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NOTATION

Throughout this lecture, G denotes a finite group and F a field.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY — LECTURE I



REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: DEFINITIONS

An F-representation of G of degree d is a homomorphism
X:G— GL(V),

where V is a d-dimensional F-vector space. (This is also called
a representation of Gon V.)
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REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: DEFINITIONS

An F-representation of G of degree d is a homomorphism
X:G— GL(V),

where V is a d-dimensional F-vector space. (This is also called
a representation of Gon V.)

To accord with GAP, we let GL( V) act from the right on V.
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REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: DEFINITIONS

An F-representation of G of degree d is a homomorphism
X:G— GL(V),

where V is a d-dimensional F-vector space. (This is also called
a representation of Gon V.)

To accord with GAP, we let GL( V) act from the right on V.

For computations one chooses a basis of V and obtains a
matrix representation G — GLg(F).
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE REPRESENTATIONS

X : G — GL(V) is reducible, if either V = {0}, or if there exists
asubspace W < V,0# W # V,st. wX(g) e Wforallwe W
and g € G. (W is G-invariant.)
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE REPRESENTATIONS

X : G — GL(V) is reducible, if either V = {0}, or if there exists
asubspace W < V,0# W # V,st. wX(g) e Wforallwe W
and g € G. (W is G-invariant.)

Equivalently, there is a basis of V, w.r.t. which X(g) has matrix

Xw(g)| O
« | Xyw(9)

forall g € G.
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE REPRESENTATIONS

X : G — GL(V) is reducible, if either V = {0}, or if there exists
asubspace W < V,0# W # V,st. wX(g) e Wforallwe W
and g € G. (W is G-invariant.)

Equivalently, there is a basis of V, w.r.t. which X(g) has matrix

Xw(g)| O
« | Xyw(9)

forall g € G.

In this case, X and Xy, are matrix representations of
degrees dim W and dim V — dim W, respectively.
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE REPRESENTATIONS

X : G — GL(V) is reducible, if either V = {0}, or if there exists
asubspace W < V,0# W # V,st. wX(g) e Wforallwe W
and g € G. (W is G-invariant.)

Equivalently, there is a basis of V, w.r.t. which X(g) has matrix

Xw(g)| O
« | Xyw(9)

forall g € G.

In this case, X and Xy, are matrix representations of
degrees dim W and dim V — dim W, respectively.

Otherwise X is called irreducible.
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REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: EQUIVALENCE

Two representations X : G — GL(V),and 9 : G — GL(W) on
vector spaces V and W are called equivalent,
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REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: EQUIVALENCE

Two representations X : G — GL(V),and 9 : G — GL(W) on
vector spaces V and W are called equivalent,

if there exists an isomorphism « : V — W such that the
following diagram commutes for all g € G:

v 29,y
al o

Ww ——Ww
2(9)
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REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: EQUIVALENCE

Two representations X : G — GL(V),and 9 : G — GL(W) on
vector spaces V and W are called equivalent,

if there exists an isomorphism « : V — W such that the
following diagram commutes for all g € G:

V Xx(9) V
w — W
2(9)

(W.r.t. suitable bases of V and W, the matrices for X(g) and
2)(g) are simultaneously similar.)
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REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: CLASSIFICATION

© There are only finitely many irreducible F-representations
of G up to equivalence.
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REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: CLASSIFICATION

© There are only finitely many irreducible F-representations
of G up to equivalence. Their number is at most equal to
the number of conjugacy classes of G containing elements
g such that char(F) 1 |g|.
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REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: CLASSIFICATION

© There are only finitely many irreducible F-representations
of G up to equivalence. Their number is at most equal to
the number of conjugacy classes of G containing elements
g such that char(F) 1 |g|.

@ Classify all irreducible representations of G.
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REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: CLASSIFICATION

© There are only finitely many irreducible F-representations
of G up to equivalence. Their number is at most equal to
the number of conjugacy classes of G containing elements
g such that char(F) 1 |g|.

@ Classify all irreducible representations of G.

© Describe all irreducible representations of all finite simple
groups.
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REPRESENTATIONS AND CHARACTERS

REPRESENTATIONS: CLASSIFICATION

© There are only finitely many irreducible F-representations
of G up to equivalence. Their number is at most equal to
the number of conjugacy classes of G containing elements
g such that char(F) 1 |g|.

@ Classify all irreducible representations of G.

© Describe all irreducible representations of all finite simple
groups.

© Use a computer for sporadic simple groups.
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REPRESENTATIONS AND CHARACTERS

CHARACTERS

Let X : G — GL(V) be an F-representation of G.
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REPRESENTATIONS AND CHARACTERS

CHARACTERS

Let X : G — GL(V) be an F-representation of G.

