
Computational Group Theory With GAP
Alexander Hulpke

Department of Mathematics
Colorado State University

Fort Collins, CO, 80523, USA
http://hulpke.com

ICTS, November ‘16

http://hulpke.com

Computational Group Theory With GAP
Alexander Hulpke

Department of Mathematics
Colorado State University

Fort Collins, CO, 80523, USA
http://hulpke.com

ICTS, November ‘16

Season 20,
Episode 6

http://hulpke.com

Computational Group Theory With GAP
Alexander Hulpke

Department of Mathematics
Colorado State University

Fort Collins, CO, 80523, USA
http://hulpke.com

ICTS, November ‘16

http://hulpke.com

Some Basics
• Thank you for the opportunity to speak!
• Slightly jetlagged - apologies.
• Lecture series on Computational Group Theory (CGT)

and CGT system GAP. Not a reading from the manual.
• I will endeavor to put slides on the web after each talk.

(also: Handbook Abstract Algebra in GAP, Lecture notes
Computational Group Theory)

• If you don’t understand me, please interrupt me!
• Ask Questions! This is not a long straight highway, but a

tourist route with many viewpoints.

Coming Attractions
 About GAP and Computational Group Theory

 Orbits and Stabilizers

 Permutation Groups

 Finitely presented groups

 Matrix Groups

 Higher Level Calculations

 Standard Constructions in GAP

Goals Of The Course

• What can you expect from CGT software, in particular
GAP?

• How to pose questions so a system can answer
effectively.

• Some ideas about underlying algorithms; performance/
memory use.

• How to interface with GAP: Writing Code, Transferring
Data, Calling other software.

1

The Name Of
The Game

What Is CGT?
Study of Algorithms for solving group theoretic problems.

• Theoretical: possibility, complexity. connections to
theoretical CS, P versus NP (Graph Isomorphism).

• Practical: Concrete calculations for experiments, study of
examples, dealing with smaller cases.

• Computers crave finiteness.

• While there are software engineering aspects, stay
within mathematics.

What Is CGT?
Study of Algorithms for solving group theoretic problems.

• Theoretical: possibility, complexity. connections to
theoretical CS, P versus NP (Graph Isomorphism).

• Practical: Concrete calculations for experiments, study of
examples, dealing with smaller cases.

• Computers crave finiteness.

• While there are software engineering aspects, stay
within mathematics.

Here

What Is CGT?
Study of Algorithms for solving group theoretic problems.

• Theoretical: possibility, complexity. connections to
theoretical CS, P versus NP (Graph Isomorphism).

• Practical: Concrete calculations for experiments, study of
examples, dealing with smaller cases.

• Computers crave finiteness.

• While there are software engineering aspects, stay
within mathematics.

Uses Of CGT

Concrete Calculations in concrete groups. Uses:

• Study examples, lead to conjectures

• Search through (group) libraries to find counterexample

• Base cases or borderline cases

• Applications of Group Theory

• There is no generic “solve my problem” function! Need
to know about algorithms to see what is feasible.

GAP
• Open Source software for Computational Group theory.

(Other: Magma, a bit in Maple)
• www.gap-system.org
• Installation help in first practical.
• Source on github: gap-system/gap.
• Unix origins, but working Windows port.
• First releases around 1990, currently GAP4.8.5 (Sep ’16)
• Both to try implementations, and as calculation tool.
• Over 2000 citations in refereed papers.
• gap-forum mailing list, math.stackexchange tag gap

http://www.gap-system.org

Further System Details
•Interpreted language. Kernel provides language and
time-critical functions: 10/90% rule. Most written in
library, GAP language.

•Can compile to C framework but only to load to
GAP session. Don't overestimate success.

•You can call GAP from Sage, but I have never used
it. There also is a way to call GAP as library in C, but
I have no idea how that works.

•Substantial library of contributed Packages. Might
need explicit loading: LoadPackage(“pkgname”);

Assumptions
• You know undergraduate college mathematics, in

particular abstract algebra.

• You have done basic programming (in whatever language),
know how to create text files, etc.

• Groups act on the right: Permutations, row vectors, etc.

