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NOTATION

Throughout this lecture, G denotes a finite group and F a field.
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REPRESENTATIONS: DEFINITIONS

An F -representation of G of degree d is a homomorphism

X : G→ GL(V ),

where V is a d-dimensional F -vector space. (This is also called
a representation of G on V .)

To accord with GAP, we let GL(V ) act from the right on V .

For computations one chooses a basis of V and obtains a
matrix representation G→ GLd (F ).

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE I



REPRESENTATIONS AND CHARACTERS
ORDINARY CHARACTER TABLES

COMPUTATION OF CHARACTER TABLES

REPRESENTATIONS: DEFINITIONS

An F -representation of G of degree d is a homomorphism

X : G→ GL(V ),

where V is a d-dimensional F -vector space. (This is also called
a representation of G on V .)

To accord with GAP, we let GL(V ) act from the right on V .

For computations one chooses a basis of V and obtains a
matrix representation G→ GLd (F ).

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE I



REPRESENTATIONS AND CHARACTERS
ORDINARY CHARACTER TABLES

COMPUTATION OF CHARACTER TABLES

REPRESENTATIONS: DEFINITIONS

An F -representation of G of degree d is a homomorphism

X : G→ GL(V ),

where V is a d-dimensional F -vector space. (This is also called
a representation of G on V .)

To accord with GAP, we let GL(V ) act from the right on V .

For computations one chooses a basis of V and obtains a
matrix representation G→ GLd (F ).

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE I



REPRESENTATIONS AND CHARACTERS
ORDINARY CHARACTER TABLES

COMPUTATION OF CHARACTER TABLES

IRREDUCIBLE REPRESENTATIONS

X : G→ GL(V ) is reducible, if either V = {0}, or if there exists
a subspace W < V , 0 6= W 6= V , s.t. w X(g) ∈W for all w ∈W
and g ∈ G. (W is G-invariant.)

Equivalently, there is a basis of V , w.r.t. which X(g) has matrix[
XW (g) 0
∗ XV/W (g)

]
for all g ∈ G.

In this case, XW and XV/W are matrix representations of
degrees dim W and dim V − dim W , respectively.

Otherwise X is called irreducible.
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REPRESENTATIONS: EQUIVALENCE

Two representations X : G→ GL(V ), and Y : G→ GL(W ) on
vector spaces V and W are called equivalent,

if there exists an isomorphism α : V →W such that the
following diagram commutes for all g ∈ G:

V
X(g)−−−−→ V

α

y yα
W −−−−→

Y(g)
W

(W.r.t. suitable bases of V and W , the matrices for X(g) and
Y(g) are simultaneously similar.)
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REPRESENTATIONS: CLASSIFICATION

1 There are only finitely many irreducible F -representations
of G up to equivalence.

Their number is at most equal to
the number of conjugacy classes of G containing elements
g such that char(F ) - |g|.

2 Classify all irreducible representations of G.

3 Describe all irreducible representations of all finite simple
groups.

4 Use a computer for sporadic simple groups.
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CHARACTERS

Let X : G→ GL(V ) be an F -representation of G.

The character afforded by X is the map

χX : G→ F , g 7→ Trace(X(g)).

χX is constant on conjugacy classes: a class function on G.

Equivalent representations have the same character.

An F -character of G is the character of some F -representation.
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IRREDUCIBLE CHARACTERS

If X is irreducible, χX is called an irreducible character.

FACTS

1 If W ≤ V is G-invariant, then χX = χXW + χXV/W .
2 There are only finitely many irreducible characters of G.
3 The set of irreducible characters of G is linearly

independent (in Maps(G,F )).
4 Every character is a sum of irreducible characters.
5 Two irreducible representations of G are equivalent,

if and only if their characters are equal.
6 Suppose that char(F ) = 0. Then any two representations

of G are equivalent, if and only if their characters are equal.
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THE ORDINARY CHARACTER TABLE

From now on let F = C.

Put Irr(G) := set of irreducible C-characters of G,
Irr(G) = {χ1, . . . , χk}.

