or q = 3 and G is isomorphic to M11.



Commenting on this insight that it is far from obvious, W. Feit
(ICM 74) mentions that this eluded even a mathematician of the
calibre of Burnside, particularly after he had proved the following
beautiful

Theorem

SL2 (2a), a > 1, are the only simple groups of even order in which
the order of each element is either 2 or odd.

(Burnside, Trans. of Cambr. Phil. Soc. 18 (1900), 269-276).
(Feit, BAMS 1 (1979),1-20).
The following groups were discovered as a part of this programme:

J1, J2, J3, J4,He, Ly ,M

and the following groups are uniquely determined by the centralizer
of involution:

J1,H5,Ha,Th,M22,M23,Co3, J4,Ru,McL,Suz ,ON,Fi22,Fi ′24.

Fi23 has 3 conjugacy classes of involutions, all of them are central.



Determination of all finite groups with a given centralizer of an
involution, particularly the classical groups, is still incomplete.

Suzuki’s (partial) list of satellites, 1969:
In the following, z is an involution in the centre of a Sylow
2-subgroup of the simple group G . A satellite is defined as a, not
necessarily simple, group having an isomorphic involution
centralizer.

G CG (z) Satellites of G

M11 2 · S4 L3 (3) (Brauer)

M24 21+6 : L3 (2) L5 (2), He (Held)

J2 21+4 : A5 J3 (Janko)

A6 D8 L2 (7) ' L3 (2) (Suzuki)

A8 23 : S4 A9 (Held)

A12 25 : S6 A13,Sp6 (2) (Yamaki)

A4k 22k−1 : S2k A4k+1, k = 4, 5, . . . (Kondo)



IV. Transposition groups:

In an attempt to characterize the symmetric groups, Bernd Fischer
studied finite groups generated by a conjugacy class of involutions.

Motivated by the fact that Sn is generated by a conjugacy class of
involutions (namely, transpositions) such that the product of any
two of them is 1, 2 or 3, Fischer started investigating groups
generated by a conjugacy class of involutions with restrictions on
the orders of the product of pairs of its elements.

Definition

A conjugacy class D of involutions of G is said to be a class of
p-transpositions, p an odd prime, if |xy | ∈ {1, 2, p} for all
x , y ∈ D. If G = 〈D〉, G is said to be a p-transposition group.



Example

The set of transpositions in Sn (w An−1). More generally, for any
finite irreducible root system with only one root length (i.e. those
of types An,Dn,En), the Weyl group W is a 3-transposition group
and the set D of all reflections is a class of 3-transpositions.

Fischer’s classification of 3-transposition groups led to three new
simple groups Fi22,Fi23,F

′i24.

Specifying the orders to be at most 4 (respectively, at most 6)
includes Baby Monster BM ( respectively, BM and the Monster
M).

These investigations by Fischer, and also later by Aschbacher and
Timmesfeld, lead them naturally to introduce geometric methods
in group theory.



The results listed below are due to Fischer and are all about a
group G generated by a conjugacy class D of involutions. They
clearly indicate the natural emergence of geometric ideas.

Theorem

(Fischer) If D is a class of p-transpositions such that:
(i) no three elements of D generate a 2-group;
(ii) CD (x) 6= x for each x ∈ D,
then, G = S4 or S5 and p = 3.

Theorem

Suppose that there is an odd prime p such that |xy | is a power of p
for each pair x , y of distinct elements of D. Then, G ′ is nilpotent.



Theorem

Suppose that distinct elements of D do not commute and

CG (x) = O2 (CG (x))× O (CG (x))

for all x ∈ D. Then, G is solvable.

Theorem

Let E be a set of pairwise commuting involutions of D of
maximum size n. Then:
(i) NG (E ) contains a Sylow 2-subgroup of G;
(ii) NG (E ) acts 2- transitively on E ;
(iii) NG (E ) /CG (E ) is isomorphic to one of:

Sn,An,GL (n, 2) , Lm (4) Sn,An,GL (n, 2) , Lm (4) with
m = [n/2] , S2n · GL (n, 2) ,M22,M23,M24.



Theorem

For x ∈ D, set Dx = CD (x) \ {x} and Fx = D \ (Dx ∪ {x}). Then:

(i) 〈Dx〉 acts transitively on Dx as well as on Fx .

(ii) G acts on D, by conjugation, as a rank 3 permutation group
with stabilizer 〈Dx〉 = CG (x) having CG (x)-orbits {x}, Ex and Fx .

(iii) If O (〈Dx〉) 
 Z (〈Dx〉), then G ' S5. If
O2 (〈Dx〉) 
 Z (〈Dx〉), then G ' Sp (n, 2) or Um (2). If 〈Dx〉 is
solvable, then

G ' S5,S6,U4 (2) orU3 (2) .



Theorem

( Main Theorem) Let G be generated by a conjugacy class D of
3-transpositions. Assume that Z (G ) = 〈1〉 and G ′ is simple.
Then, one of the following holds:

(i) G ' Sn and D is the set of transpositions of G .
(ii) G ' Sp2n (2) and D is the set of transvections.
(iii) G ' Un (2), the projective unitary group defined over a field of
order 4 and D is the set of transvections.
(iv) G ' POµ,π

n (3) is the subgroup of an n-dimensional orthogonal
group over a field of 3 elements generated by a conjugacy class D
of reflections.
(v) G is a (Fischer) simple group of type M (22) ,M (23) or
M (24), uniquely determined up to isomorphism and D is a
uniquely determined conjugacy class of involutions.