The character afforded by X is the map

xx:G— F, g~ Trace(X(9)).
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REPRESENTATIONS AND CHARACTERS

CHARACTERS

Let X : G — GL(V) be an F-representation of G.

The character afforded by X is the map

xx:G— F, g~ Trace(X(9)).

Xx Is constant on conjugacy classes: a class function on G.
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REPRESENTATIONS AND CHARACTERS

CHARACTERS

Let X : G — GL(V) be an F-representation of G.
The character afforded by X is the map
xx:G— F, g~ Trace(X(9)).
Xx Is constant on conjugacy classes: a class function on G.

Equivalent representations have the same character.
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REPRESENTATIONS AND CHARACTERS

CHARACTERS

Let X : G — GL(V) be an F-representation of G.

The character afforded by X is the map

xx:G— F, g~ Trace(X(9)).

Xx Is constant on conjugacy classes: a class function on G.
Equivalent representations have the same character.

An F-character of G is the character of some F-representation.
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE CHARACTERS

If X is irreducible, xx is called an irreducible character.
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE CHARACTERS

If X is irreducible, xx is called an irreducible character.

FACTS

Q@ If W < V is G-invariant, then xx = xx,, + XZyw-
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE CHARACTERS

If X is irreducible, xx is called an irreducible character.

FACTS

Q@ If W < V is G-invariant, then xx = xx,, + XZyw-
© There are only finitely many irreducible characters of G.
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE CHARACTERS

If X is irreducible, xx is called an irreducible character.

FACTS

Q@ If W < V is G-invariant, then xx = xx,, + XZyw-
© There are only finitely many irreducible characters of G.

© The set of irreducible characters of G is linearly
independent (in Maps(G, F)).
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE CHARACTERS

If X is irreducible, xx is called an irreducible character.

FACTS

Q@ If W < V is G-invariant, then xx = xx,, + XZyw-
© There are only finitely many irreducible characters of G.

© The set of irreducible characters of G is linearly
independent (in Maps(G, F)).
© Every character is a sum of irreducible characters.
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE CHARACTERS

If X is irreducible, xx is called an irreducible character.

FACTS

Q@ If W < V is G-invariant, then xx = xx,, + XZyw-

© There are only finitely many irreducible characters of G.

© The set of irreducible characters of G is linearly
independent (in Maps(G, F)).

© Every character is a sum of irreducible characters.

© Two irreducible representations of G are equivalent,
if and only if their characters are equal.
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REPRESENTATIONS AND CHARACTERS

IRREDUCIBLE CHARACTERS

If X is irreducible, xx is called an irreducible character.

FACTS

If W < V is G-invariant, then xx = xx,, + XZyw-

There are only finitely many irreducible characters of G.
The set of irreducible characters of G is linearly
independent (in Maps(G, F)).

Every character is a sum of irreducible characters.

Two irreducible representations of G are equivalent,
if and only if their characters are equal.

Suppose that char(F) = 0. Then any two representations
of G are equivalent, if and only if their characters are equal.
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ORDINARY CHARACTER TABLES

THE ORDINARY CHARACTER TABLE

From nowon let F = C.

Put Irr(G) := set of irreducible C-characters of G,
Irr(G) = {X1 PRI an}'
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ORDINARY CHARACTER TABLES

THE ORDINARY CHARACTER TABLE

From nowon let F = C.

Put Irr(G) := set of irreducible C-characters of G,
Irr(G) = {X1 PRI an}'

Let g4,..., gk be representatives of the conjugacy classes of G
(same k as above!).

The square matrix
[Xi(gf)]1§i,j§k
is called the ordinary character table of G.
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ORDINARY CHARACTER TABLES

EXAMPLE: ALTERNATING GROUP As

EXAMPLE (CHARACTER TABLE OF As)

1la 2a 3a 5a 5b
x1| 1 1 1 1 1
xo| 3 — 0 A %A
x3| 3 —1 0 xA A
xa| 4 0 A1 1 —1
xs| 5 1 -1 0O O
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ORDINARY CHARACTER TABLES

EXAMPLE: ALTERNATING GROUP As

EXAMPLE (CHARACTER TABLE OF As)

1la 2a 3a 5a 5b
x1| 1 1 1 1 1
xo| 3 — 0 A %A
x3| 3 —1 0 xA A
xa| 4 0 A1 1 —1
xs| 5 1 -1 0O O

A=(1-+5)/2, «A=(1+5)/2
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ORDINARY CHARACTER TABLES

EXAMPLE: ALTERNATING GROUP As

EXAMPLE (CHARACTER TABLE OF As)

1la 2a 3a 5a 5b
x1| 1 1 1 1 1
xo| 3 — 0 A %A
x3| 3 —1 0 xA A
xa| 4 1 -1 —1
xs| 5 1 -1 0O O

A=(1-+5)/2, «A=(1+5)/2

1e1a, (1,2)(38,4) €2a, (1,2,3) € 3a,
(1,2,3,4,5) €5a, (1,3,5,2,4)5b
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ORDINARY CHARACTER TABLES

