Computational Group Cohomology
 Bangalore, November 2016

Graham Ellis
NUI Galway, Ireland

Slides available at http://hamilton.nuigalway.ie/Bangalore

Password: Galway

Problem

For our favourite group G how do we compute things like:

Problem

For our favourite group G how do we compute things like:

- a resolution

$$
\longrightarrow R_{n}^{G} \longrightarrow R_{n-1}^{G} \longrightarrow \cdots \longrightarrow R_{1}^{G} \longrightarrow R_{0}^{G} \stackrel{\eta}{\rightarrow} \mathbb{Z}
$$

of projective $\mathbb{Z} G$-modules

Problem

For our favourite group G how do we compute things like:

- a resolution

$$
\longrightarrow R_{n}^{G} \longrightarrow R_{n-1}^{G} \longrightarrow \cdots \longrightarrow R_{1}^{G} \longrightarrow R_{0}^{G} \stackrel{\eta}{\rightarrow} \mathbb{Z}
$$

of projective $\mathbb{Z} G$-modules

- cohomology groups

$$
H^{n}(G, A)=H^{n}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(R_{*}^{G}, A\right)\right)
$$

Problem

For our favourite group G how do we compute things like:

- a resolution

$$
\longrightarrow R_{n}^{G} \longrightarrow R_{n-1}^{G} \longrightarrow \cdots \longrightarrow R_{1}^{G} \longrightarrow R_{0}^{G} \stackrel{\eta}{\rightarrow} \mathbb{Z}
$$

of projective $\mathbb{Z} G$-modules

- cohomology groups

$$
H^{n}(G, A)=H^{n}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(R_{*}^{G}, A\right)\right)
$$

- the Steenrod algebra

$$
H^{*}\left(G, \mathbb{Z}_{2}\right)=\bigoplus_{n=1}^{\infty} H^{n}\left(G, \mathbb{Z}_{2}\right)
$$

Problem

For our favourite group G how do we compute things like:

- a resolution

$$
\longrightarrow R_{n}^{G} \longrightarrow R_{n-1}^{G} \longrightarrow \cdots \longrightarrow R_{1}^{G} \longrightarrow R_{0}^{G} \stackrel{\eta}{\rightarrow} \mathbb{Z}
$$

of projective $\mathbb{Z} G$-modules

- cohomology groups

$$
H^{n}(G, A)=H^{n}\left(\operatorname{Hom}_{\mathbb{Z} G}\left(R_{*}^{G}, A\right)\right)
$$

- the Steenrod algebra

$$
H^{*}\left(G, \mathbb{Z}_{2}\right)=\bigoplus_{n=1}^{\infty} H^{n}\left(G, \mathbb{Z}_{2}\right)
$$

- Hecke operators, Bredon homology, Tate cohomology ...

Typical solution in this course

- depends on the type of group G

Typical solution in this course

- depends on the type of group G
- constructs a contractible cellular space X with free G-action and sets

$$
R_{*}^{G}=C_{*}(X)
$$

Typical solution in this course

- depends on the type of group G
- constructs a contractible cellular space X with free G-action and sets

$$
R_{*}^{G}=C_{*}(X)
$$

- uses information about an explicit contracting homotopy

$$
X \simeq *
$$

when computing cohomology groups, Steenrod algebras etc.

Outline

Outline

- Lecture 1: CW spaces and their (co)homology

Outline

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups

Outline

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups
- Lecture 3: Homotopy 2-types

Outline

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups
- Lecture 3: Homotopy 2-types
- Lecture 4: Steenrod algebras of finite 2-groups

Outline

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups
- Lecture 3: Homotopy 2-types
- Lecture 4: Steenrod algebras of finite 2-groups
- Lecture 5: Curvature and classifying spaces of groups

JHC Whitehead

CW spaces
Simple homotopy theory
Crossed modules

CW space
Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

CW space

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^{n} \subset \mathbb{R}^{n}, n=\operatorname{dim}\left(e_{\lambda}\right)$