Definition of POµ,π
n (3): V = Vn (3), Q, a nondegenerate

quadratic form on V . For v ∈ V with Q (v) 6= 0, define the
reflection t (v) : v → V by xt (v) = x − (x , v) v/Q (v). For
π = ±1, let D = D (π) be the set of reflections t (v), Q (v) = π.
Let µ (V ) = µ ((V ,Q)) := det (J (X , f )), the discriminant of the
space (V ,Q). Here, X is a basis of V and f is the bilinear form for
Q and J (x , f ) is the matrix (f (xi , xj)).

Note: µ (V ) = ±1 and µ (V ) = (−1)n/2 Sgn (V ) if n is even.
Here, Sgn(V ) = +1 if Q is hyperbolic and -1 if elliptic.
G := Oµ,π

n (3) := 〈Dπ〉, where µ (V ) = π.

• [On (3) : Oµ,π
n (3)] = 2

• Oµ1,π1
n (3) ' Oµ2,π2

n (3) iff µ1π
n
1 = µ2π

n
2

• G is transitive on D unless n = 2 and Sgn(V ) = −1.



The following result due to Aschbacher gives a converse to
Fischer’s theorem ?? :

Theorem

(Aschbacher, 72-73) Let G be a group with Soc (G ) = 1 and
generated by a conjugacy class D of involutions. If G is a rank 3
permutation group on D, then D is a class of 3-transpositions of G .

Definition

A conjugacy class of involutions is said to be a class of odd
transpositions if the product of any two of its noncommuting
elements is of odd order.



Theorem

(Baer and Suzuki) If D is a conjugacy class of elements of prime
order p with the property that 〈x , y〉 is a p-group for each pair
x , y ∈ D, then D ≤ Op (G ).

Corollary

If G is generated by a conjugacy class D of involutions such that
|xy | is a power of 2 for each x , y ∈ D, then G is a 2-group.



Definition

A conjugacy class D of involutions is said to be a class of
{3, 4}-transpositions if the product of any 2 of them has order
1, 2, 3 or 4. It is said to be nondegenerate if |xy | = 4 for some
x , y ∈ D.

It is said to be a class of {3, 4}+-transpositions if, further,
whenever x , y ∈ D and |xy | = 4, then (xy)2 ∈ D.



Theorem

(Timmesfeld, 70, 75) Let G be a group with Z (G ) = 1, O (G ) = 1
and generated by a class of {3, 4}+-transpositions. Then, G is
isomorphic to one of the following:

GL (n, 2) , n ≥ 3; Sp (2n, 2) , n ≥ 3; O±2n (2) , n ≥ 4

G2 (2)′ ,3 D4 (2) ,F4 (2) ,2 E6(2),E6(2),E7 (2) ,E8 (2)

Moreover, in each case, D is uniquely determined by a class of
2-central involutions.



Fischer developed a method to form, from a class E of
transpositions of a group H, a larger group G containing H and
generated by a class D of transpositions containing E .

The passage from U6 (2) to M (22), from M (22) to M (23) and
Z2 ×M (23) to M (24).

Aut(M22) = M22 · Z2 (split) is a generated by a class D of
{3, 4}-transpositions. The elements of D necessarily induce outer
automorphisms of M (22).

Theorem

(Fischer/Leon-Sims) The baby monster BM is generated by a class
D of {3, 4}-transpositions such that CBM (x) ' 2Ê6 (2) · 2 for all
x ∈ D.



V. Suzuki chain:

VI. Thompson’s factorization: An exceptional decomposition of
Lie algebra of type E8 over C as a direct sum ⊕31

i=1Ei of Cartan
subalgebras such that, for 1 ≤ i 6= j ≤ 31, there exists k such that
[Ei ,Ej ] ⊆ Ek .



• Existence of M that it is independently predicted by Bernard
Fischer and Robert Griess in 1973. Griess constructed M in
1980 as the (full) automorphism group of a commutative,
nonassociative, algebra of dimension 196, 883 over Q. This
algebra now is called the Griess Algebra.

• M is the largest of the 26 sporadic finite simple groups. Its
order

8080, 1742, 4794, 5128, 7588, 6459, 9049, 6171, 0757, 0057, 5436,

8000, 0000, 00

= 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

is very large: appropriately 8× 1053 (15 prime factors!).



• Out(M) = 1 and its Schur multiplier is trivial. That is, it is a
perfect group and admits no nonsplit central extensions.

• Degrees of the two smallest complex irreducible
representations are 196, 883 and 21296876. It has a unique
complex irreducible representation of degree 196, 883.
Assuming its existence (conjectured by Griess and proved later
by Norton), the character table of M was calculated by
B.Fischer, D. Livingston, and M.P. Thorne.

• Thompson’s uniqueness proof of this group (1979) as the
group satisfying some conditions forced by the internal
structure, and its subsequent construction due to Griess
(1980), started with the assumption that it has an irreducible
representation of degree 196, 883 and it is the smallest degree.



• Griess construction involves some very remarkable
mathematical structures: binary [24, 12, 8]- Golay code,
extra-special 2-group 21+24

+ , the Leech lattice.

• It is also the automorphism group of a Monster vertex
algebra. It also appears as a subgroup of the diagram
automorphisms of the Monster Lie algebra.

• Its permutation representation of smallest degree can be
realized on a conjugacy class F of involutions of M ( the so
called Fischer involutions). The degree is
|F| = 97, 239, 461, 142, 990, 186, 000 (approximately1020).



2. Some striking properties of M

2.1 M has 194 conjugacy classes (as Cameron notes, a very small
number for a group of this size). It has maximal subgroups of very
large indices. These properties makes it a ‘highly’ nonsoluable
group. Many features of the sporadic groups is in full display in
this group.