GOALS AND RESULTS

Describe all ordinary character tables of all finite simple groups
and related finite groups.
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ORDINARY CHARACTER TABLES

GOALS AND RESULTS

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:
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ORDINARY CHARACTER TABLES

GOALS AND RESULTS

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:

© For alternating groups: Frobenius, Schur
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ORDINARY CHARACTER TABLES

GOALS AND RESULTS

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:

© For alternating groups: Frobenius, Schur
@ For groups of Lie type: Green, Deligne, Lusztig, Shoji, . ..
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ORDINARY CHARACTER TABLES

GOALS AND RESULTS

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:

© For alternating groups: Frobenius, Schur
@ For groups of Lie type: Green, Deligne, Lusztig, Shoji, . ..
© For sporadic groups and other “small” groups:

Atlas of Finite Groups, Conway, Curtis,
Norton, Parker, Wilson, 1986
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ORDINARY CHARACTER TABLES

GOALS AND RESULTS

Describe all ordinary character tables of all finite simple groups
and related finite groups.

Almost done:

© For alternating groups: Frobenius, Schur
@ For groups of Lie type: Green, Deligne, Lusztig, Shoji, . ..
© For sporadic groups and other “small” groups:

Atlas of Finite Groups, Conway, Curtis,
Norton, Parker, Wilson, 1986

The character tables of the ATLAS are also contained in GAP.
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ORDINARY CHARACTER TABLES

CHARACTER TABLES IN GAP AND MAGMA

GAP is a system for computational discrete algebra [...]
(http://www.gap-system.org/).
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ORDINARY CHARACTER TABLES

CHARACTER TABLES IN GAP AND MAGMA

GAP is a system for computational discrete algebra [...]
(http://www.gap-system.org/).

MAGMA is a [...] software package designed to solve [...] hard
problems in algebra, number theory, geometry and
combinatorics (http://magma.maths.usyd.edu.au/magma/).
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ORDINARY CHARACTER TABLES

CHARACTER TABLES IN GAP AND MAGMA

GAP is a system for computational discrete algebra [...]
(http://www.gap-system.org/).

MAGMA is a [...] software package designed to solve [...] hard
problems in algebra, number theory, geometry and
combinatorics (http://magma.maths.usyd.edu.au/magma/).

GAP and MAGMA provide a large number of character tables.
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ORDINARY CHARACTER TABLES

CHARACTER TABLES IN GAP AND MAGMA

GAP is a system for computational discrete algebra [...]
(http://www.gap-system.org/).

MAGMA is a [...] software package designed to solve [...] hard
problems in algebra, number theory, geometry and
combinatorics (http://magma.maths.usyd.edu.au/magma/).

GAP and MAGMA provide a large number of character tables.
Character tables in GAP and MAGMA are

© taken from a character table library (which in GAP currently
contains 2279 tables),
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ORDINARY CHARACTER TABLES

CHARACTER TABLES IN GAP AND MAGMA

GAP is a system for computational discrete algebra [...]
(http://www.gap-system.org/).

MAGMA is a [...] software package designed to solve [...] hard
problems in algebra, number theory, geometry and
combinatorics (http://magma.maths.usyd.edu.au/magma/).

GAP and MAGMA provide a large number of character tables.
Character tables in GAP and MAGMA are

© taken from a character table library (which in GAP currently
contains 2279 tables), or

@ computed from scratch (using, e.g., the Burnside-
Dixon-Schneider algorithm or lattice reduction),
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ORDINARY CHARACTER TABLES

CHARACTER TABLES IN GAP AND MAGMA

GAP is a system for computational discrete algebra [...]
(http://www.gap-system.org/).

MAGMA is a [...] software package designed to solve [...] hard
problems in algebra, number theory, geometry and
combinatorics (http://magma.maths.usyd.edu.au/magma/).

GAP and MAGMA provide a large number of character tables.
Character tables in GAP and MAGMA are

© taken from a character table library (which in GAP currently
contains 2279 tables), or

@ computed from scratch (using, e.g., the Burnside-
Dixon-Schneider algorithm or lattice reduction), or

© computed from a generic character table.
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COMPUTATION OF CHARACTER TABLES

THE ORTHOGONALITY RELATIONS

Let C(G) denote the set of C-valued class functions on G, and
Z[Ir(G)] = {>K, zixi | z € Zfor all i} C C(G).