CW space

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^{n} \subset \mathbb{R}^{n}, n=\operatorname{dim}\left(e_{\lambda}\right)$
- $X=\bigcup_{\lambda \in \Lambda} e_{\lambda}$

CW space
Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^{n} \subset \mathbb{R}^{n}, n=\operatorname{dim}\left(e_{\lambda}\right)$
- $X=\bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda^{\prime}}=\emptyset$ if $\lambda \neq \lambda^{\prime}$

CW space

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^{n} \subset \mathbb{R}^{n}, n=\operatorname{dim}\left(e_{\lambda}\right)$
- $X=\bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda^{\prime}}=\emptyset$ if $\lambda \neq \lambda^{\prime}$
- $\phi_{\lambda}: \mathbb{D}^{n} \rightarrow X$

CW space

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^{n} \subset \mathbb{R}^{n}, n=\operatorname{dim}\left(e_{\lambda}\right)$
- $X=\bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda^{\prime}}=\emptyset$ if $\lambda \neq \lambda^{\prime}$
- $\phi_{\lambda}: \mathbb{D}^{n} \rightarrow X$
- maps \mathbb{D}^{n} homeomorphically

CW space

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^{n} \subset \mathbb{R}^{n}, n=\operatorname{dim}\left(e_{\lambda}\right)$
- $X=\bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda^{\prime}}=\emptyset$ if $\lambda \neq \lambda^{\prime}$
- $\phi_{\lambda}: \mathbb{D}^{n} \rightarrow X$
- maps \mathbb{D}^{n} homeomorphically
- maps $\mathbb{S}^{n-1} \rightarrow X^{n-1}=\bigcup_{\operatorname{dim}\left(e_{\mu}\right) \leq n-1} e_{\mu}$

CW space

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^{n} \subset \mathbb{R}^{n}, n=\operatorname{dim}\left(e_{\lambda}\right)$
- $X=\bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda^{\prime}}=\emptyset$ if $\lambda \neq \lambda^{\prime}$
- $\phi_{\lambda}: \mathbb{D}^{n} \rightarrow X$
- maps \mathbb{D}^{n} homeomorphically
- maps $\mathbb{S}^{n-1} \rightarrow X^{n-1}=\bigcup_{\operatorname{dim}\left(e_{\mu}\right) \leq n-1} e_{\mu}$
- some extra topological conditions if Λ is infinite

Regular CW space

Attaching maps $\phi_{\lambda}: \mathbb{D}^{n} \rightarrow e_{\lambda}$ are homeomorphisms in this case.

regular

not regular

Regular CW space

Attaching maps $\phi_{\lambda}: \mathbb{D}^{n} \rightarrow e_{\lambda}$ are homeomorphisms in this case.

regular

not regular

Represented in GAP as a component object X :

- X!.boundaries $[\mathrm{n}+1][\mathrm{k}]$ is a list of integers $\left[t, a_{1}, \ldots, a_{t}\right]$ recording that the a_{i} th cell of dimension $n-1$ lies in the boundary of the k th cell of dimension n.

Regular CW space

Attaching maps $\phi_{\lambda}: \mathbb{D}^{n} \rightarrow e_{\lambda}$ are homeomorphisms in this case.

regular

not regular

Represented in GAP as a component object X :

- X!.boundaries $[\mathrm{n}+1][\mathrm{k}]$ is a list of integers $\left[t, a_{1}, \ldots, a_{t}\right]$ recording that the a_{i} th cell of dimension $n-1$ lies in the boundary of the k th cell of dimension n.
- X!.coboundaries $[\mathrm{n}][\mathrm{k}]$ is a list of integers $\left[t, a_{1}, \ldots, a_{t}\right]$ recording that the k th cell of dimension n lies in the boundary of the a_{i} th cell of dimension $n+1$.

Motivating problem from applied topology

Given a set S of points randomly sampled from an unknown manifold M, what can we infer about the topology of M ?