2.2. Its structure is very intricate:

Not just because of its size : Alt47 has a comparable order!



(2.2.a) Twenty of the twenty six sporadic simple groups
appear as sections in M.

Following simple groups are involved in M as
subgroups of CM (σ) /O2 (CM (σ)) w ·1, where σ is a
(Conway) involution of M :

·1, ·2, ·3, Suz ,Mcl ,HiS ,HJ = J2, the 5−Mathieu groups

Following simple groups appear as CM 〈x〉 / 〈x〉 for
x ∈M with with |x | = 1, 2, 3, 3, 5, 7 respectively:

M= F1,F2 (= BM) ,F3 (= Th) ,F ′24,F5 (= Harada) ,F7 (= Hd)

CM 〈x〉 splits over 〈x〉 in all cases except when
|x | = 2.

F22,F23 appear as subgroups of F ′24.

(2.2.b) Simple groups whose order divides |M| and their
involvement in |M|



• An(5 ≤ n ≤ 12) : A6 is involved in, but not as a subgroup of
M; unique conjugacy class in all other cases.

• L2(q) For q ∈ {7, 8, 11, 13, 16, 17, 19, 31} classification is
known only partially. For q ∈ {23, 25, 49, 59}, complete
classification is known. For q = 29, only a computer proof is
known. There is a unique conjugacy class of subgroups in M
which are isomorphic to L2(41); any such subgroup is self
normalizing and maximal in M. L2(27) and L2(71) are
doubtful; L2(81) is involved, but not contained in M.

• L3(3) partially classified; L3(4) is doubtful; L3(5) and L5(2)
are involved, but not contained; unique conjugacy class of
L4(3).

• U3(3),U3(4),U3(8),U4(2) partially classified. U3(5) and
U5(2) unique up to conjugacy.



• U4(2),U4(3),U6(2) are involved, but not contained.

• S4(4), S6(2),S8(2),O7(3),O+
8 (2),O−8 (2),O+

8 (3) are
completely determined cases;

• O−8 (3),O+
10(2),O−10(2) are involved but not contained.

• G2(3),3 D4(2),2 F4(2)′ are completely determined;

• G2(4),F4(2),2 E6(2) are involved, but not contained; Sz(8) is
doubtful.

• M11,M22,M23,M24, (·1) , (·2) , (·3) ,Fi22,Fi ′24, J2,Suz ,HS ,
McL,BM are involved, but are not contained.The case of
M12,Fi23,He,HN,Th,M are completely determined. J1 is not
involved.



(2.2.c) The following nonsplit extensions appear as sections
of M:

2·F2; 2 · 2 · 2E6(2); 25·GL(5, 2), 3·F ′24,

3·B3(3); 3·G2(3); 38.·0−(8, 3); 53·SL(3, 5) in Mcl

Construction of M provides existence proof for the
sporadic groups and the nonsplit extensions
mentioned above.



2.3. Prime divisors of M: (Ogg’s observation 1975) For a prime
number p, X∆(p) is of genus zero if and only if p divides |M|.

2.4. (J. Thompson) M =Gal (F/Q) for some algebraic extension
of Q.

(The degree of the polynomial is expected to be more than 1,200.)



2.5. A p- group in which every characteristic abelian subgroup is
cyclic is called a group of symplectic type. Any such group is either
the central product of an extraspecial group and a group which is
either cyclic or is a 2 -group of maximal class (P. Hall).

For any finite group G , define

σ(G ) = {p : p a prime such that there is an element x ∈ G with

F ∗(CG (x)) is of symplectic type }.

For example, σ(M) = {2, 3, 5, 7, 13}.
Conjecture (Thompson): If (σ(G )) ≥ 5, then G 'M.

In M, the centralizers are:

21+24 · (·1); 31+12 · 2Sz ; 51+6 · 2J2; 71+4 · 2A7; 131+2 · 2S4



2.6. Some remarkable coincidences occur:

The following sets of primes are equal:

A1 = {p : (p − 1) divides 24} = {2, 3, 5, 7, 13}
A2 = {p : Γ0(p) is of genus zero}
A3 = {p : ·O contains an element of order p

which acts without fixed points on the Leech lattice and p.Gp is its centralizer}
A4 = {p : M contains an element of order p such that its centralizer

is isomorphic to p1+2d · Gp, where 2d(p − 1) = 24 and Gp is as in A3}

M has two conjugacy classes of involutions:

• F = τM, the set of Fischer involutions; C = CM (τ) w 2·F2

(nonsplit);
• C = σM, the set of Conway involutions; CM (σ) w 2+124

+ C0;
• |C| = N × |F|, where N is almost 100 million.



It also has elements t of order 3 with CM(t) ' 31+12 · 2 Suz.

In fact: for each prime p such that p − 1 divides 24, there exist
elements tp of order p in M and gp ∈ (·0) of order p such that

• the action of gp on Λ is fixed point free;
• Cp = CM(tp) ' p1+d · Gp, where d = 24

p−1 ,

Gp ' C(·0)(gp)/ 〈gp〉; Ep ⊆ Cp is isomorphic to p1+d and
CCp(Ep) = Z (Ep).

• The action of Cp on Ep by conjugation induces a faithful
representation of Gp on Ep/Z (Ep) ' Fdp .

The number 24 seems to occur in different contexts. The following
characterization of 24 have been useful:

The divisors h of are precisely those integers for which
xy = 1(mod h) implies x = y (mod h).



2.7. Involutions of M

(A) M as a 6 -transposition group:

M acts transitively on F = τM by conjugation.