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY — LECTURE I



COMPUTATION OF CHARACTER TABLES

THE ORTHOGONALITY RELATIONS

Let C(G) denote the set of C-valued class functions on G, and
Z[Ir(G)] = {>K, zixi | z € Zfor all i} C C(G).
Define the inner product (—, —) on C(G) by

(o) = |16, S x(gy(a ).

geG
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COMPUTATION OF CHARACTER TABLES

THE ORTHOGONALITY RELATIONS

Let C(G) denote the set of C-valued class functions on G, and
Z[Ir(G)] = {>K, zixi | z € Zfor all i} C C(G).
Define the inner product (—, —) on C(G) by

(o) = |16, S x(gy(a ).

geG

FACTS

O Irr(G) = {x1,.-.,xk} is an ON basis of C(G).
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COMPUTATION OF CHARACTER TABLES

THE ORTHOGONALITY RELATIONS

Let C(G) denote the set of C-valued class functions on G, and
Z[Ir(G)] = {>K, zixi | z € Zfor all i} C C(G).
Define the inner product (—, —) on C(G) by

(o) = |16, S x(gy(a ).

geG

FACTS

O Irr(G) = {x1,.-.,xk} is an ON basis of C(G).
@ o=/ (xia)xi fora € C(G).
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COMPUTATION OF CHARACTER TABLES

THE ORTHOGONALITY RELATIONS

Let C(G) denote the set of C-valued class functions on G, and
Z[Ir(G)] = {>K, zixi | z € Zfor all i} C C(G).
Define the inner product (—, —) on C(G) by

(o) = |16, S x(gy(a ).

geG

FACTS

O Irr(G) = {x1,.-.,xk} is an ON basis of C(G).
Q a= Zf-(:1 (xi, a)xi for a € C(QG).
© « € C(Q) is a character if and only if (xj,«) € N for all i.
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COMPUTATION OF CHARACTER TABLES

THE ORTHOGONALITY RELATIONS

Let C(G) denote the set of C-valued class functions on G, and
Z[Ir(G)] = {>K, zixi | z € Zfor all i} C C(G).
Define the inner product (—, —) on C(G) by

Xo 1) ’ZX(Q

geG

FACTS
O Irr(G) = {x1,.-.,xk} is an ON basis of C(G).
@ o= (xi,a)xi fora € C(G).
© « € C(Q) is a character if and only if (xj,«) € N for all i.

© Suppose a € Z[Irr(G)].
Then a € Irr(G) if and only if (o, ) =1 and (1) > 0
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COMPUTATION OF CHARACTER TABLES

CLASS MULTIPLICATION COEFFICIENTS

Let Cq, ..., Ck be the conjugacy classes of G.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY — LECTURE I



COMPUTATION OF CHARACTER TABLES

CLASS MULTIPLICATION COEFFICIENTS

Let Cq, ..., Ck be the conjugacy classes of G.

Define the class multiplication coefficients ¢j (1 < /,j,1 < k) by

Cjj == |{(X7y) | X € Civy € Cjuxy € C/}|/|C/|
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COMPUTATION OF CHARACTER TABLES

CLASS MULTIPLICATION COEFFICIENTS

Let Cq, ..., Ck be the conjugacy classes of G.

Define the class multiplication coefficients ¢j (1 < /,j,1 < k) by
Cij/ = |{(X7y) | X € Civy € Cjuxy € C/}|/|C/|

Put M; := [cj] € NF>¥K j=1,... k.
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COMPUTATION OF CHARACTER TABLES

CLASS MULTIPLICATION COEFFICIENTS

Let Cq, ..., Ck be the conjugacy classes of G.

Define the class multiplication coefficients ¢j (1 < /,j,1 < k) by
Cij/ = |{(X7y) | X e Civy € Cjuxy € C/}|/|C/|

Put M; := [cj] € NF>¥K j=1,... k.

THEOREM (BURNSIDE)

The ordinary character table of G can be computed from
©@ The common column eigenvectors of My, ..., My, or
@ the common row eigenvectors of My, ..., My, or
@ the corresponding eigenvalues.
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COMPUTATION OF CHARACTER TABLES

THE BURNSIDE-DIXON-SCHNEIDER ALGORITHM

Let Cq, ..., Ck be the conjugacy classes of G, g; € C;,
i=1,...,k, g1 =1.
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COMPUTATION OF CHARACTER TABLES

THE BURNSIDE-DIXON-SCHNEIDER ALGORITHM

Let Cq, ..., Ck be the conjugacy classes of G, g; € C;,
i=1,...,k, gy =1.

