Computational aspects of finite p-groups

Heiko Dietrich

School of Mathematical Sciences
Monash University
Clayton VIC 3800, Australia

5th - 14th November 2016
 International Centre for Theoretical Sciences - Bangalore

Go to Overview

Welcome! And a bit about myself...

University of Braunschweig (2000-2009)

- one of the four GAP centres
- PhD (on p-groups with maximal class)

University of Auckland (2009-2011)

- work with Magma
- further research on p-groups

University of Trento (2011-2013)

- more work with GAP

Welcome!

In this lecture series we discuss

Computational Aspects of Finite p-Groups.

A finite p-group is a group whose order is a positive power of the prime p.

Convention

Throughout, p is a prime; unless stated otherwise, all groups and sets are finite.

Lecture Material

Slides etc will be uploaded at http://users.monash.edu/~heikod/icts2016

Assumed knowledge

Some group theory...

Why p-groups?

There's an abundant supply of p-groups

ord.	\#								
1	1	14	2	27	5	40	14	53	1
2	1	15	1	28	4	41	1	54	15
3	1	16	14	29	1	42	6	55	2
4	2	17	1	30	4	43	1	56	13
5	1	18	5	31	1	44	4	57	2
6	2	19	1	32	51	45	2	58	2
7	1	20	5	33	1	46	2	59	1
8	5	21	2	34	2	47	1	60	13
9	2	22	2	35	1	48	52	61	1
10	2	23	1	36	14	49	2	62	2
11	1	24	15	37	1	50	5	63	4
12	5	25	2	38	2	51	1	64	267
13	1	26	2	39	2	52	5	65	1

- there are $p^{2 n^{3} / 27+O\left(n^{5 / 3}\right)}$ groups of order p^{n} proved and improved by Higman (1960), Sims (1965), Newman \& Seeley (2007)
- conjecture: "almost all" groups are p-groups (2-groups) for example, 99% of all groups of order ≤ 2000 are 2-groups

Important aspects of p-groups

Some comments on p-groups

- Folklore conjecture: "almost all groups are p-groups"
- Sylow Theorem: every nontrivial group has p-groups as subgroups
- Nilpotent groups: direct products of p-groups
- Solvable groups: iterated extensions of p-groups
- Counterpart to theory of finite simple groups
- Challenge: classify p-groups...
- Many "reductions" to p-groups exist: Restricted Burnside Problem, cohomology, Schur multiplier, p-local subgroups, ...
p-groups are fascinating - and accessible to computations! So let's do it...

Outline of this lecture series

(1) motivation
(2) pc presentations \rightarrow Go there
(3) p-quotient algorithm $>$ Go there
(4) p-group generation \bullet Go there
© classification by order \uparrow Gothere

- isomorphisms $>$ go there
(7) automorphisms \rightarrow Go there
(8) coclass theory \rightarrow Go there

Main resources*

*thanks to E. A. O'Brien for providing some slides

- Handbook of computational group theory
D. Holt, B. Eick, E. A. O'Brien

Chapman \& Hall/CRC, 2005

- The p-group generation algorithm
E. A. O'Brien
J. Symb. Comp. 9, 677-698 (1990)

pc presentations

- Go to p-Quotient Algorithm

Groups and computers

How to describe groups in a computer?

For example, the dihedral group D_{8} can be defined as a ...

- ... permutation group

$$
G=\langle(1,2,3,4),(1,3)\rangle ;
$$

- ... matrix group

$$
G=\left\langle\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\right\rangle \leq \mathrm{GL}_{2}(3) ;
$$

- ... finitely presented group

$$
G=\left\langle r, m \mid r^{4}, m^{2}, r^{m}=r^{3}\right\rangle .
$$

Best for p-groups: (polycyclic) presentations!

Group presentations

Let F be the free group on a set $X \neq \emptyset$; let \mathcal{R} be a set of words in $X \sqcup X^{-1}$. If $R=\mathcal{R}^{F}$ is the normal closure of \mathcal{R} in F, then

$$
G=F / R
$$

is the group defined by the presentation $\{X \mid \mathcal{R}\}$ with generators X and relators \mathcal{R}; we also write $G=\langle X \mid \mathcal{R}\rangle$ and call $\langle X \mid \mathcal{R}\rangle$ a presentation for G. Informally, it is the "largest" group generated by X and satisfying the relations R.