The centralizer C = CM (τ) has 9 orbits Fi , i = 0, · · · , 8, on F .
Thus, M has a permutation representation of rank 9 on F .

Fix ti ∈ Fi , let ni= |tti | and t = t0. Then, ni is independent of the
choice of ti in Fi (since ttxi = (tti )

x for each x ∈ C ) and

n0, n1, · · ·, n8 ≡ 1, 2, 3, 4, 5, 6, 3, 4, 2.

Thus, M is a 6 -transposition group. Further, these are exactly the
degrees of the irreducible representations of the binary icosahedral
group.



1) Products of distinct elements of F are in 8 different conjugacy
classes of M (using the Atlas notation):

1, 2A, 2B, 3A, 3C , 4A, 4B, 5A, 6A

The structure of the respective centralizers of elements in M are:
2·F2; 22 .2E6(2); 22+22. ((·2)) ; M (23) ; Th; 21+21.Mcl ; 2.F4(2);
HN ; 2.M (2) (This information was used to calculate the order of
M.)

2) Norton determined the number of tripes {x , y , z} in F such
that xy , yz , zx are in specific conjugacy classes. This gives the
intersection numbers of the centralizer algebra of the action of M
on F .

This algebra has a primitive idempotent of dimension 196883.



(B) Connections with affine Ẽ8-lattice: McKay’s observation:

Let α1, · · · , α8 be the fundamental roots in the root system Φ of
type E8 and αM be the maximal root in Φ. Set α0 = −αM . Then,

αM = Σ8
i=1ciαi = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8.

That is,

Σ8
i=0ciαi = 0 with c0 = 1.
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McKay’s observation was that after, rearranging the indices if
necessary,

ci = |tti |, i = 0, · · · , 8,

Thus, we can associate a conjugacy class of elements of M with
each vertex of Ẽ8.



Also, Glauberman and Norton observe that

for 1 ≤ i 6= j ≤ 8, tti is not conjugate to ttj under M. (1)

Thus, we can index the nodes of the Ẽ8 diagram by the conjugacy
classes tti .

An interpretation of the edges of Ẽ8, if any, is not known.



Clearly, ci is the index of the sublattice of the E8− lattice spanned
by the nodes αj , j 6= i ,in the Ẽ8−diagram.

Thus, ci can be seen with in the lattice E8 .



There are other connections which tell how to associate each node
with a suborbit. Using the atlas notation,

DIAGRAM

2) Let K be the smallest conjugacy of the baby monster B. The
conjugacy classes in K 2 = {xy : x , y ∈ K} has orders 1, 2, 2, 3, 4
(Note: B is a 4-transposition group). These are the labels of F̂4,
the affine diagram of type F4:

Mackay observed that an order 2folding of the affine E7-diagram
gives the affine F4-diagram F̂4. An order two centre extension of B
is the centralizer of an element g ∈ M of order 2. The
three-folding of affine E6-diagram is affine G2-diagram Ĝ2 M has 3
conjugacy classes f elements of order 3. The smallest of these
(‘3A′) has a centralizer which is a triple cover of Fi24 · 2′. Taking
the smallest conjugacy class C of Fi24 · 2′, C2 gives conjugacy

classes of order 1, 2, 3 and these are the labels for Ĝ2. Note that
Fi24 · 2′is a 3-transposition group.

Let τ ∈ C and C := CM(τ) ' 2+124
+ C0. Then C operators

transitively on:



2.8. It is very close to an infinite Coxeter group:

2.9. Moonshine conjectures: Modular connection:

This aspect has drawn most attention from mathematicians in
other areas and string theorists.

Moonshine properties

‘Moonshine’ means ‘crazy or foolish ideas’. A typical example of
its use is the following quote from E. Rutherford (discoverer of the
nucleus of an atom) “The energy produced by the breaking down
of the atom is a very poor kind of thing. Any one who expects a
source of power from the transformations of these atoms is talking
moonshine”.

‘Moonshine’ is also a name for corn whisky, especially if it is
smuggled or distilled illegally.



1. In the expression for j(q), the constant term could be
arbitrary.

2. ‘Moonshine’ started when John McKay wrote to J. Thompson
that

196, 884 = 1 + 196, 883

The coefficient of q in the elliptic modular function j(q) is
1+ minimum of the dimensions of nontrivial complex
representations of M



1. Thompson (1979) pointed out that:

the next few coefficients of j(q) are also simple positive
integral linear combinations of the degrees of some irreducible
representations of M. He suggested that there might be an
infinite dimensional graded C[M]-module

W = ⊕n∈ZWn = W−1 ⊕W1 ⊕W2 ⊕ · · ·

such that

dim(Wn) = coefficient of qn−1 in j(q)− 744

for each n 6= 0. To charectarize W , Thompson suggested
studying the modular transformation properties of the graded
traces

Tg (τ) =
∑
n

Tr (g |Wn) qn−1

for each element g of the Monster. For example
Tg (1) = j (τ).



1. Conway and Norton (1979) calculated the first few terms of
the McKay-Thompson series above by making reasonable
guesses for the decomposition for the first few Wn ’s into
direct sums of irreducible representations of M.

1 = 1

196844 = 196843 + 1

21493760 = 21296876 + 196883 + 1

864299970 = 842609326 + 21296876 + 2× 196883 + 2× 1

Here, numbers on the left side are the coefficients of powers
of q in j (τ) and the numbers on the right side are the
dimensions of some irreducible representations of the monster.
By calculating the first few terms, they found that the
McKay-Thompson series

Tg (τ) = q−1 +
∞∑
n=0

Tr (g |Wn) qn, τ ∈ H, g ∈M



seemed to be hauptmodules of genus zero. On the basis of this,
they made the famous Moonshine conjectures (1979) . They were
proved by Borcherds in 1992 for which he got the Fields medal.