• Pointers to manual, not attempt to give manual definitions.

• Bootstrapping: So we can do examples, some commands
as black-box before explanations

Basic System Interaction
• GAP prompts for input
• Enter command (ending in semicolon)
• GAP responds with result. (Object is returned and

View-ed.) Double semicolon supresses output.

gap> Size(GL(5,3));
475566474240
gap> g:=SymmetricGroup(14);
Sym([1 .. 14])
gap> r:=Random(g);
(1,14,6,9,4,7,2,11,5,3,10,12)(8,13)
gap> SylowSubgroup(g,2);
<permutation group of size 2048
 with 11 generators>
gap> Size(last);
2048

• Command could be
assignment (and
shows the value of
assignment)

• Variables last,last2
for prior results.

Using Files
• Any longer input: Read(“filename”) in file with

sequence of commands (e.g function definitions.)
• ? for online manual, ?? for keyword search in manual.
• LogTo(“filename”) produces file transcript.
• PrintTo and AppendTo create specific file output.
• There is a SaveWorkspace function, but somewhat

tricky to use under Windows. Saved workspaces do not
port between versions/platforms.

• Exit with quit; (or CTRL-D)

Files: Names And Places
By default, GAP accesses the folder where it was started.

All other paths must be relative to this folder or global.

Under Windows this is the folder in which GAP was
installed :-| and paths must be Unix style :-(

/cygdrive/c/Users/Alexander Hulpke/My Documents/
Use DirectoryHome to get paths to documents folder:

Caveat: Windows might be set to not display the suffix, so the
file new.g you created in Notepad might really be new.g.txt.

gap> DirectoryHome();
dir("/cygdrive/c/Users/Alexander Hulpke/My Documents/")
gap> f:=Filename(DirectoryHome(),"newfile.txt");
"/cygdrive/c/Users/Alexander Hulpke/My Documents/newfile.txt"

Objects
Integers/Rationals/Cyclotomics, Booleans (including fail)
Finite field elements, Permutations
Record, Lists. Lists are used to represent sets, vectors,
matrices, etc.
Objects built from lists and records (groups, words, …)
Variables: Any non-reserved string. Assign with :=
List entries are pointers, function calls are call-by-reference. It
is possible to protect objects from modification.
ALGOL (Pascal, Java, Python) family programming language.
Interpreted, break loop allows variable inspection

Objects
Integers/Rationals/Cyclotomics, Booleans (including fail)
Finite field elements, Permutations
Record, Lists. Lists are used to represent sets, vectors,
matrices, etc.
Objects built from lists and records (groups, words, …)
Variables: Any non-reserved string. Assign with :=
List entries are pointers, function calls are call-by-reference. It
is possible to protect objects from modification.
ALGOL (Pascal, Java, Python) family programming language.
Interpreted, break loop allows variable inspection

GAP will give an error message and the
prompt changes to brk>
At this point one can inspect local variables
for debugging, use Where(lev); to see
whole call stack.
Leave break loop with quit or with CTRL-D.
(Can trigger error in own functions with
Error(“message”);)

Objects
Integers/Rationals/Cyclotomics, Booleans (including fail)
Finite field elements, Permutations
Record, Lists. Lists are used to represent sets, vectors,
matrices, etc.
Objects built from lists and records (groups, words, …)
Variables: Any non-reserved string. Assign with :=
List entries are pointers, function calls are call-by-reference. It
is possible to protect objects from modification.
ALGOL (Pascal, Java, Python) family programming language.
Interpreted, break loop allows variable inspection

Lists
(Almost) any collection which is not an algebraic structure
is represented as a list: Sets, Vectors, Matrices,…

Lists might be stored efficiently (ranges, enumerators,
bitlists, compact vectors,…) but always allow the basic
operations of Length, element access and Position. If
GAP can compare elements cheaply, it can be worth to
sort for fast position tests.

Lists can have unbound entries and can grow arbitrarily
large.

