Computational Group Cohomology Bangalore, November 2016

Graham Ellis NUI Galway, Ireland

Slides available at http://hamilton.nuigalway.ie/Bangalore

Password: Galway

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

<□ > < @ > < E > < E > E - のQ @

For our favourite group G how do we compute things like:

For our favourite group G how do we compute things like:

• a resolution

$$\longrightarrow R_n^G \longrightarrow R_{n-1}^G \longrightarrow \cdots \longrightarrow R_1^G \longrightarrow R_0^G \xrightarrow{\eta} \mathbb{Z}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

of projective $\mathbb{Z}G$ -modules

For our favourite group G how do we compute things like:

• a resolution

$$\longrightarrow R_n^G \longrightarrow R_{n-1}^G \longrightarrow \cdots \longrightarrow R_1^G \longrightarrow R_0^G \stackrel{\eta}{\twoheadrightarrow} \mathbb{Z}$$

of projective $\mathbb{Z}G$ -modules

cohomology groups

$$H^n(G,A) = H^n(\operatorname{Hom}_{\mathbb{Z}G}(R^G_*,A))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

For our favourite group G how do we compute things like:

• a resolution

$$\longrightarrow R_n^G \longrightarrow R_{n-1}^G \longrightarrow \cdots \longrightarrow R_1^G \longrightarrow R_0^G \stackrel{\eta}{\twoheadrightarrow} \mathbb{Z}$$

of projective $\mathbb{Z}G$ -modules

cohomology groups

$$H^n(G,A) = H^n(\operatorname{Hom}_{\mathbb{Z}G}(R^G_*,A))$$

• the Steenrod algebra

$$H^*(G,\mathbb{Z}_2) = \bigoplus_{n=1}^{\infty} H^n(G,\mathbb{Z}_2)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

For our favourite group G how do we compute things like:

• a resolution

$$\longrightarrow R_n^G \longrightarrow R_{n-1}^G \longrightarrow \cdots \longrightarrow R_1^G \longrightarrow R_0^G \xrightarrow{\eta} \mathbb{Z}$$

of projective $\mathbb{Z}G$ -modules

cohomology groups

$$H^n(G,A) = H^n(\operatorname{Hom}_{\mathbb{Z}G}(R^G_*,A))$$

• the Steenrod algebra

$$H^*(G,\mathbb{Z}_2) = \bigoplus_{n=1}^{\infty} H^n(G,\mathbb{Z}_2)$$

• Hecke operators, Bredon homology, Tate cohomology ...

Typical solution in this course

• depends on the type of group G

Typical solution in this course

- depends on the type of group G
- constructs a contractible cellular space X with free G-action and sets

$$R^G_* = C_*(X)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Typical solution in this course

- depends on the type of group G
- constructs a contractible cellular space X with free G-action and sets

$$R^G_* = C_*(X)$$

uses information about an explicit contracting homotopy

$$X \simeq *$$

when computing cohomology groups, Steenrod algebras etc.

• Lecture 1: CW spaces and their (co)homology

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• Lecture 3: Homotopy 2-types

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- Lecture 3: Homotopy 2-types
- Lecture 4: Steenrod algebras of finite 2-groups

- Lecture 1: CW spaces and their (co)homology
- Lecture 2: Algorithms for classifying spaces of groups
- Lecture 3: Homotopy 2-types
- Lecture 4: Steenrod algebras of finite 2-groups
- Lecture 5: Curvature and classifying spaces of groups

JHC Whitehead

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

CW spaces Simple homotopy theory Crossed modules

• • •

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

• e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

• e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$

•
$$X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$$

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

• e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$

•
$$X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$$

•
$$e_{\lambda} \cap e_{\lambda'} = \emptyset$$
 if $\lambda \neq \lambda'$

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$
- $X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$
- $\phi_{\lambda} \colon \mathbb{D}^n \to X$

