Computational Group Cohomology Bangalore, November 2016

Graham Ellis NUI Galway, Ireland

Slides available at http://hamilton.nuigalway.ie/Bangalore

Password: Galway

For our favourite group G how do we compute things like:

For our favourite group *G* how do we compute things like:

a resolution

$$\longrightarrow R_n^G \longrightarrow R_{n-1}^G \longrightarrow \cdots \longrightarrow R_1^G \longrightarrow R_0^G \stackrel{\eta}{\twoheadrightarrow} \mathbb{Z}$$

of projective $\mathbb{Z}G$ -modules

For our favourite group *G* how do we compute things like:

a resolution

$$\longrightarrow R_n^G \longrightarrow R_{n-1}^G \longrightarrow \cdots \longrightarrow R_1^G \longrightarrow R_0^G \stackrel{\eta}{\twoheadrightarrow} \mathbb{Z}$$

of projective $\mathbb{Z}G$ -modules

cohomology groups

$$H^n(G,A) = H^n(\operatorname{\mathsf{Hom}}_{\mathbb{Z} G}(R_*^G,A))$$

For our favourite group *G* how do we compute things like:

a resolution

$$\longrightarrow R_n^G \longrightarrow R_{n-1}^G \longrightarrow \cdots \longrightarrow R_1^G \longrightarrow R_0^G \stackrel{\eta}{\twoheadrightarrow} \mathbb{Z}$$

of projective $\mathbb{Z}G$ -modules

cohomology groups

$$H^n(G,A) = H^n(\operatorname{\mathsf{Hom}}_{\mathbb{Z} G}(R_*^G,A))$$

the Steenrod algebra

$$H^*(G,\mathbb{Z}_2) = \bigoplus_{n=1}^{\infty} H^n(G,\mathbb{Z}_2)$$

For our favourite group *G* how do we compute things like:

a resolution

$$\longrightarrow R_n^G \longrightarrow R_{n-1}^G \longrightarrow \cdots \longrightarrow R_1^G \longrightarrow R_0^G \stackrel{\eta}{\twoheadrightarrow} \mathbb{Z}$$

of projective $\mathbb{Z}G$ -modules

cohomology groups

$$H^n(G,A) = H^n(\operatorname{\mathsf{Hom}}_{\mathbb{Z} G}(R_*^G,A))$$

the Steenrod algebra

$$H^*(G,\mathbb{Z}_2) = \bigoplus_{n=1}^{\infty} H^n(G,\mathbb{Z}_2)$$

Hecke operators, Bredon homology, Tate cohomology ...

Typical solution in this course

ullet depends on the type of group G

Typical solution in this course

- depends on the type of group *G*
- constructs a contractible cellular space X with free G-action and sets

$$R_*^G=C_*(X)$$

Typical solution in this course

- depends on the type of group *G*
- constructs a contractible cellular space X with free G-action and sets

$$R_*^G=C_*(X)$$

uses information about an explicit contracting homotopy

$$X \simeq *$$

when computing cohomology groups, Steenrod algebras etc.

• Lecture 1: CW spaces and their (co)homology

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups
- Lecture 3: Homotopy 2-types

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups
- Lecture 3: Homotopy 2-types
- Lecture 4: Steenrod algebras of finite 2-groups

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups
- Lecture 3: Homotopy 2-types
- Lecture 4: Steenrod algebras of finite 2-groups
- Lecture 5: Curvature and classifying spaces of groups

JHC Whitehead

CW spaces Simple homotopy theory Crossed modules

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

• e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$
- $X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$
- $X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$
- $X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$
- $\phi_{\lambda} \colon \mathbb{D}^n \to X$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$
- $X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$
- $\phi_{\lambda} : \mathbb{D}^n \to X$
 - maps $\mathring{\mathbb{D}}^n$ homeomorphically