Example 1

Let $X=\{r, m\}$ and $\mathcal{R}=\{r^{4}, m^{2}, \overbrace{m^{-1} r m r^{-3}}^{\text {relator }}\}$, and

$$
G=\langle X \mid \mathcal{R}\rangle=\langle r, m \mid r^{4}, m^{2}, \underbrace{r^{m}=r^{3}}_{\text {relation }}\rangle .
$$

What can we say about G ? Well... $r^{m}=r^{3}$ means $r m=m r^{3}$, so:

- $G=\left\{m^{i} r^{j} \mid i=0,1\right.$ and $\left.j=0,1,2,3\right\}$, so $|G| \leq 8$;
- $D_{8}=\langle r, m\rangle$ with $r=(1,2,3,4)$ and $m=(1,3)$ satisfies \mathcal{R}; thus $G \cong D_{8}$.

Group presentations

Problem: many questions are algorithmically undecidable in general; eg

- is $\langle X \mid \mathcal{R}\rangle$ finite, trivial, or abelian?
- is a word in X trivial in $\langle X \mid \mathcal{R}\rangle$?

However:

- group presentations are very compact definitions of groups;
- many groups from algebraic topology arise in this form;
- some efficient algorithms exist, eg so-called "quotient algorithms" ; (see also C. C. Sims: "Computation with finitely presented groups", 1994)
- many classes of groups can be studied via group presentations.

Let's discuss how to define p-groups by a useful presention!

Background: central series

Center

If G is a p-group, then its center $Z(G)=\left\{g \in G \mid \forall h \in G: g^{h}=g\right\}$ is non-trivial.

This leads to the upper central series of a p-group G defined as

$$
1=\zeta_{0}(G)<\zeta_{1}(G)<\ldots<\zeta_{c}(G)=G
$$

where $\zeta_{0}(G)=1$ and each $\zeta_{i+1}(G)$ is defined by $\zeta_{i+1}(G) / \zeta_{i}(G)=Z\left(G / \zeta_{i}(G)\right)$; it is the fastest ascending series with central sections.

Related is the lower central series

$$
G=\gamma_{1}(G)>\gamma_{2}(G)>\ldots>\gamma_{c+1}(G)=1
$$

where $\gamma_{1}(G)=G$ and each $\gamma_{i+1}(G)$ is defined as ${ }^{1} \gamma_{i+1}(G)=\left[G, \gamma_{i}(G)\right]$; it is the fastest descending series with central sections.

The number c is the same for both series; the (nilpotency) class of G.
${ }^{1}$ As usual, $[A, B]=\langle[a, b] \mid a \in A, b \in B\rangle$ where $[a, b]=a^{-1} b^{-1} a b=a^{-1} b^{a}$

Example: central series

Example 2

Let $G=D_{16}=\langle r, m\rangle$ with $r=(1,2,3,4,5,6,7,8), m=(1,3)(4,8)(5,7)$.
Then G has class $c=3$; its lower central series is

$$
G>\left\langle r^{2}\right\rangle>\left\langle r^{4}\right\rangle>1
$$

and has sections ${ }^{2} G / \gamma_{2}(G) \cong C_{2} \times C_{2}, \quad \gamma_{2}(G) / \gamma_{3}(G)=C_{2}$, and $\gamma_{3}(G)=C_{2}$. We can refine this series so that all section are isomorphic to C_{2} :

$$
G>\langle r\rangle>\left\langle r^{2}\right\rangle>\left\langle r^{4}\right\rangle>1 .
$$

In general: every central series of a p-group G can be refined to a composition series

$$
G=G_{1}>G_{2}>\ldots>G_{n+1}=1
$$

where each $G_{i} \unlhd G$ and $G_{i} / G_{i+1} \cong C_{p}$; thus G is a polycyclic group.
${ }^{2}$ If n is a positive integer, then C_{n} denotes a cyclic group of size n.

Polycyclic groups

Polycyclic group

The group G is polycyclic if it admits a polycyclic series, that is, a subgroup chain $G=G_{1} \geq \ldots \geq G_{n+1}=1$ in which each $G_{i+1} \unlhd G_{i}$ and G_{i} / G_{i+1} is cyclic.

Polycyclic groups: solvable groups whose subgroups are finitely generated.