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$
- $X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$
- $\phi_{\lambda} \colon \mathbb{D}^n \to X$
 - maps $\mathring{\mathbb{D}}^n$ homeomorphically

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$
- $X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$
- $\phi_{\lambda} \colon \mathbb{D}^n \to X$
 - maps $\mathring{\mathbb{D}}^n$ homeomorphically

• maps
$$\mathbb{S}^{n-1} o X^{n-1} = igcup_{\dim(e_\mu) \le n-1} e_\mu$$

Hausdorff space X with open subsets $e_{\lambda} \subset X$ for $\lambda \in \Lambda$

- e_{λ} homeomorphic to unit disk $\mathbb{D}^n \subset \mathbb{R}^n$, $n = \dim(e_{\lambda})$
- $X = \bigcup_{\lambda \in \Lambda} e_{\lambda}$
- $e_{\lambda} \cap e_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$
- $\phi_{\lambda} \colon \mathbb{D}^n \to X$
 - maps $\mathring{\mathbb{D}}^n$ homeomorphically
 - maps $\mathbb{S}^{n-1} o X^{n-1} = igcup_{\dim(e_\mu) \le n-1} e_\mu$
- some extra topological conditions if Λ is infinite

Regular CW space

Attaching maps $\phi_{\lambda} \colon \mathbb{D}^n \to e_{\lambda}$ are homeomorphisms in this case.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

not regular

Regular CW space

Attaching maps $\phi_{\lambda} \colon \mathbb{D}^n \to e_{\lambda}$ are homeomorphisms in this case.

regular

not regular

Represented in GAP as a component object X:

X!.boundaries[n+1][k] is a list of integers [t, a₁, ..., a_t] recording that the a_ith cell of dimension n - 1 lies in the boundary of the kth cell of dimension n.

Regular CW space

Attaching maps $\phi_{\lambda} \colon \mathbb{D}^n \to e_{\lambda}$ are homeomorphisms in this case.

regular

not regular

Represented in GAP as a component object X:

- X!.boundaries[n+1][k] is a list of integers [t, a₁, ..., a_t] recording that the a_ith cell of dimension n 1 lies in the boundary of the kth cell of dimension n.
- X!.coboundaries[n][k] is a list of integers $[t, a_1, ..., a_t]$ recording that the *k*th cell of dimension *n* lies in the boundary of the a_i th cell of dimension n + 1.

Motivating problem from applied topology

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Given a set S of points randomly sampled from an unknown manifold M, what can we infer about the topology of M?

Motivating problem from applied topology

Given a set S of points randomly sampled from an unknown manifold M, what can we infer about the topology of M?

For instance, $S \subset M \subset \mathbb{E}^2$.

Repeatedly "thicken" the set S to produce a sequence of inclusions

$$S = S_1 \subset S_2 \subset S_3 \subset \cdots$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Repeatedly "thicken" the set S to produce a sequence of inclusions

 $S = S_1 \subset S_2 \subset S_3 \subset \cdots$

Repeatedly "thicken" the set S to produce a sequence of inclusions

 $S = S_1 \subset S_2 \subset S_3 \subset \cdots$

Repeatedly "thicken" the set S to produce a sequence of inclusions

 $S = S_1 \subset S_2 \subset S_3 \subset \cdots$

Betti numbers

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\beta_0(X) =$ number of path components of X

Betti numbers

 $\beta_0(X) =$ number of path components of X

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Betti numbers

 $\beta_0(X) =$ number of path components of X $\beta_1(X) =$ number of "1-dimensional holes" in X

Betti numbers

 $\beta_0(X) =$ number of path components of X

 $\beta_1(X) =$ number of "1-dimensional holes" in X

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8
β_0	478	32	9	2	1	1	1	1
β_1	478 0	115	18	4	1	1	1	1

These numbers are consistent with the sample coming from some region with the homotopy type of a circle.