Let x € Irr(G). Then for all 1 < i < k, there are w, ; € C such
that

wX,i[X(g1 )a s 7X(gk)] = [X(g1 )7 s 7X(gk)]Mi-
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COMPUTATION OF CHARACTER TABLES

THE BURNSIDE-DIXON-SCHNEIDER ALGORITHM

Let Cq, ..., Ck be the conjugacy classes of G, g; € C;,
i=1,...,k, g1 =1.
Let x € Irr(G). Then for all 1 < i < k, there are w, ; € C such

that
wX,i[X(g1)a s 7X(gk)] = [X(g1 )7 s 7X(gk)]Mi-

ALGORITHM (BURNSIDE-DIXON-SCHNEIDER)
© Compute the matrices M;, 1 < i < K.
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COMPUTATION OF CHARACTER TABLES

THE BURNSIDE-DIXON-SCHNEIDER ALGORITHM

Let Cq, ..., Ck be the conjugacy classes of G, g; € C;,
i=1,...,k, gy =1.
Let x € Irr(G). Then for all 1 < i < k, there are w, ; € C such

that
wX,i[X(g1 )a s 7X(gk)] = [X(g1 )7 s 7X(gk)]Mi-

ALGORITHM (BURNSIDE-DIXON-SCHNEIDER)
© Compute the matrices M;, 1 < i < K.
@ Find the common row eigenvectors x/, ..., x| of these.
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COMPUTATION OF CHARACTER TABLES

THE BURNSIDE-DIXON-SCHNEIDER ALGORITHM

Let Cq, ..., Ck be the conjugacy classes of G, g; € C;,
i=1,...,k, gy =1.
Let x € Irr(G). Then for all 1 < i < k, there are w, ; € C such

that
wX,i[X(g1 )a s 7X(gk)] = [X(g1 )7 s 7X(gk)]Mi-

ALGORITHM (BURNSIDE-DIXON-SCHNEIDER)
© Compute the matrices M;, 1 < i < K.
@ Find the common row eigenvectors x/, ..., x| of these.

@ xi = cixiand (x},x}) = 1/¢2 ~ xi.
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COMPUTATION OF CHARACTER TABLES

THE BURNSIDE-DIXON-SCHNEIDER ALGORITHM

Let Cq, ..., Ck be the conjugacy classes of G, g; € C;,
i=1,...,k, g1 =1.
Let x € Irr(G). Then for all 1 < i < k, there are w, ; € C such
that

wy,ilx(91), - x(9K)] = [x(91), - - -, x(9) M.

ALGORITHM (BURNSIDE-DIXON-SCHNEIDER)

© Compute the matrices M;, 1 < i < K.
@ Find the common row eigenvectors x/, ..., x| of these.

@ xi = cixiand (x},x}) = 1/¢2 ~ xi.

Computations are done in a finite field and lifted back to C.
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COMPUTATION OF CHARACTER TABLES

THE BURNSIDE-DIXON-SCHNEIDER ALGORITHM

Let Cq, ..., Ck be the conjugacy classes of G, g; € C;,
i=1,...,k, g1 =1.
Let x € Irr(G). Then for all 1 < i < k, there are w, ; € C such
that

wy,ilx(91), - x(9K)] = [x(91), - - -, x(9) M.

ALGORITHM (BURNSIDE-DIXON-SCHNEIDER)

© Compute the matrices M;, 1 < i < K.
@ Find the common row eigenvectors x/, ..., x| of these.

@ xi = cixiand (x},x}) = 1/¢2 ~ xi.

Computations are done in a finite field and lifted back to C.
Usually, not all of the matrices M; have to be computed.
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COMPUTATION OF CHARACTER TABLES

CONSTRUCTIONS OF CHARACTERS, I

Product. Let x, 1) be characters of G. Then the product x - v,
defined by

[x-¥1(9) = x(9)¥(9), g€G
is a character as well (proof later).
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CONSTRUCTIONS OF CHARACTERS, I

Product. Let x, 1) be characters of G. Then the product x - v,
defined by

[x-¥1(9) = x(9)¥(9), g€G
is a character as well (proof later).

Symmetrisation. Let x be a character of G. Then S?() and
A2(x) defined by

(x(9)? - x(¢?)

N —

S0 = 5 (M@ @) . R((g) =

are characters as well.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY — LECTURE I



COMPUTATION OF CHARACTER TABLES

CONSTRUCTIONS OF CHARACTERS, I

Product. Let x, ¢ be characters of G. Then the product x - ¢,
defined by
[x-¥](9) == x(9)¥(9), 9€G

is a character as well (proof later).

Symmetrisation. Let x be a character of G. Then S?() and
A2(x) defined by

(x(9)? - x(¢?)

N —

S0 = 5 (M@ @) . R((g) =

are characters as well.

Restriction. Let H < G and x a character of G. Then the
restriction yy of x to H is a character of H.
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CONSTRUCTIONS OF CHARACTERS, II

Induction. Let H < G, and v a character of H.
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CONSTRUCTIONS OF CHARACTERS, II

Induction. Let H < G, and v a character of H.

Then ¢ defined by

WO(g) = 3 1@y e
D= e 9
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CONSTRUCTIONS OF CHARACTERS, II

Induction. Let H < G, and v a character of H.

Then ¢ defined by

WO(g) = 3 1@y e
D= e 9

where hy, ..., h; are representatives of the H-conjugacy
classes contained in the G-conjugacy class of g,
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CONSTRUCTIONS OF CHARACTERS, II

Induction. Let H < G, and v a character of H.