Let g1, . . . ,gk be representatives of the conjugacy classes of G
(same k as above!).

The square matrix [
χi(gj)

]
1≤i,j≤k

is called the ordinary character table of G.
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EXAMPLE: ALTERNATING GROUP A5

EXAMPLE (CHARACTER TABLE OF A5)

1a 2a 3a 5a 5b

χ1 1 1 1 1 1
χ2 3 −1 0 A ∗A
χ3 3 −1 0 ∗A A
χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0

A = (1−
√

5)/2, ∗A = (1 +
√

5)/2

1 ∈ 1a, (1,2)(3,4) ∈ 2a, (1,2,3) ∈ 3a,

(1,2,3,4,5) ∈ 5a, (1,3,5,2,4) ∈ 5b
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GOALS AND RESULTS

AIM

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:

1 For alternating groups: Frobenius, Schur
2 For groups of Lie type: Green, Deligne, Lusztig, Shoji, . . .
3 For sporadic groups and other “small” groups:

Atlas of Finite Groups, Conway, Curtis,
Norton, Parker, Wilson, 1986

The character tables of the ATLAS are also contained in GAP.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE I



REPRESENTATIONS AND CHARACTERS
ORDINARY CHARACTER TABLES

COMPUTATION OF CHARACTER TABLES

GOALS AND RESULTS

AIM

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:

1 For alternating groups: Frobenius, Schur
2 For groups of Lie type: Green, Deligne, Lusztig, Shoji, . . .
3 For sporadic groups and other “small” groups:

Atlas of Finite Groups, Conway, Curtis,
Norton, Parker, Wilson, 1986

The character tables of the ATLAS are also contained in GAP.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE I



REPRESENTATIONS AND CHARACTERS
ORDINARY CHARACTER TABLES

COMPUTATION OF CHARACTER TABLES

GOALS AND RESULTS

AIM

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:

1 For alternating groups: Frobenius, Schur

2 For groups of Lie type: Green, Deligne, Lusztig, Shoji, . . .
3 For sporadic groups and other “small” groups:

Atlas of Finite Groups, Conway, Curtis,
Norton, Parker, Wilson, 1986

The character tables of the ATLAS are also contained in GAP.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE I



REPRESENTATIONS AND CHARACTERS
ORDINARY CHARACTER TABLES

COMPUTATION OF CHARACTER TABLES

GOALS AND RESULTS

AIM

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:

1 For alternating groups: Frobenius, Schur
2 For groups of Lie type: Green, Deligne, Lusztig, Shoji, . . .

3 For sporadic groups and other “small” groups:
Atlas of Finite Groups, Conway, Curtis,
Norton, Parker, Wilson, 1986

The character tables of the ATLAS are also contained in GAP.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE I



REPRESENTATIONS AND CHARACTERS
ORDINARY CHARACTER TABLES

COMPUTATION OF CHARACTER TABLES

GOALS AND RESULTS

AIM

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:

1 For alternating groups: Frobenius, Schur
2 For groups of Lie type: Green, Deligne, Lusztig, Shoji, . . .
3 For sporadic groups and other “small” groups:

Atlas of Finite Groups, Conway, Curtis,
Norton, Parker, Wilson, 1986

The character tables of the ATLAS are also contained in GAP.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE I



REPRESENTATIONS AND CHARACTERS
ORDINARY CHARACTER TABLES

COMPUTATION OF CHARACTER TABLES

GOALS AND RESULTS

AIM

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:

1 For alternating groups: Frobenius, Schur
2 For groups of Lie type: Green, Deligne, Lusztig, Shoji, . . .
3 For sporadic groups and other “small” groups:

Atlas of Finite Groups, Conway, Curtis,
Norton, Parker, Wilson, 1986

The character tables of the ATLAS are also contained in GAP.
GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY – LECTURE I



REPRESENTATIONS AND CHARACTERS
ORDINARY CHARACTER TABLES

COMPUTATION OF CHARACTER TABLES

CHARACTER TABLES IN GAP AND MAGMA

GAP is a system for computational discrete algebra [...]
(http://www.gap-system.org/).