Theorem

Let τ ∈ H and q = e2πiτ .Then, for each g ∈M, there is a formal
q-expansion

jg (q) = q−1 +
∞∑
n=1

an(g)qn, an(g) ∈ Z, n ≥ 1

such that: (i) for each integer n ≥ 1, g 7→ an(g) is a character of
M;
(ii) For each g ∈M, there is a congruence subgroup ∆(g) of
SL(2,R) and a divisor h of the greatest common divisor of 24 and
the order of g such that
Γ0(o(g)h) ≤ ∆(g) <?∆(o(g)h) and ∆(g)

Γ0(o(g)h) is of exponent
atmost 2
(iii) The genus of X∆(g) is zero.
(iv) jg is the Fourier expansion of a function fg (τ) which is
analytic on H. The field of modular functions of weight zero with
respect to ∆(g) is C(fg ).



Conway and Norton wrote down a list of 194 normalized generators

Tg (τ) =
∑
n

cn (g) qn

of genus zero function fields arising from certain discrete subgroups
of PSL2(R) such that for the first few integers n, cn were the
characters of Wn.
For each g ∈M, there exists a genus zero subgroup K of PSL2(R)
such that Tg (τ) is the normalized main modular function for K .
Note that

Tg (τ) = Tg−1 (τ) = Tgx (τ)

for all g , x ∈M. Thus, we have a genus zero subgroup H for each
of such 171 (of atmost 194) rational conjugacy classes of elements
of M. Recall that x , y in M are rationaly conjugate if x is
conjugate to y or y−1. Since the coeffecients an (g)′s in Tg are all
integers, it follows that Tg = Th if and only if 〈g〉 = 〈h〉.



There are 171 Thompson-Mackey series Tg and 172 conjugacy
classes of cyclic subgroups in M .The correspondence 〈g〉 → Tg is
one-to-one except that two distinct rational conjugacy classes of
elements of order 27 (namely 27A and 27B) correspond to the
same Hauptmodule of genus zero. This exception is
unexplained.Though there are no further equalities between the
series, there are certain dependencies, like, for example,

T6+ + 2T6− = T6+2 + T6+3 + T6+6

and other similar relations found for 4-groups.



Discovery of M

In November 1973, B. Fischer suggested that the following
configuration in a finite group M might be interesting:

• M contains an element ρ of order 3 which is conjugate to its
inverse;

• O3(CM(ρ)) is an extra special group of order 313 and
exponent 3;

• D = CM(ρ) is 3-constrained and D = O3(D)· S , where S is
the full covering group (here, a double covering) of the simple
group Suz , and Z (S) = 〈ρ〉 × 〈z〉 , |z | = 2 and z inverts
O3(D)/〈ρ〉.



Recall that, given a prime p, a finite group G with Op′(G ) = 1 is
said to be p-constrained if CG (Op(G )) ⊆ Op(G ). A finite group G
is p-constrained if G/Op′(G ) is p-constrained.

A group satisfying the above hypothesis is called a group of type
F1.

Thompson showed that under the above hypothesis, M contains
involutions z and t such that

1. D = CM (z) is 2−constrained

2. Q = O2(D) w 21+24
+ and D/Q w (·1)

3. H = CM (t) has the property that H = H ′,Z (H) = 〈t〉 and
H/ 〈t〉 w F2, Fischer’s {3, 4}+− transposition group, the
‘baby Monster’.



(a) Starting with Fischer’s hypothesis, Thompson, Conway, Norton
and others in Cambridge started finding information about M like
the structure of local subgroups, order of the group, etc.

Using the 24- dimensional representation of (·1) over F2,
Thompson determined the centralizers of p elements of M and
hence the p-share of |M| for the primes
p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 and 47; that is, he
determined m, where |M| = mn, (m, n) = 1 and n is coprime to
the primes above.

Using Sylow theorem, Conway and Thompson showed that

n ≥ 41× 57× 71

The order of M was finally determined by Griess using the
Thompson order formula.



(b) Thompson showed that a group M of type F1 contains
elements τi of orders i ∈ {2, 3, 5} such that Fi = CM(τi )/ 〈τi 〉 is
simple. Here, CM(τi ) is split over 〈τi 〉 for i = 3, 5 and nonsplit for
i = 2. He also determined the structure of the centralizer of an
involution in CM(τi ):

2Ẽ6(2) · 2 if i = 2,

21+8.A9 if i = 3

ĤS · 2 if i = 5.

The group F2 had been proposed by Fischer in the summer of 1973
as a group generated by a class of {3, 4}-transpositions and was
constructed by Lyons and Sims with the aid of a computing
machine (1977). It has multiplier 2 and out(F2) = 1.



The existence and uniqueness of F3 was proved by Thompson and
Peter Smith (as a linear group of degree 248) and F5 by Harada .
We have

|F2| = 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47, Fischer group

|F3| = 214 · 36 · 56 · 7 · 11 · 19, Thompson group

|F5| = 215 · 310 · 53 · 72 · 13 · 19 · 31, Harada group



Theorem

(S. Smith, 1979) Let G be a finite group containing an involution
z such that:
(i) O2(CG (z)) ' 21+24

+ ;
(ii) CG (z) /O2(CG (z)) ' (·1); and
(iii) CG (O2(CG (z))) = 〈z〉.