Then ¢ defined by

WO(g) = 3 1@y e
D= e 9

where hy, ..., h; are representatives of the H-conjugacy
classes contained in the G-conjugacy class of g,
is a character of G.
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CONSTRUCTIONS OF CHARACTERS, II

Induction. Let H < G, and v a character of H.

Then ¢ defined by

WO(g) = 3 1@y e
V= Zeum M 95

where hy, ..., h; are representatives of the H-conjugacy

classes contained in the G-conjugacy class of g,
is a character of G.

4% is called an induced character.
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COMPUTATION OF CHARACTER TABLES

BRAUER’S INDUCTION THEOREM

Recall Z[Irr(G)] := {X_, zixi | z; € Z for all i}.
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BRAUER’S INDUCTION THEOREM

Recall Z[Irr(G)] := {X_, zixi | z; € Z for all i}.

An element of Z[Irr(G)] is a generalised character.
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COMPUTATION OF CHARACTER TABLES

BRAUER’S INDUCTION THEOREM

Recall Z[Irr(G)] := {X_, zixi | z; € Z for all i}.

An element of Z[Irr(G)] is a generalised character.

E < G is called elementary, if E = P x C, with P a p-group for
some prime p, and C a cyclic group.

E: set of elementary subgroups of G.
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BRAUER’S INDUCTION THEOREM

Recall Z[Irr(G)] := {X_, zixi | z; € Z for all i}.

An element of Z[Irr(G)] is a generalised character.

E < G is called elementary, if E = P x C, with P a p-group for
some prime p, and C a cyclic group.

E: set of elementary subgroups of G.

For E € &, write Ind€(Z[Irr(E)]) := {4 | v € Z[Ir(E)]}.
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COMPUTATION OF CHARACTER TABLES

BRAUER’S INDUCTION THEOREM

Recall Z[Irr(G)] := {X_, zixi | z; € Z for all i}.

An element of Z[Irr(G)] is a generalised character.

E < G is called elementary, if E = P x C, with P a p-group for
some prime p, and C a cyclic group.

E: set of elementary subgroups of G.

For E € &, write Ind€(Z[Irr(E)]) := {4 | v € Z[Ir(E)]}.

THEOREM (BRAUER’S INDUCTION THEOREM)
Z[Ire(G)] = Y- gce INAE(Z[Irr(E))).

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY — LECTURE I



COMPUTATION OF CHARACTER TABLES

GENERATE AND SPLIT: OVERVIEW

Strategy to compute Irr(G): (Bill Unger, MAGMA):
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GENERATE AND SPLIT: OVERVIEW

Strategy to compute Irr(G): (Bill Unger, MAGMA):
In the following, /U B C Z[Irr(G)] such that

ICIn(G) and  (I,B)=0. (1)
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COMPUTATION OF CHARACTER TABLES

GENERATE AND SPLIT: OVERVIEW

Strategy to compute Irr(G): (Bill Unger, MAGMA):
In the following, /U B C Z[Irr(G)] such that

ICIn(G) and  (I,B)=0. (1)

Repeat the following steps until |/| + |B| = |Irr(G)| and
det(B,B) = 1:
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GENERATE AND SPLIT: OVERVIEW

Strategy to compute Irr(G): (Bill Unger, MAGMA):
In the following, /U B C Z[Irr(G)] such that

ICIn(G) and  (I,B)=0. (1)

Repeat the following steps until |/| + |B| = |Irr(G)| and
det(B,B) = 1:

© Compute L C Z[Irr(G)] using above constructions;
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GENERATE AND SPLIT: OVERVIEW

Strategy to compute Irr(G): (Bill Unger, MAGMA):
In the following, /U B C Z[Irr(G)] such that

ICIn(G) and  (I,B)=0. (1)

Repeat the following steps until |/| + |B| = |Irr(G)| and
det(B,B) = 1:
© Compute L C Z[Irr(G)] using above constructions;
@ L < projection of L to (/)* (using inner product);
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COMPUTATION OF CHARACTER TABLES

GENERATE AND SPLIT: OVERVIEW

Strategy to compute Irr(G): (Bill Unger, MAGMA):
In the following, /U B C Z[Irr(G)] such that

ICIn(G) and  (I,B)=0. (1)

Repeat the following steps until |/| + |B| = |Irr(G)| and
det(B,B) = 1:
© Compute L C Z[Irr(G)] using above constructions;
@ L < projection of L to (/)* (using inner product);

© Using the LLL-algorithm (Lenstra-Lenstra-Lovacs),
compute a basis I' U B’ of (B U L)z satisfying (1);
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COMPUTATION OF CHARACTER TABLES

GENERATE AND SPLIT: OVERVIEW

Strategy to compute Irr(G): (Bill Unger, MAGMA):
In the following, /U B C Z[Irr(G)] such that