Motivating problem from applied topology

Given a set S of points randomly sampled from an unknown manifold M, what can we infer about the topology of M ?

For instance, $S \subset M \subset \mathbb{E}^{2}$.

One approach to the problem

Repeatedly "thicken" the set S to produce a sequence of inclusions

$$
S=S_{1} \subset S_{2} \subset S_{3} \subset \cdots
$$

and then search for "persistent" topological features in the sequence.

One approach to the problem

Repeatedly "thicken" the set S to produce a sequence of inclusions

$$
S=S_{1} \subset S_{2} \subset S_{3} \subset \cdots
$$

and then search for "persistent" topological features in the sequence.

One approach to the problem

Repeatedly "thicken" the set S to produce a sequence of inclusions

$$
S=S_{1} \subset S_{2} \subset S_{3} \subset \cdots
$$

and then search for "persistent" topological features in the sequence.

One approach to the problem

Repeatedly "thicken" the set S to produce a sequence of inclusions

$$
S=S_{1} \subset S_{2} \subset S_{3} \subset \cdots
$$

and then search for "persistent" topological features in the sequence.

Betti numbers

$\beta_{0}(X)=$ number of path components of X

Betti numbers

$\beta_{0}(X)=$ number of path components of X

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}
β_{0}	478	32	9	2	1	1	1	1

Betti numbers

$\beta_{0}(X)=$ number of path components of X
$\beta_{1}(X)=$ number of "1-dimensional holes" in X

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}
β_{0}	478	32	9	2	1	1	1	1
β_{1}	0	115	18	4	1	1	1	1

Betti numbers

$\beta_{0}(X)=$ number of path components of X
$\beta_{1}(X)=$ number of "1-dimensional holes" in X

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}
β_{0}	478	32	9	2	1	1	1	1
β_{1}	0	115	18	4	1	1	1	1

These numbers are consistent with the sample coming from some region with the homotopy type of a circle.

During an inclusion $S_{s} \hookrightarrow S_{t}$ holes can

During an inclusion $S_{s} \hookrightarrow S_{t}$ holes can

$\beta_{n}^{s t}=$ number of n-dimensional holes in S_{s} that persist to S_{t}

During an inclusion $S_{s} \hookrightarrow S_{t}$ holes can

$\beta_{n}^{s t}=$ number of n-dimensional holes in S_{s} that persist to S_{t} $\beta_{0}^{s t}=$ number of path components in S_{s} that persist to S_{t}

A matrix

$$
\left(\beta_{n}^{s t}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 4 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

can be represented by a β_{n} bar code with
$\beta_{n}^{s, t}$ horizontal lines from column s to column t

A matrix

$$
\left(\beta_{n}^{s t}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 4 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

can be represented by a β_{n} bar code with
$\beta_{n}^{s, t}$ horizontal lines from column s to column t

(E)

(B)

G
β_{0} bar codes could be enhanced to dendrograms

Second applied topology toy example

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(r, g, b)
$$

Second applied topology toy example

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(r, g, b)
$$

$$
X_{t}=\left\{v \in \mathbb{R}^{2}: F_{r}(v)+F_{g}(v)+F_{b}(v) \leq t\right\}
$$

Second applied topology toy example

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(r, g, b)
$$

$$
X_{t}=\left\{v \in \mathbb{R}^{2}: F_{r}(v)+F_{g}(v)+F_{b}(v) \leq t\right\}
$$

$\beta_{0}\left(X_{t}\right)=$ number of connected components of X_{t}

Second applied topology toy example

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(r, g, b)
$$

$$
X_{t}=\left\{v \in \mathbb{R}^{2}: F_{r}(v)+F_{g}(v)+F_{b}(v) \leq t\right\}
$$

$\beta_{0}\left(X_{t}\right)=$ number of connected components of X_{t}

Second applied topology toy example

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(r, g, b)
$$

$$
X_{t}=\left\{v \in \mathbb{R}^{2}: F_{r}(v)+F_{g}(v)+F_{b}(v) \leq t\right\}
$$

$\beta_{0}\left(X_{t}\right)=$ number of connected components of X_{t}

$$
=\operatorname{rank} H_{0}\left(X_{t}, \mathbb{Z}\right)
$$

Homology functors

$X_{s} \hookrightarrow X_{t}$
for $s \leq t$.