- e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$
- $X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$
- $\phi_{\lambda} : \mathbb{D}^n \to X$
 - maps $\mathring{\mathbb{D}}^n$ homeomorphically
 - maps $\mathbb{S}^{n-1} o X^{n-1} = igcup_{\dim(e_\mu) \le n-1} e_\mu$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$
- $X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$
- $\phi_{\lambda} : \mathbb{D}^n \to X$
 - maps $\mathring{\mathbb{D}}^n$ homeomorphically
 - maps $\mathbb{S}^{n-1} o X^{n-1} = igcup_{\dim(e_\mu) < n-1} e_\mu$
- some extra topological conditions if Λ is infinite

Regular CW space

Attaching maps $\phi_{\lambda} \colon \mathbb{D}^n \to e_{\lambda}$ are homeomorphisms in this case.

Regular CW space

Attaching maps $\phi_{\lambda} \colon \mathbb{D}^n \to e_{\lambda}$ are homeomorphisms in this case.

Represented in GAP as a component object X:

• X!.boundaries[n+1][k] is a list of integers $[t, a_1, ..., a_t]$ recording that the a_i th cell of dimension n-1 lies in the boundary of the kth cell of dimension n.

Regular CW space

Attaching maps $\phi_{\lambda} \colon \mathbb{D}^n \to e_{\lambda}$ are homeomorphisms in this case.

Represented in GAP as a component object X:

- X!.boundaries[n+1][k] is a list of integers $[t, a_1, ..., a_t]$ recording that the a_i th cell of dimension n-1 lies in the boundary of the kth cell of dimension n.
- X!.coboundaries[n][k] is a list of integers $[t, a_1, ..., a_t]$ recording that the kth cell of dimension n lies in the boundary of the a_i th cell of dimension n+1.

Motivating problem from applied topology

Given a set S of points randomly sampled from an unknown manifold M, what can we infer about the topology of M?

Motivating problem from applied topology

Given a set S of points randomly sampled from an unknown manifold M, what can we infer about the topology of M?

For instance, $S \subset M \subset \mathbb{E}^2$.

Repeatedly "thicken" the set S to produce a sequence of inclusions

$$S=S_1\subset S_2\subset S_3\subset\cdots$$

Repeatedly "thicken" the set S to produce a sequence of inclusions

$$S=S_1\subset S_2\subset S_3\subset\cdots$$

Repeatedly "thicken" the set S to produce a sequence of inclusions

$$S=S_1\subset S_2\subset S_3\subset\cdots$$

Repeatedly "thicken" the set S to produce a sequence of inclusions

$$S = S_1 \subset S_2 \subset S_3 \subset \cdots$$

Betti numbers

 $\beta_0(X)$ = number of path components of X

Betti numbers

 $\beta_0(X)$ = number of path components of X

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8
β_0	<i>S</i> ₁ 478	32	9	2	1	1	1	1

Betti numbers

 $\beta_0(X)$ = number of path components of X

 $\beta_1(X) =$ number of "1-dimensional holes" in X

	S_1	S_2	S_3	S_4	S_5	S_6	S ₇	S_8
β_0	478	32	9	2	1	1	1	1
β_1	478 0	115	18	4	1	1	1	1

Betti numbers

$$\beta_0(X)$$
 = number of path components of X

$$\beta_1(X) = \text{number of "1-dimensional holes" in } X$$

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8
β_0	478	32	9	2	1	1	1	1
β_1	478 0	115	18	4	1	1	1	1

These numbers are consistent with the sample coming from some region with the homotopy type of a circle.