Then, either :

(i) G contains an involution t ∈ O2(CG (t)) such that CG (t) w F̂2,
the double cover of F2, and
|G | = 246 ·320 ·59 ·76 ·112 ·133 ·17 ·19 ·23 ·29 ·31 ·41 ·47 ·59 ·71,or
(ii) G = O (G ) CG (z).



Thus, the structure of Ct follows from that of Cz . So, a group of
type F1 can be defined in terms of Cz alone. Thus,

Theorem

If G is a finite simple group containing an involution y such that
CG (y) ' (21+24

+ )· (·1), then G is a group of type F1.

Griess was independently, and simultaneously, studying finite
groups G containing involutions x and y such that:

• Cx ' F̂2, the covering group of the baby monster F2 by Z2

and

• Cy
∼= (21+24

+ )· (·1).



Theorem

(Griess) Let G be a finite simple group containing involutions σ
and τ such that Cσ ∼= 21+24

+ · (·1).Cτ ' F̂2, the covering group of
F2 by Z2. Then, G has exactly 2 conjugacy classes of involutions
and
|G | = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

Thus, Fischer and Griess arrived at the same group.

Griess also showed that:
(i) A group G of type F1 has only two conjugacy classes of
involutions.
(ii) G has trivial multiplier.
Involutions of M which are conjugate to σ are called Conway
involutions ( also called long involutions) and those conjugate to τ
are called Fischer involutions ( also called transpositions or short
involutions).



Theorem

(Griess, Meirfrankenfeld, and Segev,1989) Let G be a finite group
containing two involutions σ and τ such that CG (σ) w 21+24

+ · Co1

and CG (τ) w 2 · F2. Then, G is unique up to isomorphism.

Let ΓF be the graph whose vertices are the involutions of M of
type F2 and the edges are pairs of commuting involutions whose
product also is of type F2. The conditions on the centralizers of
involutions is strong enough to uniquely determine this graph.
Aschbacher and Segev (1992) used this information to show that
this graph is triangulable.



Construction of M

The construction of M is due to Griess with simplifications of some
parts of the Griess argument due to Conway and Tits. It makes
constructive the uniqueness proof, independently due to
Thompson, of M assuming some of its then known properties. M
is constructed as the amalgam of the groups

G1 w 21+24
+ · (·1) ;

G2 w 22+11+22 · (M24 × S3) ; and

G3 w 23+6+12+18 · (3·S6 × L3 (2)) with

[G2 : G1 ∩ G2] = 3; and [G3 : G1 ∩ G3] = [G3 : G2 ∩ G3] = 7



Definition of an amalgam and its completion:

Let (Gi ,�i ) be groups, i = 1, 2, 3. Assume that the sets of
elements of Gi have pairwise nontrivial intersections and that, for
x , y ∈ Gi ∩ Gj , 1 ≤ i 6= j ≤ 3,

x �i y = x �j y

holds. A completion of the system {Gi ,�i} is a pair ((G ,�) , ψ),
where (G ,�) is a group and ψ is a map from G1 ∪ G2 ∪ G3 to G
such that, for all x , y ∈ Gi , 1 ≤ i ≤ 3,

ψ (x �i y) = ψ (x)� ψ (y) .

(G ,�) is called a completion group and ψ is called the completion
map.



The completion is said to be:

• faithful if ψ is injective;

• generating if the image of ψ generates (G ,�);

• universal if for any other completion ((H,4) , θ), there is a
surjective homomorphism η : G → H such that θ = η ◦ ψ.

Note that:

• The universal completion is necessarily generating;

• A faithful completion exists if, and only, the universal
completion is faithful.

• All universal completions of a given amalgam are isomorphic.



One needs to prove that:

• Up to isomorphism, there is a unique monster amalgam
(Thompson).

• M possesses a faithful completion. This is answered by
producing a faithful 196,883-dimensional representation.

• The only faithful completion of M is the universal one and
the completion group is the Monster, that is the nonabelian
simple group with Monster, that is the nonabelian simple
group with G1 as the centralizer of an involution.



Motivation for the construction of the Griess algebra B:

Given

• A, an algebra over a field k ,

• 〈−,−〉 a bilinear form on A,

• B, a linear subspace of A,

• p : A→ B, the orthogonal projection of A onto B; that is,
restriction of p to B is the identity, and
〈ker p,B〉 = 〈B, ker p〉 = 0. If B is nonsingular with respect to
〈−,−〉, such a map is unique;

• G , a group of algebra automorphisms of A preserving 〈−,−〉



we can define a G -algebra structure on B by defining: for
x , y ∈ A, define x · y = p(xy).

The resulting algebra structure on B is called the restriction of the
algebra (structure of) A to B, and is denoted by Ret(A,B). If the
form 〈−,−〉 on A is associative (i.e., 〈x · y , z〉 = 〈x , y · z〉, then the
restriction of the form to B is also associative, i.e., for x , y , z ∈ B

(p(xy), z) = (xy , z) = (x , yz) = (x , p(yz)).



Example

Let A = Mn(k), characteristic of k is not 2. Consider the bilinear
map taking (M,N) ∈ A2 to tr(MN). Let A+ and A− be the
symmetric and the skew symmetric matrices in A. The above
bilinear form is nondegenerate on A and remains so when restricted
to A+ and A−. Let p± : A→ A± be the relevant projection maps;
i.e., p±(M) = (M ±Mtr )/2. Then, A+ is the Jordan algebra of
symmetric matrices and A− is the Lie algebra of skew-symmetric
matrices.