Homology functors

$X_{s} \hookrightarrow X_{t}$ induces

$$
\iota_{0}^{s, t}: H_{0}\left(X_{s}, \mathbb{Z}\right) \longrightarrow H_{0}\left(X_{t}, \mathbb{Z}\right)
$$

for $s \leq t$.

Homology functors

$X_{s} \hookrightarrow X_{t}$ induces

$$
\iota_{0}^{s, t}: H_{0}\left(X_{s}, \mathbb{Z}\right) \longrightarrow H_{0}\left(X_{t}, \mathbb{Z}\right)
$$

for $s \leq t$.

$$
\beta_{0}^{s, t}\left(X_{*}\right)=\operatorname{rank}\left(\operatorname{image}\left(\iota_{0}^{s, t}\right)\right)
$$

Homology functors

$X_{s} \hookrightarrow X_{t}$ induces

$$
\iota_{0}^{s, t}: H_{0}\left(X_{s}, \mathbb{Z}\right) \longrightarrow H_{0}\left(X_{t}, \mathbb{Z}\right)
$$

for $s \leq t$.

$$
\beta_{0}^{s, t}\left(X_{*}\right)=\operatorname{rank}\left(\operatorname{image}\left(\iota_{0}^{s, t}\right)\right)
$$

13
.637
. 148

. 2925

Homology functors (degree 1)

$X_{s} \hookrightarrow X_{t}$ induces

$$
\iota_{1}^{s, t}: H_{1}\left(X_{s}, \mathbb{Z}\right) \longrightarrow H_{1}\left(X_{t}, \mathbb{Z}\right)
$$

for $s \leq t$.

$$
\beta_{1}^{s, t}\left(X_{*}\right)=\operatorname{rank}\left(\operatorname{image}\left(\iota_{1}^{s, t}\right)\right)
$$

Chain complex of a regular CW space X

$C_{n} X=$ free abelian group on the set of n-cells of X

Chain complex of a regular CW space X

$C_{n} X=$ free abelian group on the set of n-cells of X

$$
\begin{aligned}
& \partial_{n}: C_{n} X \rightarrow C_{n-1} X, e_{\lambda}^{n} \mapsto \sum \epsilon_{\lambda, \mu} e_{\mu}^{n-1} \\
& \epsilon_{\lambda, \mu}= \begin{cases} \pm 1 & \text { if } e_{\mu}^{n-1} \text { lies in closure of } e_{\lambda}^{n} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Chain complex of a regular CW space X

$C_{n} X=$ free abelian group on the set of n-cells of X

$$
\begin{aligned}
& \partial_{n}: C_{n} X \rightarrow C_{n-1} X, e_{\lambda}^{n} \mapsto \sum \epsilon_{\lambda, \mu} e_{\mu}^{n-1} \\
& \epsilon_{\lambda, \mu}= \begin{cases} \pm 1 & \text { if } e_{\mu}^{n-1} \text { lies in closure of } e_{\lambda}^{n} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Sign of $\epsilon_{\lambda, \mu}$ chosen (non-uniquely) to ensure

$$
\partial_{n} \partial_{n+1}=0
$$

Chain complex of a regular CW space X

$C_{n} X=$ free abelian group on the set of n-cells of X

$$
\begin{aligned}
& \partial_{n}: C_{n} X \rightarrow C_{n-1} X, e_{\lambda}^{n} \mapsto \sum \epsilon_{\lambda, \mu} e_{\mu}^{n-1} \\
& \epsilon_{\lambda, \mu}= \begin{cases} \pm 1 & \text { if } e_{\mu}^{n-1} \text { lies in closure of } e_{\lambda}^{n} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Sign of $\epsilon_{\lambda, \mu}$ chosen (non-uniquely) to ensure

$$
\partial_{n} \partial_{n+1}=0
$$

Homology of a regular CW space X

$$
H_{n}(X, \mathbb{Z})=H_{n}\left(C_{*} X\right)=\text { ker } \partial_{n} / \text { image } \partial_{n+1}
$$