Example 3

The group $G=\langle(2,4,3),(1,3)(2,4)\rangle \cong \operatorname{Alt}(4)$ is polycyclic with series

$$
G=G_{1}>G_{2}>G_{3}>G_{4}=1
$$

where

$$
\begin{aligned}
& G_{2}=\langle(1,3)(2,4),(1,2)(3,4)\rangle=V_{4} \unlhd G_{1} \\
& G_{3}=\langle(1,2)(3,4)\rangle \unlhd G_{2}
\end{aligned}
$$

Each G_{i} / G_{i+1} is cyclic, so there is $g_{i} \in G_{i} \backslash G_{i+1}$ with $G_{i} / G_{i+1}=\left\langle g_{i} G_{i+1}\right\rangle$; for example, $g_{1}=(2,4,3), g_{2}=(1,3)(2,4), g_{3}=(1,2)(3,4)$.

Polycyclic Sequence

Polycyclic sequence

Let $G=G_{1} \geq \ldots \geq G_{n+1}=1$ be a polycyclic series.
A related polycyclic sequence X with relative orders $R(X)$ is

$$
X=\left[g_{1}, \ldots, g_{n}\right] \quad \text { with } \quad R(X)=\left[r_{1}, \ldots, r_{n}\right]
$$

where each $g_{i} \in G_{i} \backslash G_{i+1}$ and $r_{i}=\left|g_{i} G_{i+1}\right|=\left|G_{i} / G_{i+1}\right|$.
A polycyclic series is also called pcgs (polycyclic generating set).

Important observation: each $G_{i}=\left\langle g_{i}, g_{i+1}, \ldots, g_{n}\right\rangle$ and $\left|G_{i}\right|=r_{i} \cdots r_{n}$.

Example 4

Let $G=D_{16}=\langle r, m\rangle$ with $r=(1,2,3,4,5,6,7,8)$ and $m=(1,3)(4,8)(5,7)$. Examples of pcgs:

- $X=[m, r]$ with $R(X)=[2,8]: \quad G=\langle m, r\rangle>\langle r\rangle>1$;
- $X=\left[m, r, r^{4}\right]$ with $R(X)=[2,4,2]: \quad G=\left\langle m, r, r^{4}\right\rangle>\left\langle r, r^{4}\right\rangle>\left\langle r^{4}\right\rangle>1$;
- $X=\left[m, r, r^{3}, r^{2}\right]$ with $R(X)=[2,1,2,4]$; note that $\left\langle r, r^{3}, r^{2}\right\rangle=\left\langle r^{3}, r^{2}\right\rangle$.

Normal Forms

Lemma: Normal Form

Let $X=\left[g_{1}, \ldots, g_{n}\right]$ be a pcgs for G with $R(X)=\left[r_{1}, \ldots, r_{n}\right]$. If $g \in G$, then $g=g_{1}^{e_{1}} \cdots g_{n}^{e_{n}}$ for unique $e_{i} \in\left\{0, \ldots, r_{i}-1\right\}$.

We call $g=g_{1}^{e_{1}} \cdots g_{n}^{e_{n}}$ the normal form with respect to X.

Proof.

Let $g \in G$ be given; we use induction on n.

- If $n=1$, then $G=\left\langle g_{1}\right\rangle \cong C_{r_{1}}$ and the lemma holds; now let $n \geq 2$.
- Since $G / G_{2}=\left\langle g_{1} G_{2}\right\rangle \cong C_{r_{1}}$, we can write $g G_{2}=g_{1}^{e_{1}} G_{2}$ for a unique $e_{1} \in\left\{0, \ldots, r_{1}-1\right\}$, that is, $g^{\prime}=g_{1}^{-e_{1}} g \in G_{2}$.
- $X^{\prime}=\left[g_{2}, \ldots, g_{n}\right]$ is pcgs of G_{2} with $R\left(X^{\prime}\right)=\left[r_{2}, \ldots, r_{n}\right]$, so by induction $g^{\prime}=g_{1}^{-e_{1}} g=g_{2}^{e_{2}} \cdots g_{n}^{e_{n}}$ for unique $e_{i} \in\left\{0, \ldots, r_{i}-1\right\}$.
- In conclusion, $g=g_{1}^{e_{1}} \cdots g_{n}^{e_{n}}$ as claimed.

