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Problem
For our favourite group G how do we compute things like:

• a resolution

−→ RG
n −→ RG

n−1 −→ · · · −→ RG
1 −→ RG

0

η
։ Z

of projective ZG -modules

• cohomology groups

Hn(G ,A) = Hn(HomZG (R
G
∗
,A))

• the Steenrod algebra

H∗(G ,Z2) =
∞
⊕

n=1

Hn(G ,Z2)

• Hecke operators, Bredon homology, Tate cohomology ...
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Typical solution in this course

• depends on the type of group G

• constructs a contractible cellular space X with free G -action
and sets

RG
∗

= C∗(X )

• uses information about an explicit contracting homotopy

X ≃ ∗

when computing cohomology groups, Steenrod algebras etc.
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Outline

• Lecture 1: CW spaces and their (co)homology

• Lecture 2: Algorithms for classifying spaces of groups

• Lecture 3: Homotopy 2-types

• Lecture 4: Steenrod algebras of finite 2-groups

• Lecture 5: Curvature and classifying spaces of groups



JHC Whitehead

CW spaces
Simple homotopy theory
Crossed modules
· · ·
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CW space

Hausdorff space X with open subsets eλ ⊂ X for λ ∈ Λ

• eλ homeomorphic to unit disk D
n ⊂ R

n, n = dim(eλ)

• X =
⋃

λ∈Λ eλ

• eλ ∩ eλ′ = ∅ if λ 6= λ′

• φλ : D
n → X

• maps D̊n homeomorphically
• maps Sn−1 → X n−1 =

⋃

dim(eµ)≤n−1 eµ

• some extra topological conditions if Λ is infinite
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Regular CW space

Attaching maps φλ : D
n → eλ are homeomorphisms in this case.

regular not regular

Represented in GAP as a component object X:

• X!.boundaries[n+1][k] is a list of integers [t, a1, ..., at ]
recording that the ai th cell of dimension n − 1 lies in the
boundary of the kth cell of dimension n.

• X!.coboundaries[n][k] is a list of integers [t, a1, ..., at ]
recording that the kth cell of dimension n lies in the boundary
of the ai th cell of dimension n + 1.
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Motivating problem from applied topology

Given a set S of points randomly sampled from an unknown
manifold M, what can we infer about the topology of M?

For instance, S ⊂ M ⊂ E
2.
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One approach to the problem

Repeatedly “thicken” the set S to produce a sequence of inclusions

S = S1 ⊂ S2 ⊂ S3 ⊂ · · ·

and then search for “persistent” topological features in the
sequence.

S1 S2 S3 S4

S5 S6 S7 S8
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Betti numbers

β0(X ) = number of path components of X

β1(X ) = number of ”1-dimensional holes” in X

S1 S2 S3 S4 S5 S6 S7 S8
β0 478 32 9 2 1 1 1 1
β1 0 115 18 4 1 1 1 1

These numbers are consistent with the sample coming from some
region with the homotopy type of a circle.
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During an inclusion Ss →֒ St holes can

persist →֒

die →֒

be born →֒

βstn = number of n-dimensional holes in Ss that persist to St

βst0 = number of path components in Ss that persist to St



A matrix

(βs tn ) =





1 1 1
0 4 2
0 0 4





can be represented by a βn bar code with

βs,tn horizontal lines from column s to column t



A matrix

(βs tn ) =





1 1 1
0 4 2
0 0 4





can be represented by a βn bar code with

βs,tn horizontal lines from column s to column t



β1 bar code for our example



β0 bar code for our example

(first column cropped)



A
B

C

D E F

G

β0 bar codes could be enhanced to dendrograms

A          B          C          D          E          F          G
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Second applied topology toy example

0 t

1

β0

F : R2 → R
3, (x , y) 7→ (r , g , b)

Xt = {v ∈ R
2 : Fr (v) + Fg (v) + Fb(v) ≤ t}

β0(Xt) = number of connected components of Xt

= rank H0(Xt ,Z)
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Homology functors (degree 1)
Xs →֒ Xt induces

ιs,t1 : H1(Xs ,Z) −→ H1(Xt ,Z)

for s ≤ t.

βs,t1 (X∗) = rank( image(ιs,t1 ) )
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Chain complex of a regular CW space X

CnX = free abelian group on the set of n-cells of X

∂n : CnX → Cn−1X , e
n
λ 7→

∑

ǫλ,µe
n−1
µ

ǫλ,µ =

{

±1 if en−1
µ lies in closure of enλ

0 otherwise

Sign of ǫλ,µ chosen (non-uniquely) to ensure

∂n∂n+1 = 0

Homology of a regular CW space X

Hn(X ,Z) = Hn(C∗X ) = ker ∂n/image ∂n+1
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Example

X =

C3X
∂3 // C2X

∂2 // C1X
∂1 // C0X

0 // Z
249702 // Z

509417 // Z
259601

The matrix of ∂1 has 132245162617 entries.

Direct application of Smith Normal Form is not so practical in such
a situation.
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A simple homotopy collapse

Write
Y ց X

if
Y = X ∪ en ∪ en−1

X

en

en−1

Such a collapse is recorded as an arrow en−1 −→ en.



Example
The homotopy equivalence [0, 4] × [0, 4] ≃ ∗

≃ ∗

can be realized as a collection of simple homotopy collapses
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Bing’s house

The homotopy equivalence

Bing′s house ≃ ∗

is not representable as a collection of simple homotopy collapses.