During an inclusion $S_s \hookrightarrow S_t$ holes can

During an inclusion $S_s \hookrightarrow S_t$ holes can

 β_n^{st} = number of *n*-dimensional holes in S_s that persist to S_t

During an inclusion $S_s \hookrightarrow S_t$ holes can

 β_n^{st} = number of *n*-dimensional holes in S_s that persist to S_t β_0^{st} = number of path components in S_s that persist to S_t

A matrix

$$(\beta_n^{st}) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \end{pmatrix}$$

can be represented by a β_n bar code with

 $\beta_n^{s,t}$ horizontal lines from column s to column t

A matrix

$$(\beta_n^{st}) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \end{pmatrix}$$

can be represented by a β_n bar code with

 $\beta_n^{s,t}$ horizontal lines from column s to column t

 β_0 bar code for our example (first column cropped)

 β_0 bar codes could be enhanced to dendrograms

$$F: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto (r,g,b)$$

$$F: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto (r,g,b)$$

$$X_t = \{ v \in \mathbb{R}^2 : F_r(v) + F_g(v) + F_b(v) \le t \}$$

$$F: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto (r,g,b)$$

$$X_t = \{ v \in \mathbb{R}^2 : F_r(v) + F_g(v) + F_b(v) \le t \}$$

 $\beta_0(X_t)$ = number of connected components of X_t

$$F: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto (r,g,b)$$

$$X_t = \{ v \in \mathbb{R}^2 : F_r(v) + F_g(v) + F_b(v) \le t \}$$

 $\beta_0(X_t)$ = number of connected components of X_t

$$F: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto (r,g,b)$$

$$X_t = \{ v \in \mathbb{R}^2 : F_r(v) + F_g(v) + F_b(v) \le t \}$$

 $\beta_0(X_t)$ = number of connected components of X_t = rank $H_0(X_t, \mathbb{Z})$

$$X_s \hookrightarrow X_t$$

 $X_s \hookrightarrow X_t$ induces

$$\iota_0^{s,t}\colon H_0(X_s,\mathbb{Z})\longrightarrow H_0(X_t,\mathbb{Z})$$

 $X_s \hookrightarrow X_t$ induces

$$\iota_0^{s,t}\colon H_0(X_s,\mathbb{Z})\longrightarrow H_0(X_t,\mathbb{Z})$$

$$\beta_0^{s,t}(X_*) = \operatorname{rank}(\operatorname{image}(\iota_0^{s,t}))$$

 $X_s \hookrightarrow X_t$ induces

$$\iota_0^{s,t}\colon H_0(X_s,\mathbb{Z})\longrightarrow H_0(X_t,\mathbb{Z})$$

$$\beta_0^{s,t}(X_*) = \operatorname{rank}(\operatorname{image}(\iota_0^{s,t}))$$

Homology functors (degree 1)

 $X_s \hookrightarrow X_t$ induces

$$\iota_1^{s,t}\colon H_1(X_s,\mathbb{Z})\longrightarrow H_1(X_t,\mathbb{Z})$$

$$\beta_1^{s,t}(X_*) = \mathsf{rank}(\mathsf{image}(\iota_1^{s,t}))$$

 C_nX = free abelian group on the set of *n*-cells of X

 C_nX = free abelian group on the set of *n*-cells of X

$$\partial_n\colon \mathit{C}_nX\to \mathit{C}_{n-1}X, e_\lambda^n\mapsto \sum \epsilon_{\lambda,\mu}e_\mu^{n-1}$$

$$\epsilon_{\lambda,\mu} = \left\{ \begin{array}{ll} \pm 1 & \text{if } e_{\mu}^{n-1} \text{ lies in closure of } e_{\lambda}^{n} \\ 0 & \text{otherwise} \end{array} \right.$$

 C_nX = free abelian group on the set of *n*-cells of X

$$\partial_n\colon \mathit{C}_nX\to \mathit{C}_{n-1}X, e_\lambda^n\mapsto \sum \epsilon_{\lambda,\mu}e_\mu^{n-1}$$

$$\epsilon_{\lambda,\mu} = \left\{ \begin{array}{ll} \pm 1 & \text{if } e_{\mu}^{n-1} \text{ lies in closure of } e_{\lambda}^{n} \\ 0 & \text{otherwise} \end{array} \right.$$