MAGMA is a [...] software package designed to solve [...] hard
problems in algebra, number theory, geometry and
combinatorics (http://magma.maths.usyd.edu.au/magma/).

GAP and MAGMA provide a large number of character tables.

Character tables in GAP and MAGMA are

1 taken from a character table library (which in GAP currently
contains 2279 tables), or

2 computed from scratch (using, e.g., the Burnside-
Dixon-Schneider algorithm or lattice reduction), or

3 computed from a generic character table.
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THE ORTHOGONALITY RELATIONS

Let C(G) denote the set of C-valued class functions on G, and
Z[Irr(G)] := {

∑k
i=1 ziχi | zi ∈ Z for all i} ⊆ C(G).

Define the inner product 〈−,−〉 on C(G) by

〈χ, ψ〉 :=
1
|G|

∑
g∈G

χ(g)ψ(g−1).

FACTS

1 Irr(G) = {χ1, . . . , χk} is an ON basis of C(G).
2 α =

∑k
i=1〈χi , α〉χi for α ∈ C(G).

3 α ∈ C(G) is a character if and only if 〈χi , α〉 ∈ N for all i .
4 Suppose α ∈ Z[Irr(G)].

Then α ∈ Irr(G) if and only if 〈α, α〉 = 1 and α(1) > 0.
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CLASS MULTIPLICATION COEFFICIENTS

Let C1, . . . ,Ck be the conjugacy classes of G.

Define the class multiplication coefficients cijl (1 ≤ i , j , l ≤ k ) by

cijl := |{(x , y) | x ∈ Ci , y ∈ Cj , xy ∈ Cl}|/|Cl |.

Put Mi := [cijl ] ∈ Nk×k , i = 1, . . . , k .

THEOREM (BURNSIDE)
The ordinary character table of G can be computed from

1 The common column eigenvectors of M1, . . . ,Mk , or
2 the common row eigenvectors of M1, . . . ,Mk , or
3 the corresponding eigenvalues.
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THE BURNSIDE-DIXON-SCHNEIDER ALGORITHM

Let C1, . . . ,Ck be the conjugacy classes of G, gi ∈ Ci ,
i = 1, . . . , k , g1 = 1.

Let χ ∈ Irr(G). Then for all 1 ≤ i ≤ k , there are ωχ,i ∈ C such
that

ωχ,i [χ(g1), . . . , χ(gk )] = [χ(g1), . . . , χ(gk )]Mi .

ALGORITHM (BURNSIDE-DIXON-SCHNEIDER)
1 Compute the matrices Mi , 1 ≤ i ≤ k.
2 Find the common row eigenvectors χ′1, . . . , χ

′
k of these.

3 χi = ciχ
′
i and 〈χ′i , χ′i〉 = 1/c2

i  χi .

Computations are done in a finite field and lifted back to C.
Usually, not all of the matrices Mi have to be computed.
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CONSTRUCTIONS OF CHARACTERS, I

Product. Let χ, ψ be characters of G. Then the product χ · ψ,
defined by

[χ · ψ](g) := χ(g)ψ(g), g ∈ G

is a character as well (proof later).

Symmetrisation. Let χ be a character of G. Then S2(χ) and
Λ2(χ) defined by

S2(χ)(g) =
1
2

(
χ(g)2 + χ(g2)

)
, Λ2(χ)(g) =

1
2

(
χ(g)2 − χ(g2)

)
are characters as well.

Restriction. Let H ≤ G and χ a character of G. Then the
restriction χH of χ to H is a character of H.
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CONSTRUCTIONS OF CHARACTERS, II

Induction. Let H ≤ G, and ψ a character of H.

Then ψG defined by

ψG(g) :=
l∑

i=1

|CG(g)|
|CH(hi)|

ψ(hi), g ∈ G,

where h1, . . . ,hl are representatives of the H-conjugacy
classes contained in the G-conjugacy class of g,
is a character of G.