Example

$$
C_{3} X \xrightarrow{\partial_{3}} C_{2} X \xrightarrow{\partial_{2}} C_{1} X \xrightarrow{\partial_{1}} C_{0} X
$$

$$
0 \longrightarrow \mathbb{Z}^{249702} \longrightarrow \mathbb{Z}^{509417} \longrightarrow \mathbb{Z}^{259601}
$$

Example

$$
C_{3} X \xrightarrow{\partial_{3}} C_{2} X \xrightarrow{\partial_{2}} C_{1} X \xrightarrow{\partial_{1}} C_{0} X
$$

$$
0 \longrightarrow \mathbb{Z}^{249702} \longrightarrow \mathbb{Z}^{509417} \longrightarrow \mathbb{Z}^{259601}
$$

The matrix of ∂_{1} has 132245162617 entries.
Direct application of Smith Normal Form is not so practical in such a situation.

A simple homotopy collapse

Write

$$
Y \searrow X
$$

if

$$
Y=X \cup e^{n} \cup e^{n-1}
$$

A simple homotopy collapse

Write

$$
Y \searrow X
$$

if

$$
Y=X \cup e^{n} \cup e^{n-1}
$$

Such a collapse is recorded as an arrow $e^{n-1} \longrightarrow e^{n}$.

Example

The homotopy equivalence $[0,4] \times[0,4] \simeq *$

can be realized as a collection of simple homotopy collapses

Bing's house

Bing＇s house

Bing's house

The homotopy equivalence
Bing's house $\simeq *$
is not representable as a collection of simple homotopy collapses.

A discrete vector field

is a collection of arrows $e^{n-1} \longrightarrow e^{n}$ with e^{n-1} in the boundary of e^{n} and with any cell involved in at most one arrow.

A discrete vector field

is a collection of arrows $e^{n-1} \longrightarrow e^{n}$ with e^{n-1} in the boundary of e^{n} and with any cell involved in at most one arrow. It is admissible if there is no chain

$$
\cdots\left(e_{1}^{n-1} \rightarrow e_{1}^{n}\right),\left(e_{2}^{n-1} \rightarrow e_{2}^{n}\right),\left(e_{3}^{n-1} \rightarrow e_{3}^{n}\right), \cdots
$$

with each e_{i+1}^{n-1} in the boundary of e_{i}^{n} and with infinitely many (not necessarily distinct) terms to the right.

Theorem

A regular CW complex X with admissible discrete vector field represents a homotopy equivalence

$$
X \xrightarrow{\simeq} Y
$$

where Y is a CW complex whose cells correspond to those of X that are neither source nor target of any arrow.

Theorem

A regular CW complex X with admissible discrete vector field represents a homotopy equivalence

$$
X \xrightarrow{\simeq} Y
$$

where Y is a CW complex whose cells correspond to those of X that are neither source nor target of any arrow. Such cells of X are critical.