A discrete vector field
is a collection of arrows en−1 −→ en with en−1 in the boundary of
en and with any cell involved in at most one arrow. It is
admissible if there is no chain

· · · (en−1
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with each en−1
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is a collection of arrows en−1 −→ en with en−1 in the boundary of
en and with any cell involved in at most one arrow. It is
admissible if there is no chain

· · · (en−1
1 → en1 ), (e

n−1
2 → en2 ), (e

n−1
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Theorem
A regular CW complex X with admissible discrete vector field
represents a homotopy equivalence

X
≃

−→ Y

where Y is a CW complex whose cells correspond to those of X
that are neither source nor target of any arrow.

1

1

2

2

3

3

4

4

1

1

5

6

7

5

6

7



Theorem
A regular CW complex X with admissible discrete vector field
represents a homotopy equivalence

X
≃

−→ Y

where Y is a CW complex whose cells correspond to those of X
that are neither source nor target of any arrow. Such cells of X are
critical.

1

1

2

2

3

3

4

4

1

1

5

6

7

5

6

7



Second toy example revisited

X = ≃ X ′

C3X
′

∂3 // C2X
′

∂2 // C1X
′

∂1 // C0X
′

0 // Z
0 // Z

476 // Z
362
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gap> M:=ReadImageAsPureCubicalComplex("file.png",300);

Pure cubical complex of dimension 2.

gap> Y:=RegularCWComplex(M);

Regular CW-complex of dimension 2

gap> C:=ChainComplexOfRegularCWComplex(Y);

Chain complex of length 2 in characteristic 0 .

gap> List([0..2],C!.dimension);

[ 259601, 509417, 249702 ]

gap> MM:=ContractedComplex(M);;

gap> YY:=RegularCWComplex(MM);;

gap> YY:=ContractedComplex(YY);;

gap> CC:=ChainComplex(YY);;

gap> List([0..2],CC!.dimension);

[ 362, 476, 0 ]



Chain equivalence

Let X be a regular CW-space with discrete vector field. Let Dn

denote the subgroup of CnX freely generated by critical n-cells.

There are commuting homomorphisms

CnX
φn

//

∂n
��

Dn

δn
��

Cn−1X
φn−1

// Dn

CnX

∂n
��

Dn
ψn

oo

δn
��

Cn−1X Dn

ψn−1
oo

satisfying
∂n∂n+1 = 0, δnδn+1 = 0



Chain equivalence

Let X be a regular CW-space with discrete vector field. Let Dn

denote the subgroup of CnX freely generated by critical n-cells.

There are commuting homomorphisms

CnX
φn

//

∂n
��

Dn

δn
��

Cn−1X
φn−1

// Dn

CnX

∂n
��

Dn
ψn

oo

δn
��

Cn−1X Dn

ψn−1
oo

satisfying
∂n∂n+1 = 0, δnδn+1 = 0

and inducing isomorphisms

Hn(φ∗) : Hn(C∗X )
∼=

−→ Hn(D∗)

Hn(ψ∗) = Hn(φ∗)
−1 : Hn(D∗)

∼=
−→ Hn(C∗X )
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Hn(G,Z) = Hn(HomZG(C∗X,Z))

G group
X contractible CW-space with free G -action

Example

G = 〈a, b|bab = a〉, X = R
2, G \ X = Klein bottle
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Hn(G,Z) = Hn(HomZG(C∗X,Z))

G group
X contractible CW-space with free G -action
Hn(−,Z) contravariant functor Groups −→ Abelian groups

Example

G = 〈a, b|bab = a〉, X = R
2, G \ X = Klein bottle

a

b



Contracting homotopy
Exactness of the free ZG -resolution

R∗ = C∗X : · · · −→ Rn −→ Rn−1 −→ · · · −→ R0

is encoded as Z-linear homomorphisms hn : Rn −→ Rn+1 satisfying

hn−1∂n + ∂n+1hn (n ≥ 1).



Contracting homotopy
Exactness of the free ZG -resolution

R∗ = C∗X : · · · −→ Rn −→ Rn−1 −→ · · · −→ R0

is encoded as Z-linear homomorphisms hn : Rn −→ Rn+1 satisfying

hn−1∂n + ∂n+1hn (n ≥ 1).

Example continued
hn can encode a contracting distrete vector field on X
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Classical homological algebra

Given
x ∈ ker(Rn

∂n−→ Rn−1)

we can, by exactness, choose some

x̃ ∈ Rn+1

such that
∂n+1x̃ = x

Constructive homological algebra

We can simply set
x̃ = hn(x)
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A group theoretic example of vector fields

Ap(G ) = poset of non-trivial elementary abelian subgroups in G .
∆Ap(G ) = order (simplicial) complex of Ap(G )

Proposition (Ksontini) ∆A2(S7) = ∨160
i=1S

2

gap> K:=QuillenComplex(SymmetricGroup(7),2);

Simplicial complex of dimension 2.

gap> Size(K);

11291

gap> Y:=RegularCWComplex(K);;

gap> C:=CriticalCells(Y);;

gap> n:=0;;Length(Filtered(C,c->c[1]=n));

1

gap> n:=1;;Length(Filtered(C,c->c[1]=n));

0

gap> n:=2;;Length(Filtered(C,c->c[1]=n));

160