Deformation of a G -Algebra B

Suppose A = A1 ⊕ A2 with Ai being G -invariant subalgebras. Let
Ii : Ai → A and pi : A→ Ai be the inclusion and projection maps,
i = 1, 2. Then there are maps Fijk : Ai ⊗ Aj → Ak defined by this
set of maps. A deformation A is an algebra A∗ which is A1 + A2 as
a vector space and the product is given by F ∗ijk = CijkFijk , where
Cijk are scalars and the notation has obvious meaning.



Heuristics for the construction of the Griess algebra B

a) Assuming the existence of an irreducible representation θ of M
on a complex vector space V of dimension 196883, Norton showed
that the character χ of V satisfies:

i. χ (g) ∈ Q for each g ∈M;

ii. 〈χ, s2χ〉 = 1; and

iii. 〈χ, s3χ〉 = 1.



(i) Recall that, if ψ is a representation of a group X on a vector
space W over C, then the map h : W ×W ∗ → C taking (v , f ) to
f (v) is a ψ (W )-invariant, nondegenerate bilinear form; and that,
two irreducible complex representations are equivalent if their
characters are identical.

Since the representation θ of M on V is irreducible and its
character χ is equal to its dualχ∗ by (i), θ is equivalent to its dual
representation θ∗ of M on V ∗. So, V ∗ can be identified with V .
This identification allows us to assume that V admits a θ(M)-
invariant, symmetric, nondegenerate bilinear form.

(ii) A multiplication on a k -algebra A is a map α : A× A→ A.



• The map α is distributive if, and only if, it factors through
A⊗k A (if, and only if, there is a map β : A⊗k A→ A such
that α = π ◦ β, where π : A× A→ A⊗k A is the natural
map).

• The multiplication α is commutative if, and only if, it factors
through S2A = A⊗ A/ 〈v ⊗ w − w ⊗ v〉.

Thus, any k-linear map γ : S2A→ A defines a commutative
multiplication on A. If A is a G -module and γ is a kG -module
morphism, then the multiplication also satisfies
φ(g)u · φ(g)v = φ(g)(uv).



Since
〈
S2(χ), χ

〉
= 1, the projection map p from S2V to V

induced by the direct sum decomposition S2V = V ⊕ V ′

commutes with the action of M.

So, V admits the structure of a commutative M -invariant algebra,
i.e., there exists a symmetric bilinear multiplication · on V such
that

x · λy = λx · y ; and ϕ(g)x · ϕ(g)(y) = ϕ(x · y)

(iii) Similarly, considering S3(V ) as the image of S2(V )⊗ V as
well as of V ⊗ S2(V ), we see hat

〈
χ,S3χ

〉
= 1 implies that V

admits an M -invariant associative form on V ; i.e. a map
f : V × V → V such that

f (x · y , z) = f (x , y · z) =: f (x , y , z) and

f (x · y , z) = f (g(x) · g(y), g(z))



Existence of a 196883- dimensional module
Norton deduced the existence of the smallest irreducible
representation from the local information on M.

Generalities on permutation modules:
Let

• G , a permutation group acting on a set Ω;

• W = ⊕
α∈Ω

Cα, free vector space on the left cosets {gH : g ∈ G}
of the stabilizer H of an element α ∈ Ω with a G -module
structure by the left multiplication by elements of G ;

• Ω× Ω = r
i=0
Oi , the G -orbit decomposition;

• Ai , 0 ≤ i ≤ r , the (0, 1)-matrix corresponding to the
characteristic function of Oi ;

• A := {h ∈ End(W) : hg(α) = gh(α) for each g ∈ G , α ∈ Ω},
commuting algebra of the permutation action of G ; thus,

A = CA0 ⊕ · · · ⊕ CAr .



Then, W and A are semi-simple CG -modules; and the degrees of
irreducible constituents appearing in W are the multiplicities of
irreducible representation of A and vice-versa. Further, W is
multiplicity-free if and only if A is commutative.

Let O0 be the diagonal in Ω× Ω. Then, A0 = Id . For each i > 0,
Ai generates A as a subalgebra of A.

For i , j ∈ {0, 1, · · · , r}, let

AiAj = Σr
k=0hijkAk .

The (r + 1)-matrices {H(i) = ((hijk))} are called the Highman
invariants of the permutation group (G ,Ω).

The multiplicities and the dimensions of the simple modules of A
and hence the dimensions and the multiplicities of the components
of the irreducible representations of the permutation module are
determined by these Highman matrices.



Permutation module (M,F) and the structure constants of
A:

M acts by conjugation on the set F Fischer involutions and
|F| = 97, 239, 461, 142, 990, 186, 000. The order of the product of
2 distinct elements of F is one of : 1, 2, 3, 4, 5, 6. These products
are in 8 different conjugacy classes of M:

1, 2A, 2B, 3A, 3C , 4A, 4B, 5A, 6A

A pair of elements of F is uniquely determined by the conjugacy
class of their product. Thus, M has a permutation representation
of rank 9 on F . Norton determined the number of tripes
(x , y , z) ∈ F3 such that xy , yz , zx are in specific conjugacy classes.
This gives the intersection numbers of the centralizer algebra of
the permutation action of M on F . Thus, the structure of the
permutation algebra A is determined.



Norton determined the primitive idempotents of the algebra A.
One of them has rank 196, 883. So, M has an irreducible
representations of degree 196, 883. Thus the decomposition of the
space CF into M -invariant subspaces has a component isomorphic
to V . Thus the existence of a 196, 883-dimensional faithful
representation of M was deduced from local information (i.e.,
properties of centralizers of certain elements). These proofs due to
Norton were not published. (The methods in Griess,
Meirfrankrnfeld, Segev were different.)