◆□> ◆□> ◆三> ◆三> ・三 のへで

During an inclusion $S_s \hookrightarrow S_t$ holes can

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

During an inclusion $S_s \hookrightarrow S_t$ holes can

 β_n^{st} = number of *n*-dimensional holes in S_s that persist to S_t

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

During an inclusion $S_s \hookrightarrow S_t$ holes can

 β_n^{st} = number of *n*-dimensional holes in S_s that persist to S_t β_0^{st} = number of path components in S_s that persist to S_t

A matrix

$$(\beta_n^{st}) = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \end{array}\right)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

can be represented by a β_n bar code with

 $\beta_n^{s,t}$ horizontal lines from column s to column t

A matrix

$$(\beta_n^{st}) = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \end{array}\right)$$

can be represented by a β_n bar code with

 $\beta_n^{s,t}$ horizontal lines from column s to column t

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲ロト ▲母 ト ▲目 ト ▲目 - ● ● ●

 $\beta_{\rm 0}$ bar codes could be enhanced to dendrograms

$F: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (r, g, b)$

$$F: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (r, g, b)$$

$$X_t = \{v \in \mathbb{R}^2 : F_r(v) + F_g(v) + F_b(v) \le t\}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$$F: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (r, g, b)$$

$$X_t = \{v \in \mathbb{R}^2 : F_r(v) + F_g(v) + F_b(v) \le t\}$$

 $\beta_0(X_t)$ = number of connected components of X_t

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

$$F: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (r, g, b)$$

$$X_t = \{v \in \mathbb{R}^2 : F_r(v) + F_g(v) + F_b(v) \le t\}$$

 $\beta_0(X_t)$ = number of connected components of X_t

・ロト・(型ト・(型ト・(型・))への)

$$F: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (r, g, b)$$

$$X_t = \{v \in \mathbb{R}^2 : F_r(v) + F_g(v) + F_b(v) \le t\}$$

 $\beta_0(X_t) =$ number of connected components of X_t = rank $H_0(X_t, \mathbb{Z})$

 $X_s \hookrightarrow X_t$

for $s \leq t$.

 $X_s \hookrightarrow X_t$ induces

$$\iota_0^{s,t} \colon H_0(X_s,\mathbb{Z}) \longrightarrow H_0(X_t,\mathbb{Z})$$

for $s \leq t$.

 $X_s \hookrightarrow X_t$ induces

$$\iota_0^{s,t} \colon H_0(X_s,\mathbb{Z}) \longrightarrow H_0(X_t,\mathbb{Z})$$

for $s \leq t$.

$$\beta_0^{s,t}(X_*) = \operatorname{rank}(\operatorname{image}(\iota_0^{s,t}))$$

 $X_s \hookrightarrow X_t$ induces

$$\iota_0^{s,t} \colon H_0(X_s,\mathbb{Z}) \longrightarrow H_0(X_t,\mathbb{Z})$$

for $s \leq t$.

$$\beta_0^{s,t}(X_*) = \operatorname{rank}(\operatorname{image}(\iota_0^{s,t}))$$

Homology functors (degree 1)

 $X_s \hookrightarrow X_t$ induces

$$\iota_1^{s,t} \colon H_1(X_s,\mathbb{Z}) \longrightarrow H_1(X_t,\mathbb{Z})$$

for $s \leq t$.

$$\beta_1^{s,t}(X_*) = \operatorname{rank}(\operatorname{image}(\iota_1^{s,t}))$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

 $C_n X$ = free abelian group on the set of *n*-cells of X

 $C_n X$ = free abelian group on the set of *n*-cells of X

$$\partial_n \colon C_n X \to C_{n-1} X, e_\lambda^n \mapsto \sum \epsilon_{\lambda,\mu} e_\mu^{n-1}$$