Sign of $\epsilon_{\lambda,\mu}$ chosen (non-uniquely) to ensure

$$\partial_n \partial_{n+1} = 0$$

 C_nX = free abelian group on the set of *n*-cells of X

$$\partial_n\colon \mathit{C}_nX\to \mathit{C}_{n-1}X, e_\lambda^n\mapsto \sum \epsilon_{\lambda,\mu}e_\mu^{n-1}$$

$$\epsilon_{\lambda,\mu} = \left\{ \begin{array}{ll} \pm 1 & \text{if } e_{\mu}^{n-1} \text{ lies in closure of } e_{\lambda}^{n} \\ 0 & \text{otherwise} \end{array} \right.$$

Sign of $\epsilon_{\lambda,\mu}$ chosen (non-uniquely) to ensure

$$\partial_n \partial_{n+1} = 0$$

Homology of a regular CW space X

$$H_n(X,\mathbb{Z}) = H_n(C_*X) = \ker \partial_n / \operatorname{image} \partial_{n+1}$$

Example

$$C_3X \xrightarrow{\partial_3} C_2X \xrightarrow{\partial_2} C_1X \xrightarrow{\partial_1} C_0X$$

$$0 \longrightarrow \mathbb{Z}^{249702} \longrightarrow \mathbb{Z}^{509417} \longrightarrow \mathbb{Z}^{259601}$$

Example

$$C_3X \xrightarrow{\partial_3} C_2X \xrightarrow{\partial_2} C_1X \xrightarrow{\partial_1} C_0X$$

$$0 \longrightarrow \mathbb{Z}^{249702} \longrightarrow \mathbb{Z}^{509417} \longrightarrow \mathbb{Z}^{259601}$$

The matrix of ∂_1 has 132245162617 entries.

Direct application of Smith Normal Form is not so practical in such a situation.

A simple homotopy collapse

Write

$$Y \searrow X$$

if

$$Y = X \cup e^n \cup e^{n-1}$$

A simple homotopy collapse

Write

 $Y \searrow X$

if

$$Y = X \cup e^n \cup e^{n-1}$$

Such a collapse is recorded as an arrow $e^{n-1} \longrightarrow e^n$.

Example

The homotopy equivalence $[0,4] \times [0,4] \simeq *$

can be realized as a collection of simple homotopy collapses

Bing's house

Bing's house

Bing's house

The homotopy equivalence

Bing's house $\simeq *$

is not representable as a collection of simple homotopy collapses.

A discrete vector field

is a collection of arrows $e^{n-1} \longrightarrow e^n$ with e^{n-1} in the boundary of e^n and with any cell involved in at most one arrow.

A discrete vector field

is a collection of arrows $e^{n-1} \longrightarrow e^n$ with e^{n-1} in the boundary of e^n and with any cell involved in at most one arrow. It is admissible if there is no chain

$$\cdots (e_1^{n-1} \to e_1^n), (e_2^{n-1} \to e_2^n), (e_3^{n-1} \to e_3^n), \cdots$$

with each e_{i+1}^{n-1} in the boundary of e_i^n and with infinitely many (not necessarily distinct) terms to the right.

Theorem

A regular CW complex X with admissible discrete vector field represents a homotopy equivalence

$$X \stackrel{\simeq}{\longrightarrow} Y$$

where Y is a CW complex whose cells correspond to those of X that are neither source nor target of any arrow.

Theorem

A regular CW complex X with admissible discrete vector field represents a homotopy equivalence

$$X \stackrel{\simeq}{\longrightarrow} Y$$

where Y is a CW complex whose cells correspond to those of X that are neither source nor target of any arrow. Such cells of X are critical.