ψG is called an induced character.
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BRAUER’S INDUCTION THEOREM

Recall Z[Irr(G)] := {
∑k

i=1 ziχi | zi ∈ Z for all i}.

An element of Z[Irr(G)] is a generalised character.

DEFINITION

E ≤ G is called elementary, if E = P × C, with P a p-group for
some prime p, and C a cyclic group.
E : set of elementary subgroups of G.
For E ∈ E , write IndG

E (Z[Irr(E)]) := {ψG | ψ ∈ Z[Irr(E)]}.

THEOREM (BRAUER’S INDUCTION THEOREM)

Z[Irr(G)] =
∑

E∈E IndG
E (Z[Irr(E)]).
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GENERATE AND SPLIT: OVERVIEW

Strategy to compute Irr(G): (Bill Unger, MAGMA):

In the following, I ∪ B ⊆ Z[Irr(G)] such that

I ⊆ Irr(G) and 〈I,B〉 = 0. (1)

Repeat the following steps until |I|+ |B| = |Irr(G)| and
det〈B,B〉 = 1:

1 Compute L ⊆ Z[Irr(G)] using above constructions;
2 L← projection of L to 〈I〉⊥ (using inner product);
3 Using the LLL-algorithm (Lenstra-Lenstra-Lovács),

compute a basis I′ ∪ B′ of 〈B ∪ L〉Z satisfying (1);
4 I ← I ∪ I′, B ← B′.
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GENERATE AND SPLIT: REMARKS

1 By Brauer’s induction theorem, the above procedure
terminates, if in Step 1 all induced characters of all
elementary subgroups are generated.

2 In implementation (Unger), an irredundant subset of these
is generated successively.

3 A hybrid method, using a starting set I computed with
Burnside-Dixon-Schneider is reasonable.

4 LLL does not guarantee to find all vectors of norm 1
(though in the experiments it does, according to Unger).

5 If it terminates with B 6= ∅, try to find the factorisations
M = AAtr for Gram matrix M = 〈B,B〉.

6 Recently, Breuer, Malle and O’Brien have recomputed the
character tables of the sporadic groups (except for B and
M) using Unger’s algorithm.
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GENERIC CHARACTER TABLES

Generic character tables are

1 programs for computing the character table of each
individual group of an infinite series of groups, e.g., Sn or
An for n ∈ N, or Weyl groups,

using recursive formulae for the character values
(Murnaghan-Nakayama type formulae) or

2 parametrised character tables for an infinite series of
groups, e.g., SL2(q) or SU3(q), q a prime power.
Conjugacy classes and characters are parametrised;
character values are given in terms of the parameters.
These are computed through Deligne-Lusztig theory.
Individual tables are obtained by specialisation.
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THE GENERIC CHARACTER TABLE FOR SL2(q), q EVEN

C1 C2 C3(a) C4(b)

χ1 1 1 1 1

χ2 q 0 1 −1

χ3(m) q + 1 1 ζam + ζ−am 0

χ4(n) q − 1 −1 0 −ξbn − ξ−bn

a,m = 1, . . . , (q − 2)/2, b,n = 1, . . . ,q/2,

ζ := exp(2π
√
−1

q−1 ), ξ := exp(2π
√
−1

q+1 )[
µa 0
0 µ−a

]
∈ C3(a) (µ ∈ Fq a primitive (q − 1)th root of 1)[

νb 0
0 ν−b

]
∈∼ C4(b) (ν ∈ Fq2 a primitive (q + 1)th root of 1)

Specialising q to 4, gives the character table of SL2(4) ∼= A5.
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CHEVIE

CHEVIE is a computer algebra project for symbolic calculations
with generic character tables of groups of Lie type,

Coxeter
groups, Iwahori-Hecke algebras and other related structures
(http://www.math.rwth-aachen.de/˜CHEVIE/).

It is (currently) based on GAP-3, and MAPLE.
But there will be a GAP-4 version.

Authors: Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter
Malle, Jean Michel and Götz Pfeiffer
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Thank you for your attention!
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