 $\epsilon_{\lambda,\mu} = \begin{cases} \pm 1 & \text{if } e_{\mu}^{n-1} \text{ lies in closure of } e_{\lambda}^{n} \\ 0 & \text{otherwise} \end{cases}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $C_n X$ = free abelian group on the set of *n*-cells of X

$$\partial_n \colon C_n X \to C_{n-1} X, e_\lambda^n \mapsto \sum \epsilon_{\lambda,\mu} e_\mu^{n-1}$$

 $\epsilon_{\lambda,\mu} = \begin{cases} \pm 1 & \text{if } e_{\mu}^{n-1} \text{ lies in closure of } e_{\lambda}^{n} \\ 0 & \text{otherwise} \end{cases}$

Sign of $\epsilon_{\lambda,\mu}$ chosen (non-uniquely) to ensure

$$\partial_n \partial_{n+1} = 0$$

 $C_n X$ = free abelian group on the set of *n*-cells of X

$$\partial_n \colon C_n X \to C_{n-1} X, e_\lambda^n \mapsto \sum \epsilon_{\lambda,\mu} e_\mu^{n-1}$$

 $\epsilon_{\lambda,\mu} = \begin{cases} \pm 1 & \text{if } e_{\mu}^{n-1} \text{ lies in closure of } e_{\lambda}^{n} \\ 0 & \text{otherwise} \end{cases}$

Sign of $\epsilon_{\lambda,\mu}$ chosen (non-uniquely) to ensure

$$\partial_n \partial_{n+1} = 0$$

Homology of a regular CW space X

$$H_n(X,\mathbb{Z}) = H_n(C_*X) = \ker \partial_n / \operatorname{image} \partial_{n+1}$$

Example

$$C_3 X \xrightarrow{\partial_3} C_2 X \xrightarrow{\partial_2} C_1 X \xrightarrow{\partial_1} C_0 X$$

 $0 \longrightarrow \mathbb{Z}^{249702} \longrightarrow \mathbb{Z}^{509417} \longrightarrow \mathbb{Z}^{259601}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example

$$C_3 X \xrightarrow{\partial_3} C_2 X \xrightarrow{\partial_2} C_1 X \xrightarrow{\partial_1} C_0 X$$

$$0 \longrightarrow \mathbb{Z}^{249702} \longrightarrow \mathbb{Z}^{509417} \longrightarrow \mathbb{Z}^{259601}$$

The matrix of ∂_1 has 132245162617 entries.

Direct application of Smith Normal Form is not so practical in such a situation.

(ロ)、(型)、(E)、(E)、 E、 の(の)

A simple homotopy collapse

A simple homotopy collapse

Such a collapse is recorded as an arrow $e^{n-1} \longrightarrow e^n$.

Example

The homotopy equivalence $[0,4]\times[0,4]\simeq\ast$

can be realized as a collection of simple homotopy collapses

Bing's house

(ロ) (型) (E) (E) (E) (の)

Bing's house

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Bing's house

The homotopy equivalence

Bing's house $\simeq *$

 $\mathbf{2}$

3

4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A discrete vector field

is a collection of arrows $e^{n-1} \longrightarrow e^n$ with e^{n-1} in the boundary of e^n and with any cell involved in at most one arrow.

▲ロ▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国 - のQで

A discrete vector field

is a collection of arrows $e^{n-1} \longrightarrow e^n$ with e^{n-1} in the boundary of e^n and with any cell involved in at most one arrow. It is **admissible** if there is no chain

$$\cdots (e_1^{n-1} \to e_1^n), (e_2^{n-1} \to e_2^n), (e_3^{n-1} \to e_3^n), \cdots$$

with each e_{i+1}^{n-1} in the boundary of e_i^n and with infinitely many (not necessarily distinct) terms to the right.

Theorem

A regular CW complex X with admissible discrete vector field represents a homotopy equivalence

$$X \xrightarrow{\simeq} Y$$

where Y is a CW complex whose cells correspond to those of X that are neither source nor target of any arrow.