ICIn(G) and  (I,B)=0. (1)

Repeat the following steps until |/| + |B| = |Irr(G)| and
det(B,B) = 1:
© Compute L C Z[Irr(G)] using above constructions;
@ L < projection of L to (/)* (using inner product);

© Using the LLL-algorithm (Lenstra-Lenstra-Lovacs),
compute a basis I' U B’ of (B U L)z satisfying (1);

Q@ /Ul B+B.
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COMPUTATION OF CHARACTER TABLES

GENERATE AND SPLIT: REMARKS

@ By Brauer’s induction theorem, the above procedure
terminates, if in Step 1 all induced characters of all
elementary subgroups are generated.
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COMPUTATION OF CHARACTER TABLES

GENERATE AND SPLIT: REMARKS

© By Brauer’s induction theorem, the above procedure
terminates, if in Step 1 all induced characters of all
elementary subgroups are generated.

@ Inimplementation (Unger), an irredundant subset of these
is generated successively.
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COMPUTATION OF CHARACTER TABLES

GENERATE AND SPLIT: REMARKS

© By Brauer’s induction theorem, the above procedure
terminates, if in Step 1 all induced characters of all
elementary subgroups are generated.

@ Inimplementation (Unger), an irredundant subset of these
is generated successively.

© A hybrid method, using a starting set / computed with
Burnside-Dixon-Schneider is reasonable.
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COMPUTATION OF CHARACTER TABLES

GENERATE AND SPLIT: REMARKS

© By Brauer’s induction theorem, the above procedure
terminates, if in Step 1 all induced characters of all
elementary subgroups are generated.

@ Inimplementation (Unger), an irredundant subset of these
is generated successively.

© A hybrid method, using a starting set / computed with
Burnside-Dixon-Schneider is reasonable.

@ LLL does not guarantee to find all vectors of norm 1
(though in the experiments it does, according to Unger).
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GENERATE AND SPLIT: REMARKS

© By Brauer’s induction theorem, the above procedure
terminates, if in Step 1 all induced characters of all
elementary subgroups are generated.

@ Inimplementation (Unger), an irredundant subset of these
is generated successively.

© A hybrid method, using a starting set / computed with
Burnside-Dixon-Schneider is reasonable.

@ LLL does not guarantee to find all vectors of norm 1
(though in the experiments it does, according to Unger).

@ If it terminates with B # (), try to find the factorisations
M = AAY for Gram matrix M = (B, B).
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GENERATE AND SPLIT: REMARKS

© By Brauer’s induction theorem, the above procedure
terminates, if in Step 1 all induced characters of all
elementary subgroups are generated.

@ Inimplementation (Unger), an irredundant subset of these
is generated successively.

© A hybrid method, using a starting set / computed with
Burnside-Dixon-Schneider is reasonable.

@ LLL does not guarantee to find all vectors of norm 1
(though in the experiments it does, according to Unger).

@ If it terminates with B # (), try to find the factorisations
M = AAY for Gram matrix M = (B, B).

O Recently, Breuer, Malle and O’Brien have recomputed the
character tables of the sporadic groups (except for B and
M) using Unger’s algorithm.
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COMPUTATION OF CHARACTER TABLES

GENERIC CHARACTER TABLES

Generic character tables are

@ programs for computing the character table of each
individual group of an infinite series of groups, e.g., S, or
An for n € N, or Weyl groups,
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GENERIC CHARACTER TABLES

Generic character tables are

@ programs for computing the character table of each
individual group of an infinite series of groups, e.g., S, or
An for n € N, or Weyl groups,
using recursive formulae for the character values
(Murnaghan-Nakayama type formulae)
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COMPUTATION OF CHARACTER TABLES

GENERIC CHARACTER TABLES

Generic character tables are

@ programs for computing the character table of each
individual group of an infinite series of groups, e.g., S, or
An for n € N, or Weyl groups,
using recursive formulae for the character values
(Murnaghan-Nakayama type formulae) or

@ parametrised character tables for an infinite series of
groups, e.g., SL»(q) or SU3(q), g a prime power.
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GENERIC CHARACTER TABLES

Generic character tables are

@ programs for computing the character table of each
individual group of an infinite series of groups, e.g., S, or
An for n € N, or Weyl groups,
using recursive formulae for the character values
(Murnaghan-Nakayama type formulae) or

@ parametrised character tables for an infinite series of
groups, e.g., SL»(q) or SU3(q), g a prime power.
Conjugacy classes and characters are parametrised;
character values are given in terms of the parameters.
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GENERIC CHARACTER TABLES

Generic character tables are

@ programs for computing the character table of each
individual group of an infinite series of groups, e.g., S, or
An for n € N, or Weyl groups,
using recursive formulae for the character values
(Murnaghan-Nakayama type formulae) or

@ parametrised character tables for an infinite series of
groups, e.g., SL»(q) or SU3(q), g a prime power.