Second toy example revisited

$$C_3 X' \xrightarrow{\partial_3} C_2 X' \xrightarrow{\partial_2} C_1 X' \xrightarrow{\partial_1} C_0 X'$$

$$0 \longrightarrow \mathbb{Z}^0 \longrightarrow \mathbb{Z}^{476} \longrightarrow \mathbb{Z}^{362}$$

gap> M:=ReadImageAsPureCubicalComplex("file.png",300);
Pure cubical complex of dimension 2.

gap> M:=ReadImageAsPureCubicalComplex("file.png",300);
Pure cubical complex of dimension 2.

gap> Y:=RegularCWComplex(M);
Regular CW-complex of dimension 2

```
gap> M:=ReadImageAsPureCubicalComplex("file.png",300);
Pure cubical complex of dimension 2.
gap> Y:=RegularCWComplex(M);
Regular CW-complex of dimension 2
gap> C:=ChainComplexOfRegularCWComplex(Y);
Chain complex of length 2 in characteristic 0 .
gap> List([0..2],C!.dimension);
[ 259601, 509417, 249702 ]
```

```
gap> M:=ReadImageAsPureCubicalComplex("file.png",300);
Pure cubical complex of dimension 2.
gap> Y:=RegularCWComplex(M);
Regular CW-complex of dimension 2
gap> C:=ChainComplexOfRegularCWComplex(Y);
Chain complex of length 2 in characteristic 0 .
gap> List([0..2],C!.dimension);
[ 259601, 509417, 249702 ]
gap> MM:=ContractedComplex(M);;
gap> YY:=RegularCWComplex(MM);;
gap> YY:=ContractedComplex(YY);;
gap> CC:=ChainComplex(YY);;
gap> List([0..2],CC!.dimension);
[ 362, 476, 0 ]
```

Chain equivalence

Let X be a regular CW-space with discrete vector field. Let D_n denote the subgroup of C_nX freely generated by critical n-cells.

There are commuting homomorphisms

$$C_{n}X \xrightarrow{\phi_{n}} D_{n} \qquad C_{n}X \xleftarrow{\psi_{n}} D_{n}$$

$$\downarrow \partial_{n} \qquad \downarrow \delta_{n} \qquad \downarrow \partial_{n} \qquad \downarrow \delta_{n}$$

$$C_{n-1}X \xrightarrow{\phi_{n-1}} D_{n} \qquad C_{n-1}X \xleftarrow{\psi_{n}} D_{n}$$

satisfying

$$\partial_n \partial_{n+1} = 0, \quad \delta_n \delta_{n+1} = 0$$

Chain equivalence

Let X be a regular CW-space with discrete vector field. Let D_n denote the subgroup of C_nX freely generated by critical n-cells.

There are commuting homomorphisms

$$C_{n}X \xrightarrow{\phi_{n}} D_{n} \qquad C_{n}X \xrightarrow{\psi_{n}} D_{n}$$

$$\downarrow \partial_{n} \qquad \downarrow \delta_{n} \qquad \downarrow \partial_{n} \qquad \downarrow \delta_{n}$$

$$C_{n-1}X \xrightarrow{\phi_{n-1}} D_{n} \qquad C_{n-1}X \xrightarrow{\psi_{n-1}} D_{n}$$

satisfying

$$\partial_n \partial_{n+1} = 0, \quad \delta_n \delta_{n+1} = 0$$

and inducing isomorphisms

$$H_n(\phi_*): H_n(C_*X) \xrightarrow{\cong} H_n(D_*)$$
 $H_n(\psi_*) = H_n(\phi_*)^{-1}: H_n(D_*) \xrightarrow{\cong} H_n(C_*X)$

$$H^n(G,\mathbb{Z})=H^n(Hom_{\mathbb{Z}G}(C_*X,\mathbb{Z}))$$

G groupX contractible CW-space with free G-action

$$H^n(G,\mathbb{Z})=H^n(Hom_{\mathbb{Z}G}(C_*X,\mathbb{Z}))$$

G group

X contractible CW-space with free G-action

Example

$$G = \langle a, b | bab = a \rangle$$
, $X = \mathbb{R}^2$,

$$H^n(G,\mathbb{Z})=H^n(Hom_{\mathbb{Z}G}(C_*X,\mathbb{Z}))$$

G group

X contractible CW-space with free G-action

Example

$$G = \langle a, b | bab = a \rangle$$
, $X = \mathbb{R}^2$, $G \setminus X =$ Klein bottle

$$H^n(G,\mathbb{Z})=H^n(Hom_{\mathbb{Z}G}(C_*X,\mathbb{Z}))$$

G group X contractible CW-space with free G-action $H^n(-,\mathbb{Z})$ contravariant functor $Groups \longrightarrow Abelian \ groups$