Theorem

A regular CW complex X with admissible discrete vector field represents a homotopy equivalence

$$X \xrightarrow{\simeq} Y$$

where Y is a CW complex whose cells correspond to those of X that are neither source nor target of any arrow. Such cells of X are **critical**.

Second toy example revisited

$$C_3 X' \xrightarrow{\partial_3} C_2 X' \xrightarrow{\partial_2} C_1 X' \xrightarrow{\partial_1} C_0 X'$$

$$0 \longrightarrow \mathbb{Z}^0 \longrightarrow \mathbb{Z}^{476} \longrightarrow \mathbb{Z}^{362}$$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q ()

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

```
gap> Y:=RegularCWComplex(M);
Regular CW-complex of dimension 2
```

```
gap> Y:=RegularCWComplex(M);
Regular CW-complex of dimension 2
```

gap> C:=ChainComplexOfRegularCWComplex(Y); Chain complex of length 2 in characteristic 0 .

```
gap> List([0..2],C!.dimension);
[ 259601, 509417, 249702 ]
```

```
gap> Y:=RegularCWComplex(M);
Regular CW-complex of dimension 2
```

gap> C:=ChainComplexOfRegularCWComplex(Y); Chain complex of length 2 in characteristic 0 .

```
gap> List([0..2],C!.dimension);
[ 259601, 509417, 249702 ]
```

```
gap> MM:=ContractedComplex(M);;
gap> YY:=RegularCWComplex(MM);;
gap> YY:=ContractedComplex(YY);;
gap> CC:=ChainComplex(YY);;
gap> List([0..2],CC!.dimension);
[ 362, 476, 0 ]
```

Chain equivalence

Let X be a regular CW-space with discrete vector field. Let D_n denote the subgroup of $C_n X$ freely generated by critical *n*-cells. There are commuting homomorphisms

 $C_{n}X \xrightarrow{\phi_{n}} D_{n} \qquad C_{n}X \xleftarrow{\psi_{n}} D_{n}$ $\downarrow_{\partial_{n}} \qquad \downarrow_{\delta_{n}} \qquad \downarrow_{\partial_{n}} \qquad \downarrow_{\delta_{n}} \qquad \downarrow_{\partial_{n}} \qquad \downarrow_{\delta_{n}}$ $C_{n-1}X \xleftarrow{\phi_{n-1}} D_{n} \qquad C_{n-1}X \xleftarrow{\psi_{n-1}} D_{n}$

satisfying

$$\partial_n \partial_{n+1} = 0, \quad \delta_n \delta_{n+1} = 0$$

Chain equivalence

Let X be a regular CW-space with discrete vector field. Let D_n denote the subgroup of $C_n X$ freely generated by critical *n*-cells. There are commuting homomorphisms

satisfying

$$\partial_n \partial_{n+1} = 0, \quad \delta_n \delta_{n+1} = 0$$

and inducing isomorphisms

$$H_n(\phi_*) \colon H_n(C_*X) \xrightarrow{\cong} H_n(D_*)$$
$$H_n(\psi_*) = H_n(\phi_*)^{-1} \colon H_n(D_*) \xrightarrow{\cong} H_n(C_*X)$$

$H^n(G,\mathbb{Z})=H^n(Hom_{\mathbb{Z}G}(C_*X,\mathbb{Z}))$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

G group

X contractible CW-space with free G-action

$H^n(G,\mathbb{Z})=H^n(Hom_{\mathbb{Z}G}(C_*X,\mathbb{Z}))$

GgroupXcontractible CW-space with free G-action

Example

$$G = \langle a, b | bab = a \rangle$$
, $X = \mathbb{R}^2$,

$H^{n}(G,\mathbb{Z}) = H^{n}(Hom_{\mathbb{Z}G}(C_{*}X,\mathbb{Z}))$

GgroupXcontractible CW-space with free G-action

Example

 $G = \langle a, b | bab = a
angle, \ X = \mathbb{R}^2, \quad G \setminus X =$ Klein bottle