Conjugacy classes and characters are parametrised;
character values are given in terms of the parameters.

These are computed through Deligne-Lusztig theory.
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COMPUTATION OF CHARACTER TABLES

GENERIC CHARACTER TABLES

Generic character tables are

@ programs for computing the character table of each
individual group of an infinite series of groups, e.g., S, or
An for n € N, or Weyl groups,

using recursive formulae for the character values
(Murnaghan-Nakayama type formulae) or

@ parametrised character tables for an infinite series of
groups, e.g., SL»(q) or SU3(q), g a prime power.

Conjugacy classes and characters are parametrised;
character values are given in terms of the parameters.

These are computed through Deligne-Lusztig theory.
Individual tables are obtained by specialisation.
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COMPUTATION OF CHARACTER TABLES

THE GENERIC CHARACTER TABLE FOR SLy(q), @ EVEN

X1 1 1 1 1

X2 q 0 1 —1
xs(m|g+1 1 &4 ¢am 0
xa(n) [g—1 -1 0 —&bn —¢bn
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COMPUTATION OF CHARACTER TABLES

THE GENERIC CHARACTER TABLE FOR SLy(q), @ EVEN

X1 1 1 1 1

X2 q 0 1 —1
xs(m|g+1 1 &4 ¢am 0
xa(n) [g—1 -1 0 —&bn —¢bn

am=1,...,(9-2)/2, b,n=1,...,q/2,
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COMPUTATION OF CHARACTER TABLES

THE GENERIC CHARACTER TABLE FOR SLy(q), @ EVEN

X1 1 1 1 1

X2 q 0 1 —1
xs(m) |g+1 1 M+ 0
xa(n) |g—1 -1 0 —gbn — ¢bn

am=1,...,(g—2)/2, b,n=1,...,9/2,

C=exp(3l), 6= exp(zzgf )
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COMPUTATION OF CHARACTER TABLES

THE GENERIC CHARACTER TABLE FOR SLy(q), @ EVEN

X1 1 1 1 1
X2 q 0 1 —1
xs(m) |g+1 1 M+ 0
xa(n) |g—1 -1 0 —gbn — ¢=bn
am=1,...,(g—2)/2, b,n=1,...,9/2,
C=exp(), &= exp(zzf)
[ %a uoa } € Cs(a) (1 € Fq a primitive (g — 1)th root of 1)
[ Vob u(*)b ] S Ca(b) (v € F 2 a primitive (g + 1)th root of 1)
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THE GENERIC CHARACTER TABLE FOR SLy(q), @ EVEN

X1 1 1 1 1

X2 q 0 1 —1
xs(m|g+1 1 &4 ¢am 0
xa(n) [g—1 -1 0 —&bn —¢bn

am=1,...,(g—2)/2, b,n=1,...,9/2,

C=ep(Bt), &= exp(2;§ )

a
[ % uoa } € Cs3(a) (n € Fq a primitive (g — 1)th root of 1)

b
[ 1/0 u(*)b ] S Ca(b) (v € F 2 a primitive (g + 1)th root of 1)

Specialising g to 4, gives the character table of SL,(4) = As.
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CHEVIE

CHEVIE is a computer algebra project for symbolic calculations
with generic character tables of groups of Lie type,
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COMPUTATION OF CHARACTER TABLES

CHEVIE

CHEVIE is a computer algebra project for symbolic calculations
with generic character tables of groups of Lie type, Coxeter
groups, lwahori-Hecke algebras and other related structures
(http://www.math.rwth-aachen.de/"CHEVIE/).
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CHEVIE

CHEVIE is a computer algebra project for symbolic calculations
with generic character tables of groups of Lie type, Coxeter
groups, lwahori-Hecke algebras and other related structures
(http://www.math.rwth-aachen.de/"CHEVIE/).

It is (currently) based on GAP-3, and MAPLE.
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CHEVIE

CHEVIE is a computer algebra project for symbolic calculations
with generic character tables of groups of Lie type, Coxeter
groups, lwahori-Hecke algebras and other related structures
(http://www.math.rwth-aachen.de/"CHEVIE/).

It is (currently) based on GAP-3, and MAPLE.
But there will be a GAP-4 version.
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COMPUTATION OF CHARACTER TABLES

CHEVIE

CHEVIE is a computer algebra project for symbolic calculations
with generic character tables of groups of Lie type, Coxeter
groups, lwahori-Hecke algebras and other related structures
(http://www.math.rwth-aachen.de/"CHEVIE/).

It is (currently) based on GAP-3, and MAPLE.
But there will be a GAP-4 version.

Authors: Meinolf Geck, Gerhard Hiss, Frank Libeck, Gunter
Malle, Jean Michel and Gotz Pfeiffer
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Thank you for your attention!
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