Example: Normal Forms

Example 5

A pcgs of $G=\operatorname{Alt}(4)$ with $R(X)=[3,2,2]$ is $X=\left[g_{1}, g_{2}, g_{3}\right]$ where

$$
g_{1}=(1,2,3), \quad g_{2}=(1,2)(3,4), \quad g_{3}=(1,3)(2,4) .
$$

This yields $G=G_{1}>G_{2}>G_{3}>G_{4}=1$ with each $G_{i}=\left\langle g_{i}, \ldots, g_{3}\right\rangle$.
Now consider $g=(1,2,4) \in G$.
First, we have $g G_{2}=g_{1}^{2} G_{2}$, so $g^{\prime}=g_{1}^{-2} g=(1,4)(2,3) \in G_{2}$.
Second, $g^{\prime} G_{3}=g_{2} G_{3}$, so $g^{\prime \prime}=g_{2}^{-1} g^{\prime}=(1,3)(2,4)=g_{3} \in G_{3}$.
In conclusion, $g=g_{1}^{2} g^{\prime}=g_{1}^{2} g_{2} g^{\prime \prime}=g_{1}^{2} g_{2} g_{3}$.

Polycyclic group to presentation

Let G be group with pcgs $X=\left[g_{1}, \ldots, g_{n}\right]$ and $R(X)=\left[r_{1}, \ldots, r_{n}\right]$; define $G_{i}=\left\langle g_{i}, \ldots, g_{n}\right\rangle$. There exist $a_{*, j}, b_{*, *, j} \in\left\{0,1, \ldots, r_{j}-1\right\}$ with:

- $g_{i}^{r_{i}}=g_{i+1}^{a_{i, i+1}} \cdots g_{n}^{a_{i, n}}$
(for all i, since $G_{i} / G_{i+1}=\left\langle g_{i} G_{i+1}\right\rangle \cong C_{r_{i}}$)
- $g_{i}^{g_{j}}=g_{j+1}^{b_{i, j, j+1}} \cdots g_{n}^{b_{i, j, n}}$
(for all $j<i$, since $g_{i} \in G_{j+1} \unlhd G_{j}$).

A polycyclic presentation (PCP) for G

Let $H=\left\langle x_{1}, \ldots, x_{n} \mid \mathcal{R}\right\rangle$ such \mathcal{R} contains exactly the above relations:

$$
x_{i}^{r_{i}}=x_{i+1}^{a_{i, i+1}} \cdots x_{n}^{a_{i, n}} \quad \text { and } \quad x_{i}^{x_{j}}=x_{j+1}^{b_{i, j, j+1}} \cdots x_{n}^{b_{i, j, n}} .
$$

Then $H \cong G$ with pcgs $X=\left[x_{1}, \ldots, x_{n}\right]$ and $R(X)=\left[r_{1}, \ldots, r_{n}\right]$.

Proof.

Define $\varphi: H \rightarrow G$ by $x_{i} \mapsto g_{i}$. The elements g_{1}, \ldots, g_{n} satisfy the relations in \mathcal{R}, so φ is an epimorphism by von Dyck's Theorem. By construction, H is polycyclic with pcgs X and order at most $|G|$. Thus, φ is an isomorphism.

Polycyclic group to presentation

Example 6

Let $G=\operatorname{Alt}(4)$ with pcgs $X=\left[g_{1}, g_{2}, g_{3}\right]$ and $R(X)=[3,2,2]$ where

$$
g_{1}=(1,2,3), \quad g_{2}=(1,2)(3,4), \quad g_{3}=(1,3)(2,4) .
$$

Then $g_{1}^{3}=g_{2}^{2}=g_{3}^{2}=1, g_{2}^{g_{1}}=g_{2} g_{3}, g_{3}^{g_{1}}=g_{2}, g_{3}^{g_{2}}=g_{3}$, and so

$$
G \cong\left\langle x_{1}, x_{2}, x_{3} \mid x_{1}^{3}=x_{2}^{2}=x_{3}^{2}=1, x_{2}^{x_{1}}=x_{2} x_{3}, x_{3}^{x_{1}}=x_{2}, x_{3}^{x_{2}}=x_{3}\right\rangle .
$$

Theorem

Every pcgs determines a unique polycyclic presentation; every polycyclic group can be defined by a polycyclic presentation.