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

$H^n(G,\mathbb{Z})=H^n(Hom_{\mathbb{Z}G}(C_*X,\mathbb{Z}))$

$$\begin{array}{ll} G & \text{group} \\ X & \text{contractible CW-space with free } G\text{-action} \\ H^n(-,\mathbb{Z}) & \text{contravariant functor } Groups \longrightarrow Abelian \ groups \end{array}$$

Example

 $G = \langle a, b | bab = a \rangle$, $X = \mathbb{R}^2$, $G \setminus X =$ Klein bottle

Contracting homotopy

Exactness of the free $\mathbb{Z}G$ -resolution

$$R_* = C_*X : \cdots \longrightarrow R_n \longrightarrow R_{n-1} \longrightarrow \cdots \longrightarrow R_0$$

is encoded as $\mathbb{Z}\text{-linear}$ homomorphisms $h_n\colon R_n\longrightarrow R_{n+1}$ satisfying

$$h_{n-1}\partial_n + \partial_{n+1}h_n$$
 $(n \ge 1).$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Contracting homotopy

Exactness of the free $\mathbb{Z}G$ -resolution

$$R_* = C_*X : \cdots \longrightarrow R_n \longrightarrow R_{n-1} \longrightarrow \cdots \longrightarrow R_0$$

is encoded as \mathbb{Z} -linear homomorphisms $h_n \colon R_n \longrightarrow R_{n+1}$ satisfying

$$h_{n-1}\partial_n + \partial_{n+1}h_n$$
 $(n \ge 1).$

Example continued

 h_n can encode a contracting distrete vector field on X

Classical homological algebra

Given

$$x \in \ker(R_n \stackrel{\partial_n}{\longrightarrow} R_{n-1})$$

we can, by exactness, choose some

$$\tilde{x} \in R_{n+1}$$

such that

$$\partial_{n+1}\tilde{x} = x$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Classical homological algebra

Given

$$x \in \ker(R_n \stackrel{\partial_n}{\longrightarrow} R_{n-1})$$

we can, by exactness, choose some

$$\tilde{x} \in R_{n+1}$$

such that

$$\partial_{n+1}\tilde{x} = x$$

Constructive homological algebra

We can simply set

$$\mathbf{\tilde{x}} = \mathbf{h_n}(\mathbf{x})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A group theoretic example of vector fields

 $\mathcal{A}_p(G) = \text{poset of non-trivial elementary abelian subgroups in } G.$ $\Delta \mathcal{A}_p(G) = \text{order (simplicial) complex of } \mathcal{A}_p(G)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

A group theoretic example of vector fields

 $\mathcal{A}_p(G) = \text{poset of non-trivial elementary abelian subgroups in } G.$ $\Delta \mathcal{A}_p(G) = \text{order (simplicial) complex of } \mathcal{A}_p(G)$

Proposition (Ksontini) $\Delta A_2(S_7) = \bigvee_{i=1}^{160} \mathbb{S}^2$

A group theoretic example of vector fields

 $\mathcal{A}_p(G) = \text{poset of non-trivial elementary abelian subgroups in } G.$ $\Delta \mathcal{A}_p(G) = \text{order (simplicial) complex of } \mathcal{A}_p(G)$

Proposition (Ksontini) $\Delta A_2(S_7) = \bigvee_{i=1}^{160} \mathbb{S}^2$

```
gap> K:=QuillenComplex(SymmetricGroup(7),2);
Simplicial complex of dimension 2.
gap> Size(K);
11291
gap> Y:=RegularCWComplex(K);;
gap> C:=CriticalCells(Y);;
gap> n:=0;;Length(Filtered(C,c->c[1]=n));
1
gap> n:=1;;Length(Filtered(C,c->c[1]=n));
0
gap> n:=2;;Length(Filtered(C,c->c[1]=n));
160
```