Example

$$G = \langle a, b | bab = a \rangle$$
, $X = \mathbb{R}^2$, $G \setminus X =$ Klein bottle

Contracting homotopy

Exactness of the free $\mathbb{Z}G$ -resolution

$$R_* = C_*X: \cdots \longrightarrow R_n \longrightarrow R_{n-1} \longrightarrow \cdots \longrightarrow R_0$$

is encoded as \mathbb{Z} -linear homomorphisms $h_n \colon R_n \longrightarrow R_{n+1}$ satisfying

$$h_{n-1}\partial_n + \partial_{n+1}h_n$$
 $(n \ge 1).$

Contracting homotopy

Exactness of the free $\mathbb{Z}G$ -resolution

$$R_* = C_*X: \cdots \longrightarrow R_n \longrightarrow R_{n-1} \longrightarrow \cdots \longrightarrow R_0$$

is encoded as \mathbb{Z} -linear homomorphisms $h_n \colon R_n \longrightarrow R_{n+1}$ satisfying

$$h_{n-1}\partial_n + \partial_{n+1}h_n$$
 $(n \ge 1).$

Example continued

 h_n can encode a contracting distrete vector field on X

Classical homological algebra

Given

$$x \in \ker(R_n \xrightarrow{\partial_n} R_{n-1})$$

we can, by exactness, choose some

$$\tilde{x} \in R_{n+1}$$

such that

$$\partial_{n+1}\tilde{x}=x$$

Classical homological algebra

Given

$$x \in \ker(R_n \xrightarrow{\partial_n} R_{n-1})$$

we can, by exactness, choose some

$$\tilde{x} \in R_{n+1}$$

such that

$$\partial_{n+1}\tilde{x} = x$$

Constructive homological algebra

We can simply set

$$\tilde{\mathbf{x}} = \mathbf{h}_{\mathbf{n}}(\mathbf{x})$$

A group theoretic example of vector fields

 $\mathcal{A}_p(G)$ = poset of non-trivial elementary abelian subgroups in G. $\Delta \mathcal{A}_p(G)$ = order (simplicial) complex of $\mathcal{A}_p(G)$

A group theoretic example of vector fields

 $A_p(G)$ = poset of non-trivial elementary abelian subgroups in G.

 $\Delta \mathcal{A}_{\it p}({\it G}) = {\sf order}$ (simplicial) complex of $\mathcal{A}_{\it p}({\it G})$

Proposition (Ksontini) $\Delta \mathcal{A}_2(S_7) = \bigvee_{i=1}^{160} \mathbb{S}^2$

A group theoretic example of vector fields

```
A_{p}(G) = poset of non-trivial elementary abelian subgroups in G.
\Delta A_n(G) = order (simplicial) complex of A_n(G)
Proposition (Ksontini) \Delta A_2(S_7) = \bigvee_{i=1}^{160} \mathbb{S}^2
gap> K:=QuillenComplex(SymmetricGroup(7),2);
Simplicial complex of dimension 2.
gap> Size(K);
11291
gap> Y:=RegularCWComplex(K);;
gap> C:=CriticalCells(Y);;
gap> n:=0;;Length(Filtered(C,c->c[1]=n));
gap> n:=1;;Length(Filtered(C,c->c[1]=n));
0
gap> n:=2;;Length(Filtered(C,c->c[1]=n));
160
```