Pc presentation to group

Polycyclic presentation (pcp)

A presentation $\left\langle x_{1}, \ldots, x_{n} \mid \mathcal{R}\right\rangle$ is a polycyclic presentation with power exponents $s_{1}, \ldots, s_{n} \in \mathbb{N}$ if the only relations in \mathcal{R} are

$$
\begin{aligned}
x_{i}^{s_{i}} & =x_{i+1}^{a_{i, i+1}} \cdots x_{n}^{a_{i, n}} \quad \text { (all } i, \text { each } a_{i, k} \in\left\{0, \ldots, s_{k}-1\right) \\
x_{i}^{x_{j}} & =x_{j+1}^{b_{i, j}, j+1} \cdots x_{n}^{b_{i, j, n}} \quad\left(\text { all } j<i, \text { each } b_{i, j, k} \in\left\{0, \ldots, s_{k}-1\right) .\right.
\end{aligned}
$$

We write $\operatorname{Pc}\left\langle x_{1}, \ldots, x_{n} \mid \mathcal{R}\right\rangle$ and omit trivial commutator relations $x_{i}^{x_{j}}=x_{i}$. The group defined by a pc-presentation is a pc-group.

Theorem

If $G=\operatorname{Pc}\left\langle x_{1} \ldots, x_{n} \mid \mathcal{R}\right\rangle$ with power $\operatorname{exps}\left[s_{1}, \ldots, s_{n}\right]$, then $X=\left[x_{1}, \ldots, x_{n}\right]$ is a pcgs of G. If $g \in G$, then $g=x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$ for some $e_{i} \in\left\{0, \ldots, s_{i}-1\right\}$.

Careful: $\left(x_{i} G_{i}\right)^{s_{i}}=1$ only implies that $r_{i}=\left|G_{i} / G_{i+1}\right|$ divides s_{i}, not $r_{i}=s_{i}$; so in general

$$
R(X)=\left[r_{1}, \ldots, r_{n}\right] \neq\left[s_{1}, \ldots, s_{n}\right] .
$$

Consistent pc presentations

Note: Only power exponents (not relative orders) are visible in pc presentations.

Example 7

Let $G=\operatorname{Pc}\left\langle x_{1}, x_{2}, x_{3} \mid x_{1}^{3}=x_{3}, x_{2}^{2}=x_{3}, x_{3}^{5}=1, x_{2}^{x_{1}}=x_{2} x_{3}\right\rangle$; this is a pc-group with pcgs $X=\left[x_{1}, x_{2}, x_{3}\right]$ and power exponents $S=[3,2,5]$.
We show $R(X)=[3,2,1]$, so $|G|=6$:
First, note that $x_{2}^{10}=x_{3}^{5}=1$, so $\left|x_{2}\right| \mid 10$.
Second, $x_{2}^{x_{1}}=x_{2} x_{3}=x_{2}^{3}$ so $x_{2}^{27}=x_{2}^{\left(x_{1}^{3}\right)}=x_{2}^{x_{3}}=x_{2}^{\left(x_{2}^{2}\right)}=x_{2}$, and thus $\left|x_{2}\right| \mid 26$.
This implies that $5 \nmid\left|x_{2}\right|$, and forces $x_{3}=1$ in G.
Note that $x_{1}^{0} x_{2}^{0} x_{3}^{0}=1=x_{1}^{0} x_{2}^{0} x_{3}^{1}$ are two normal forms (wrt power exponents).

Consistent pc presentation

A pc-presentation with power exponents S is consistent if and only if every group element has a unique normal form with respect to S; otherwise it is inconsistent.

How to check consistency? \rightsquigarrow use collection and consistency checks!

Collection

Let $G=\operatorname{Pc}\left\langle x_{1}, \ldots, x_{n} \mid \mathcal{R}\right\rangle$ with power exponents $S=\left[s_{1}, \ldots, s_{n}\right]$.
Consider a reduced word $w=x_{i_{1}}^{e_{1}} \cdots x_{i_{r}}^{e_{r}}$, that is, each $i_{j} \neq i_{j+1}$; we can assume $e_{j} \in \mathbb{N}$, otherwise eliminate using power relations.