Lists
(Almost) any collection which is not an algebraic structure
is represented as a list: Sets, Vectors, Matrices,…

Lists might be stored efficiently (ranges, enumerators,
bitlists, compact vectors,…) but always allow the basic
operations of Length, element access and Position. If
GAP can compare elements cheaply, it can be worth to
sort for fast position tests.

Lists can have unbound entries and can grow arbitrarily
large.

it will try to be clever, but
you might need to help it.

Lists
(Almost) any collection which is not an algebraic structure
is represented as a list: Sets, Vectors, Matrices,…

Lists might be stored efficiently (ranges, enumerators,
bitlists, compact vectors,…) but always allow the basic
operations of Length, element access and Position. If
GAP can compare elements cheaply, it can be worth to
sort for fast position tests.

Lists can have unbound entries and can grow arbitrarily
large.

Lists
(Almost) any collection which is not an algebraic structure
is represented as a list: Sets, Vectors, Matrices,…

Lists might be stored efficiently (ranges, enumerators,
bitlists, compact vectors,…) but always allow the basic
operations of Length, element access and Position. If
GAP can compare elements cheaply, it can be worth to
sort for fast position tests.

Lists can have unbound entries and can grow arbitrarily
large.

well, up to 10b-4, where b is
the “bitness” — 32 or 64.

List Operations
A number of list operations, taking as argument a list and
a function, allow functionality that loops over a list:
List, Filtered, Number, ForAll, ForAny, First,
PositionProperty
The function might be given in λ-syntax: x->expr(x)

This allows for whole functions being written in one line:
Filtered(Filtered([2..2000],n->not IsPrime(n)),

n->ForAll(Filtered([2..n-1],b->Gcd(b,n)=1),
 b->b^(n-1) mod n=1));

returns [561, 1105, 1729]

List Operations
A number of list operations, taking as argument a list and
a function, allow functionality that loops over a list:
List, Filtered, Number, ForAll, ForAny, First,
PositionProperty
The function might be given in λ-syntax: x->expr(x)

This allows for whole functions being written in one line:
Filtered(Filtered([2..2000],n->not IsPrime(n)),

n->ForAll(Filtered([2..n-1],b->Gcd(b,n)=1),
 b->b^(n-1) mod n=1));

returns [561, 1105, 1729]

=13+123

=93+103.

General Language Conventions
Library operations are named in upper case with infix upper

case letters: SylowSubgroup.
If the modus operandi is specified, it comes aft the end of

the name: GroupHomomorphismByImages.
Arguments are typically listed in deceasing size: group,

permutation, point
Attributes (e.g. Size) store information about objects that

has been obtained in calculations. Associated are functions to
test for knowledge (HasSize) or to store knowledge
(SetSize).
If possible, classes (or elements, subgroups) with
Representative

Useful Group Functionality
Group(gens), Subgroup(G,gens), Random(G)

Centralizer(G,elm) and Normalizer(G,subgroup)
ConjugacyClasses(G) of elements, returns list of classes, each class
stores Representative, Centralizer.

ConjugacyClassesSubgroups(G) returns list of classes, each class
stores Representative, Normalizer.

IntermediateSubgroups subgroups S<U<T

NormalSubgroups(G), MaximalSubgroupClassReps(G) list of
representatives. ComplementClassesRepresentatives(G,N)

IsomorphismGroups(G,H) and IdGroup(G). GQuotients(G,H)
(up to kernel equality). Beware StructureDescription

Useful Group Functionality
Group(gens), Subgroup(G,gens), Random(G)

Centralizer(G,elm) and Normalizer(G,subgroup)
ConjugacyClasses(G) of elements, returns list of classes, each class
stores Representative, Centralizer.

ConjugacyClassesSubgroups(G) returns list of classes, each class
stores Representative, Normalizer.

IntermediateSubgroups subgroups S<U<T

NormalSubgroups(G), MaximalSubgroupClassReps(G) list of
representatives. ComplementClassesRepresentatives(G,N)

IsomorphismGroups(G,H) and IdGroup(G). GQuotients(G,H)
(up to kernel equality). Beware StructureDescription

soon

to be less

lousy!