Second toy example revisited

$C_{3} X^{\prime} \xrightarrow{\partial_{3}} C_{2} X^{\prime} \xrightarrow{\partial_{2}} C_{1} X^{\prime} \xrightarrow{\partial_{1}} C_{0} X^{\prime}$

gap> M:=ReadImageAsPureCubicalComplex("file.png",300); Pure cubical complex of dimension 2.
gap> M:=ReadImageAsPureCubicalComplex("file.png",300); Pure cubical complex of dimension 2.
gap> Y:=RegularCWComplex(M) ;
Regular CW-complex of dimension 2
gap> M:=ReadImageAsPureCubicalComplex("file.png",300); Pure cubical complex of dimension 2.
gap> Y:=RegularCWComplex(M) ;
Regular CW-complex of dimension 2
gap> C:=ChainComplexOfRegularCWComplex(Y); Chain complex of length 2 in characteristic 0 .
gap> List([0..2],C!.dimension);
[259601, 509417, 249702]
gap> M:=ReadImageAsPureCubicalComplex("file.png",300); Pure cubical complex of dimension 2.
gap> Y:=RegularCWComplex(M) ;
Regular CW-complex of dimension 2
gap> C:=ChainComplexOfRegularCWComplex(Y);
Chain complex of length 2 in characteristic 0 .
gap> List([0..2],C!.dimension);
[259601, 509417, 249702]
gap> MM:=ContractedComplex(M); ;
gap> YY:=RegularCWComplex(MM); ;
gap> YY:=ContractedComplex(YY);;
gap> CC:=ChainComplex(YY); ;
gap> List([0..2],CC!.dimension);
[362, 476, 0]

Chain equivalence

Let X be a regular CW-space with discrete vector field. Let D_{n} denote the subgroup of $C_{n} X$ freely generated by critical n-cells.

There are commuting homomorphisms

satisfying

$$
\partial_{n} \partial_{n+1}=0, \quad \delta_{n} \delta_{n+1}=0
$$

Chain equivalence

Let X be a regular CW-space with discrete vector field. Let D_{n} denote the subgroup of $C_{n} X$ freely generated by critical n-cells.

There are commuting homomorphisms
satisfying

$$
\partial_{n} \partial_{n+1}=0, \quad \delta_{n} \delta_{n+1}=0
$$

and inducing isomorphisms

$$
\begin{gathered}
H_{n}\left(\phi_{*}\right): H_{n}\left(C_{*} X\right) \xrightarrow{\cong} H_{n}\left(D_{*}\right) \\
H_{n}\left(\psi_{*}\right)=H_{n}\left(\phi_{*}\right)^{-1}: H_{n}\left(D_{*}\right) \xrightarrow{\cong} H_{n}\left(C_{*} X\right)
\end{gathered}
$$

$\mathbf{H}^{\mathbf{n}}(\mathbf{G}, \mathbb{Z})=\mathbf{H}^{\mathbf{n}}\left(\operatorname{Hom}_{\mathbb{Z}}\left(\mathbf{C}_{*} \mathbf{X}, \mathbb{Z}\right)\right)$

G
X
group
contractible CW-space with free G-action

$\mathbf{H}^{\mathbf{n}}(\mathbf{G}, \mathbb{Z})=\mathbf{H}^{\mathbf{n}}\left(\operatorname{Hom}_{\mathbb{Z}}\left(\mathbf{C}_{*} \mathbf{X}, \mathbb{Z}\right)\right)$

G
X
group
contractible CW-space with free G-action

Example

$$
G=\langle a, b \mid b a b=a\rangle, \quad X=\mathbb{R}^{2}
$$

$\mathbf{H}^{\mathbf{n}}(\mathbf{G}, \mathbb{Z})=\mathbf{H}^{\mathbf{n}}\left(\operatorname{Hom}_{\mathbb{Z}}\left(\mathbf{C}_{*} \mathbf{X}, \mathbb{Z}\right)\right)$

contractible CW-space with free G-action

Example

$$
G=\langle a, b \mid b a b=a\rangle, \quad X=\mathbb{R}^{2}, \quad G \backslash X=\text { Klein bottle }
$$

$$
\mathbf{H}^{\mathrm{n}}(\mathbf{G}, \mathbb{Z})=\mathbf{H}^{\mathrm{n}}\left(\operatorname{Hom}_{\mathbb{Z} \mathbf{G}}\left(\mathbf{C}_{*} \mathbf{X}, \mathbb{Z}\right)\right)
$$