The Griess algebra can be realized as the projection to V of the
point-wise multiplication in CF . However, the algebra itself is not
associative.



Problem

196883 = 47× 59× 71 = 299 + 98304 + 98280. Is there a tensor
product decomposition of the Griess algebra of dimensions
47, 59, 71 which are G−invariant modules for an appropriate
subgroup G of M.



The Witt design, the Golay code G12 and the Mathieu
group M24

• Define

P0 (Ω) := {φ,Ω} ' F2 and P0 (Ω) := {A ⊆ Ω : |A| , even} ' F23
2

G11 := G12/P0 (Ω) ;

G12 := P (Ω) /G (called the Todd module); and

G11 := P0 (Ω) /G



Weight of an element of G12 is the cardinality of the smallest
element in that coset.

01 12422763202441771

Distinct subsets of Ω of cardinality less than 4 are in distinct cosets.

A subset of Ω of size 4 is one of six 4-subsets of Ω forming a
partition of Ω and such that the union of any two of them is an
octad. Any such six 4− sets is called a sextet.

•
{φ} < P0 (Ω) < G12 < P0 (Ω) < P (Ω) ,

unique F2M24-composition series of P (Ω).
• π induces well-defined maps

π : G12 × G12 → F2 (since G12 = G12)

and π : G11 × G11 → F2 (since Rad (π) in P0 (Ω) is P0 (Ω)).

• H1 (C11,M24) = 1; this means ...

H2 (C11,M24) = 1; this means ...

H1(C 11,M24) = 2; this means ...

H1(C 11,M24) = 2; this means...



Extra special p-groups (P. Hall)

A p -group Q is called extra-special if

Q ′ = Z (Q) = Φ (Q) = 〈z〉 ' Cp

- finite analogue of the Heisenberg group.

• (xZ (Q) , yZ (Q)) = [x , y ] , x , y ∈ Q defines a nondegenrate
alternating form on Q := Q/Z (Q) ' V (2m, p).

• If p = 2, q : Q → F2 taking xZ (Q) to x2 is a quadratic form
with (·, ·) as the associated bilinear form



Notation:
Q is written as 21+2n

+ or 21+2n
−

according as q is of (+)-type or of (−)-type.

• If p is odd, Q is written as p1+2n
+ if it is of exponent p. (most

common occurrence is simple groups)
Ccharacters of Q ' p1+2n

• p2n linear characters

• p − 1 irreducible complex characters of degree pn each. Each
of them is faithful.



Modular forms
Consider the action of SL2(R) on the upper half plane

H = {z ∈ C: im(z) > 0}

via the Mobius transformations:

g =

[
a b
c d

]
∈ SL2(R) takes z ∈ H to

az + b

cz + d
.

For a positive integer n, let

Γ(n) = {
[

a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
= I2(mod n)}

Γ0(n) = {
[

a b
c d

]
∈ SL2(Z) : c ≡ 0(mod n)}

Γ1(n) = {
[

a b
c d

]
∈ Γ0(n) : a ≡ d ≡ 1(mod n)}

∆(n) = NSL2(R)(Γ0(n)) =

〈
Γ0(n),

[
0 − 1√

n√
n 0

]〉



Note

1. Γ/Γ (n) w PSL2 (Zn)

2. ∆ (n) /Γ0 (n) w 2t for small (Specify!) t. Further, t = 1 if n
is a prime.

3. ∆ (p) = 〈Γ0 (p) , ωp (τ)〉 if p is a prime, where ωp (τ) is the
Fricke involution defined for any integer n by

ωn (τ) = − 1

nτ
, where τ ∈ H.

Recall that a subgroup of SL2(R) is said to be discrete if its
orbits in H have no accumulation points. A congruence
subgroup of SL2(R) is a discrete subgroup of SL2(R)
containing Γ(n) for some integer n.



Let G be a congruence subgroup of SL2(R). It acts on the
extended complex plane

H∗ = H ∪Q ∪ {i∞}

by Mobius transformations and H∗/G has the structure of a
compact Riemann Surface XG . The significant invariant of XG is
its genus (define). The genus is zero if and only if XG is
homeomorphic to a sphere in R3. We then say that the group G is
of genus zero.
Surprisingly, genus of Γ0 (n) tends to infinity as n tends to infinity.
So there are only a finite number of integers n such that Γ0 (n) has
genus zero.Thompson has shown that there are only a finite
number of conjugacy classes of congruence subgroups of PSL2(R)
of genus zero.There are in fact about 370 of them.



Definition

A modular function of weight zero for a discrete subgroup G of
SL2(R) is a meromorphic function f on the upper half plane H
(i.e., f is analytic except at a discrete set of points) such that

f (g(z)) = f (z) for each g ∈ G and z ∈ H.

A modular function of weight zero for G defines a meromorphic
function on H \ Γ.

If G is a congruence subgroup of SL2(R) such that XG is of genus
zero, then the set F(XG ) of all modular functions of weight zero
with respect to G is a field, isomorphic to the field C (X ) of
rational functions with complex coefficients in one variable .

We write F(n) for F(XΓ0(n)).



Definition: A modular function f is called a Haupt module for G
if:

• F(XG ) = C (f ) , i .e.,any modular function of weight 0 with
respect to G is a rational functions of f ; and

• f has a simple pole at ∞.

Example

If G = SL2(Z), then XG is homeomorphic to the unit sphere in R3

and a Haupt module is the classical elliptic modular function

j(τ) = q−1 + 196884q + 21493760q2 + 864299970q3 + · · ·,
q = e2πiτ , τ ∈ H.