Collection

Let $w=x_{i_{1}}^{e_{1}} \cdots x_{i_{r}}^{e_{r}}$ as above and use the previous notation:

- the word w is collected if w is the normal form wrt S, that is, $i_{1}<\ldots<i_{r}$ and each $e_{j} \in\left\{0, \ldots, s_{i_{j}}-1\right\}$;
- if w is not collected, then it has a minimal non-normal subword of w, that is, a subword u of the form

$$
u=x_{i_{j}}^{e_{j}} x_{i_{j+1}} \quad \text { with } i_{j}>i_{j+1}, \quad \text { eg } u=x_{3}^{2} x_{1}
$$

or

$$
u=x_{i_{j}}^{s_{i_{j}}} \quad \text { eg } u=x_{2}^{5} \text { with } s_{2}=5
$$

Collection is a method to obtain collected words.

Collection algorithm

Let $G=\operatorname{Pc}\left\langle x_{1}, \ldots, x_{n} \mid \mathcal{R}\right\rangle$ with power exponents $S=\left[s_{1}, \ldots, s_{n}\right]$.
Consider a reduced word $w=x_{i_{1}}^{e_{1}} \cdots x_{i_{r}}^{e_{r}}$, that is, each $i_{j} \neq i_{j+1}$; we can assume $e_{j} \in \mathbb{N}$, otherwise eliminate using power relations.

Collection algorithm

Input: polycyclic presentation $\operatorname{Pc}\left\langle x_{1}, \ldots, x_{n} \mid \mathcal{R}\right\rangle$ and word w in X
Output: a collected word representing w
Repeat the following until w has no minimal non-normal subword:

- choose minimal non-normal subword $u=x_{i_{j}}^{s_{i_{j}}}$ or $u=x_{i_{j}}^{e_{j}} x_{i_{j+1}}$;
- if $u=x_{i_{j}}^{s_{i_{j}}}$, then replace u by a suitable word in $x_{i_{j}+1}, \ldots, x_{n}$; if $u=x_{i_{j}}^{e_{j}} x_{i_{j+1}}$, then replace u by $x_{i_{j+1}} u^{\prime}$ with u^{\prime} word in $x_{i_{j}+1}, \ldots, x_{n}$.

Theorem

The collection algorithm terminates.

Collection algorithm

If w contains more than one minimal non-normal subword, a rule is used to determine which of the subwords is replaced (making the process well-defined).

- Collection to the left: move all occurrences of x_{1} to the beginning of the word; next, move all occurrences of x_{2} left until adjacent to the x_{1} 's, etc.
- Collection from the right: the minimal non-normal subword nearest to the end of a word is selected.
- Collection from the left: the minimal non-normal subword nearest to the beginning of a word is selected.

Example: collection

Consider the group

$$
\begin{aligned}
D_{16} \cong \operatorname{Pc}\left\langle x_{1}, x_{2}, x_{3}, x_{4} \quad\right| & x_{1}^{2}=1, x_{2}^{2}=x_{3} x_{4}, x_{3}^{2}=x_{4}, x_{4}^{2}=1, \\
& \left.x_{2}^{x_{1}}=x_{2} x_{3}, x_{3}^{x_{1}}=x_{3} x_{4}\right\rangle .
\end{aligned}
$$

Aim: collect the word $x_{3} x_{2} x_{1}$.
Since power exponents are all " 2 ", we only use generator indices:

"to the left"	"from the right"	"from the left"
$3 \underline{21}=\underline{3123}$	$3 \underline{21}=\underline{3123}$	$\underline{321}=2 \underline{1}$
$=13423$	$=13423$	$=\underline{2134}$
$=13243$	$=132 \underline{43}$	$=12334$
$=123 \underline{43}$	$=13234$	$=1244$
$=12334$	$=12334$	$=12$
$=1244$	$=1244$	
$=12$	$=12$	

Consistency checks

Theorem 8: consistency checks

$\operatorname{Pc}\left\langle x_{1}, \ldots, x_{n} \mid \mathcal{R}\right\rangle$ with power exps $\left[s_{1}, \ldots, s_{n}\right]$ is consistent if and only if the normal forms of the following pairs of words coincide

$$
\begin{array}{ll}
x_{k}\left(x_{j} x_{i}\right) \text { and }\left(x_{k} x_{j}\right) x_{i} & \text { for } 1 \leq i<j<k \leq n, \\
\left(x_{j}^{s_{j}}\right) x_{i} \text { and } x_{j}^{s_{j}-1}\left(x_{j} x_{i}\right) & \text { for } 1 \leq i<j \leq n, \\
x_{j}\left(x_{i}^{s_{i}}\right) \text { and }\left(x_{j} x_{i}\right) x_{i}^{s_{i}-1} & \text { for } 1 \leq i<j \leq n, \\
x_{j}\left(x_{j}^{s_{j}}\right) \text { and }\left(x_{j}^{s_{j}}\right) x_{j} & \text { for } 1 \leq j \leq n,
\end{array}
$$

where the subwords in brackets are to be collected first.