Useful Group Functionality
Group(gens), Subgroup(G,gens), Random(G)

Centralizer(G,elm) and Normalizer(G,subgroup)
ConjugacyClasses(G) of elements, returns list of classes, each class
stores Representative, Centralizer.

ConjugacyClassesSubgroups(G) returns list of classes, each class
stores Representative, Normalizer.

IntermediateSubgroups subgroups S<U<T

NormalSubgroups(G), MaximalSubgroupClassReps(G) list of
representatives. ComplementClassesRepresentatives(G,N)

IsomorphismGroups(G,H) and IdGroup(G). GQuotients(G,H)
(up to kernel equality). Beware StructureDescription

Basic Example

Suppose we want to find how many subgroups of the
Mathieu group M11 are isomorphic to A5.

Not necessarily the fastest/best way, but to show some
functionality.

gap> g:=Group((1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)
(4,10,5,6));;
gap> s5:=SymmetricGroup(5);
Sym([1 .. 5])
gap> a5:=DerivedSubgroup(s5);
Alt([1 .. 5])
gap> u:=List(ConjugacyClassesSubgroups(g),Representative);;
gap> Length(u);
39
gap> u:=Filtered(u,x->Size(x)=Size(a5));;Length(u);
2
gap> List(u,IsSimpleGroup);
[true, true]
gap> IsomorphismGroups(u[1],a5);
[(3,5)(4,6)(7,9)(10,11), (1,2,3)(4,9,8)(5,10,11)] ->
[(2,4)(3,5), (1,2,3)]
gap> RepresentativeAction(SymmetricGroup(11),u[1],u[2]);
fail
gap> Sum(u,x->Index(g,Normalizer(g,x)));
198

GAP Is A Good Bureaucrat
It will only results that are correct, subject to

Program Errors, Computer Errors
Publication-level research (including CFSG!)
Also (verification) true if random methods are used.

It will aim to answer the question posed, if it can at all.
Even if that means enumerating the elements of E8,
exceeds all memory / run time available, and brings a
multi-user machine to its knees.
Error, if limit (initially 2GB, then doubles) is exceeded.

GAP Is A Good Bureaucrat
It will only results that are correct, subject to

Program Errors, Computer Errors
Publication-level research (including CFSG!)
Also (verification) true if random methods are used.

It will aim to answer the question posed, if it can at all.
Even if that means enumerating the elements of E8,
exceeds all memory / run time available, and brings a
multi-user machine to its knees.
Error, if limit (initially 2GB, then doubles) is exceeded.

Can change limit by a startup-option (batch file on Windows)

Can continue with return; then limit is doubled each time

Think about whether what GAP does is sensible (missing
information?)

Is there a chance for the calculation to complete?

Trust is Good, Control is Better
GAP will not automatically trust all user input but perform
sanity checks (element in group, mapping on generators is
a homomorphism,…) and trigger errors, return fail.

In some cases such checks can take substantial time, in
particular if many are performed in a loop.

Certain operations have a NC (no check) variant that skips
the tests and can be used in situations when the context
makes it clear the parameters will be valid.

Dually: Assertions in code. Error if condition is not met.
Turn on by SetAssertionLevel(nr) (default: 0)

Method Selection
GAP tries to select the “best” method (of several) for a
particular operation (say NormalSubgroups) based on:

What kind of object (Category — group of permutations)
How is it stored (Representation — sparse polynomial)
What is known (Attributes — solvable of order 1234)

It basically tries to select the most specialized method that
still applies, assuming it is the best.
You can sometimes help GAP by explicitly setting
information, in particular Size for large groups.

Slides, Lecture Notes at

http://www.math.colostate.edu/
~hulpke/talks/BLR/

Das sollt Ihr mir nicht zweimal sagen!
Ich denke mir, wie viel es nützt
Denn, was man schwarz auf weiß besitzt,
Kann man getrost nach Hause tragen.

J.W.V.GOETHE, Faust, 1. Akt

This, Sir, a second time you need not say!
Your counsel I appreciate quite;
What we possess in black and white,
We can in peace and comfort bear away.

http://www.math.colostate.edu/~hulpke/talks/BLR/
http://www.math.colostate.edu/~hulpke/talks/BLR/