G
X
group
contractible CW-space with free G-action
$H^{n}(-, \mathbb{Z}) \quad$ contravariant functor Groups \longrightarrow Abelian groups

Example

$$
G=\langle a, b \mid b a b=a\rangle, \quad X=\mathbb{R}^{2}, \quad G \backslash X=\text { Klein bottle }
$$

Contracting homotopy

Exactness of the free $\mathbb{Z} G$-resolution

$$
R_{*}=C_{*} X: \quad \cdots \longrightarrow R_{n} \longrightarrow R_{n-1} \longrightarrow \cdots \longrightarrow R_{0}
$$

is encoded as \mathbb{Z}-linear homomorphisms $h_{n}: R_{n} \longrightarrow R_{n+1}$ satisfying

$$
h_{n-1} \partial_{n}+\partial_{n+1} h_{n} \quad(n \geq 1)
$$

Contracting homotopy

Exactness of the free $\mathbb{Z} G$-resolution

$$
R_{*}=C_{*} X: \quad \cdots \longrightarrow R_{n} \longrightarrow R_{n-1} \longrightarrow \cdots \longrightarrow R_{0}
$$

is encoded as \mathbb{Z}-linear homomorphisms $h_{n}: R_{n} \longrightarrow R_{n+1}$ satisfying

$$
h_{n-1} \partial_{n}+\partial_{n+1} h_{n} \quad(n \geq 1)
$$

Example continued

h_{n} can encode a contracting distrete vector field on X

Classical homological algebra

Given

$$
x \in \operatorname{ker}\left(R_{n} \xrightarrow{\partial_{n}} R_{n-1}\right)
$$

we can, by exactness, choose some

$$
\tilde{x} \in R_{n+1}
$$

such that

$$
\partial_{n+1} \tilde{x}=x
$$

Classical homological algebra

Given

$$
x \in \operatorname{ker}\left(R_{n} \xrightarrow{\partial_{n}} R_{n-1}\right)
$$

we can, by exactness, choose some

$$
\tilde{x} \in R_{n+1}
$$

such that

$$
\partial_{n+1} \tilde{x}=x
$$

Constructive homological algebra

We can simply set

$$
\tilde{\mathbf{x}}=\mathbf{h}_{\mathbf{n}}(\mathbf{x})
$$

A group theoretic example of vector fields

$\mathcal{A}_{p}(G)=$ poset of non-trivial elementary abelian subgroups in G. $\Delta \mathcal{A}_{p}(G)=\operatorname{order}$ (simplicial) complex of $\mathcal{A}_{p}(G)$

A group theoretic example of vector fields
$\mathcal{A}_{p}(G)=$ poset of non-trivial elementary abelian subgroups in G.
$\Delta \mathcal{A}_{p}(G)=\operatorname{order}$ (simplicial) complex of $\mathcal{A}_{p}(G)$
Proposition (Ksontini) $\Delta \mathcal{A}_{2}\left(S_{7}\right)=\vee_{i=1}^{160} \mathbb{S}^{2}$

A group theoretic example of vector fields

$\mathcal{A}_{p}(G)=$ poset of non-trivial elementary abelian subgroups in G.
$\Delta \mathcal{A}_{p}(G)=$ order (simplicial) complex of $\mathcal{A}_{p}(G)$
Proposition (Ksontini) $\Delta \mathcal{A}_{2}\left(S_{7}\right)=\vee_{i=1}^{160} \mathbb{S}^{2}$

```
gap> K:=QuillenComplex(SymmetricGroup(7),2);
Simplicial complex of dimension 2.
gap> Size(K);
1 1 2 9 1
gap> Y:=RegularCWComplex(K);;
gap> C:=CriticalCells(Y); ;
gap> n:=0; ;Length(Filtered(C,c->c[1]=n));
1
gap> n:=1;;Length(Filtered(C,c->c[1]=n));
0
gap> n:=2; ; Length(Filtered(C,c->c[1]=n));
160
```