Example 9

If $G=\operatorname{Pc}\left\langle x_{1}, x_{2}, x_{3} \mid x_{1}^{3}=x_{3}, x_{2}^{2}=x_{3}, x_{3}^{5}=1, x_{2}^{x_{1}}=x_{2} x_{3}\right\rangle$, then

$$
\left(x_{2}^{2}\right) x_{1}=x_{3} x_{1}=x_{1} x_{3} \quad \text { and } \quad x_{2}\left(x_{2} x_{1}\right)=x_{2} x_{1} x_{2} x_{3}=x_{1} x_{2}^{2} x_{3}^{2}=x_{1} x_{3}^{3}
$$

Since $x_{1} x_{3}=x_{1} x_{3}^{3}$ are both normal forms, the presentation is not consistent. Indeed, we deduce that $x_{3}=1$ in G.

Weighted power-commutator presentation

So far we have seen that every p-group can be defined via a consistent polycyclic presentation.

However, the algorithms we discuss later require a special type of polycyclic presentations, namely, so-called weighted power-commutator presentations.

Weighted power-commutator presentation

A weighted power-commutator presentation (wpcp) of a d-generator group G of order p^{n} is $G=\operatorname{Pc}\left\langle x_{1}, \ldots, x_{n} \mid \mathcal{R}\right\rangle$ such that $\left\{x_{1}, \ldots, x_{d}\right\}$ is a minimal generating set G and the relations are

$$
\begin{aligned}
x_{j}^{p} & =\prod_{k=j+1}^{n} x_{k}^{\alpha(j, k)} & (1 \leq j \leq n, 0 \leq \alpha(j, k)<p) \\
{\left[x_{j}, x_{i}\right] } & =\prod_{k=j+1}^{n} x_{k}^{\beta(i, j, k)} & (1 \leq i<j \leq n, 0 \leq \beta(i, j, k)<p)
\end{aligned}
$$

note that every $G_{i}=\left\langle x_{i}, \ldots, x_{n}\right\rangle$ is normal in G.
Moreover, each $x_{k} \in\left\{x_{d+1}, \ldots, x_{n}\right\}$ is the right side of some relation; choose one of these as the definition of x_{k}.

Weighted power-commutator presentation

Example 10

Consider

$$
\begin{aligned}
G=\operatorname{Pc}\left\langle x_{1}, \ldots, x_{5} \quad\right| & x_{1}^{2}=x_{4}, x_{2}^{2}=x_{3}, x_{3}^{2}=x_{5}, x_{4}^{2}=x_{5}, x_{5}^{2}=1 \\
& {\left.\left[x_{2}, x_{1}\right]=x_{3},\left[x_{3}, x_{1}\right]=x_{5}\right\rangle . }
\end{aligned}
$$

Here $\left\{x_{1}, x_{2}\right\}$ is a minimal generating set of G, and we choose:

- x_{3} has definition $\left[x_{2}, x_{1}\right]$ and weight 2;
- x_{4} has definition x_{1}^{2} and weight 2 ;
- x_{5} has definition $\left[x_{3}, x_{1}\right]$ and weight 3 .

Weighted power-commutator presentation

Why are (w)pcp's useful?

- consistent pcp's allow us to solve the word problem for the group: given two words, compute their normal forms, and compare them
- the additional structure of wpcp's allows more efficient algorithms: for example: consistency checks, p-group generation (later)
- a wpcp exhibits a normal series $G>G_{1}>\ldots>G_{n}=1$: many algorithms work down this series and use induction: first solve problem for G / G_{k}, and then extend to solve the problem for G / G_{k+1}, and so eventually for $G=G / G_{n}$.
... how to compute wpcp's? $\rightsquigarrow p$-quotient algorithm (next lecture)

Conclusion Lecture 1

Things we have discussed in the first lecture:

- polycyclic groups, sequences, and series
- polycyclic generating sets (pcgs) and relative orders
- polycyclic presentations (pcp), power exponents, and consistency
- normal forms and collection
- consistency checks
- weighted polycyclic presentations (wpcp)

