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Motivation Hello! Why p-groups? Outline Resources

Welcome!

In this lecture series we discuss

Computational Aspects of Finite p-Groups.

A finite p-group is a group whose order is a positive power of the prime p.

Convention

Throughout, p is a prime; unless stated otherwise, all groups and sets are finite.

Lecture Material

Slides etc will be uploaded at http://users.monash.edu/~heikod/icts2016

Assumed knowledge

Some group theory...
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Why p-groups?
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There’s an abundant supply of p-groups

ord. #
1 1
2 1
3 1
4 2
5 1
6 2
7 1
8 5
9 2

10 2
11 1
12 5
13 1

ord. #
14 2
15 1
16 14
17 1
18 5
19 1
20 5
21 2
22 2
23 1
24 15
25 2
26 2

ord. #
27 5
28 4
29 1
30 4
31 1
32 51
33 1
34 2
35 1
36 14
37 1
38 2
39 2

ord. #
40 14
41 1
42 6
43 1
44 4
45 2
46 2
47 1
48 52
49 2
50 5
51 1
52 5

ord. #
53 1
54 15
55 2
56 13
57 2
58 2
59 1
60 13
61 1
62 2
63 4
64 267
65 1

there are p2n
3/27+O(n5/3) groups of order pn

proved and improved by Higman (1960), Sims (1965), Newman & Seeley (2007)

conjecture: “almost all” groups are p-groups (2-groups)
for example, 99% of all groups of order ≤ 2000 are 2-groups
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Important aspects of p-groups

Some comments on p-groups

Folklore conjecture: “almost all groups are p-groups”

Sylow Theorem: every nontrivial group has p-groups as subgroups

Nilpotent groups: direct products of p-groups

Solvable groups: iterated extensions of p-groups

Counterpart to theory of finite simple groups

Challenge: classify p-groups...

Many “reductions” to p-groups exist: Restricted Burnside Problem,
cohomology, Schur multiplier, p-local subgroups, . . .

p-groups are fascinating – and accessible to computations! So let’s do it...
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Outline of this lecture series

1 motivation
2 pc presentations Go there

3 p-quotient algorithm Go there

4 p-group generation Go there

5 classification by order Go there

6 isomorphisms Go there

7 automorphisms Go there

8 coclass theory Go there
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Main resources∗

Handbook of computational group theory
D. Holt, B. Eick, E. A. O’Brien
Chapman & Hall/CRC, 2005

The p-group generation algorithm
E. A. O’Brien
J. Symb. Comp. 9, 677-698 (1990)

∗thanks to E. A. O’Brien

∗

for providing some slides
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pc presentations

Go to Overview

Go to p-Quotient Algorithm
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Groups and computers

How to describe groups in a computer?

For example, the dihedral group D8 can be defined as a . . .

. . . permutation group
G = 〈(1, 2, 3, 4), (1, 3)〉;

. . . matrix group
G = 〈( 0 1

2 0 ) , ( 1 0
0 2 )〉 ≤ GL2(3);

. . . finitely presented group

G = 〈r,m | r4,m2, rm = r3〉.

Best for p-groups: (polycyclic) presentations!
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Group presentations
Let F be the free group on a set X 6= ∅; let R be a set of words in X tX−1.
If R = RF is the normal closure of R in F , then

G = F/R

is the group defined by the presentation {X | R} with generators X and
relators R; we also write G = 〈X | R〉 and call 〈X | R〉 a presentation for G.
Informally, it is the “largest” group generated by X and satisfying the relations R.

Example 1

Let X = {r,m} and R = {r4,m2,

relator︷ ︸︸ ︷
m−1rmr−3}, and

G = 〈X | R〉 = 〈r,m | r4,m2, rm = r3︸ ︷︷ ︸
relation

〉.

What can we say about G? Well... rm = r3 means rm = mr3, so:

G = {mirj | i = 0, 1 and j = 0, 1, 2, 3}, so |G| ≤ 8;

D8 = 〈r,m〉 with r = (1, 2, 3, 4) and m = (1, 3) satisfies R; thus G ∼= D8.
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Group presentations

Problem: many questions are algorithmically undecidable in general; eg

is 〈X | R〉 finite, trivial, or abelian?

is a word in X trivial in 〈X | R〉?

However:

group presentations are very compact definitions of groups;

many groups from algebraic topology arise in this form;

some efficient algorithms exist, eg so-called “quotient algorithms”;
(see also C. C. Sims: “Computation with finitely presented groups”, 1994)

many classes of groups can be studied via group presentations.

Let’s discuss how to define p-groups by a useful presention!
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Background: central series

Center

If G is a p-group, then its center Z(G) = {g ∈ G | ∀h ∈ G : gh = g} is non-trivial.

This leads to the upper central series of a p-group G defined as

1 = ζ0(G) < ζ1(G) < . . . < ζc(G) = G

where ζ0(G) = 1 and each ζi+1(G) is defined by ζi+1(G)/ζi(G) = Z(G/ζi(G));
it is the fastest ascending series with central sections.

Related is the lower central series

G = γ1(G) > γ2(G) > . . . > γc+1(G) = 1

where γ1(G) = G and each γi+1(G) is defined as1 γi+1(G) = [G, γi(G)];
it is the fastest descending series with central sections.

The number c is the same for both series; the (nilpotency) class of G.

1As usual, [A,B] = 〈[a, b] | a ∈ A, b ∈ B〉 where [a, b] = a−1b−1ab = a−1ba
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Example: central series

Example 2

Let G = D16 = 〈r,m〉 with r = (1, 2, 3, 4, 5, 6, 7, 8), m = (1, 3)(4, 8)(5, 7).
Then G has class c = 3; its lower central series is

G > 〈r2〉 > 〈r4〉 > 1

and has sections2 G/γ2(G) ∼= C2 × C2, γ2(G)/γ3(G) = C2, and γ3(G) = C2.
We can refine this series so that all section are isomorphic to C2:

G > 〈r〉 > 〈r2〉 > 〈r4〉 > 1.

In general: every central series of a p-group G can be refined to a composition
series

G = G1 > G2 > . . . > Gn+1 = 1

where each Gi EG and Gi/Gi+1
∼= Cp; thus G is a polycyclic group.

2If n is a positive integer, then Cn denotes a cyclic group of size n.
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Polycyclic groups

Polycyclic group

The group G is polycyclic if it admits a polycyclic series, that is, a subgroup
chain G = G1 ≥ . . . ≥ Gn+1 = 1 in which each Gi+1 EGi and Gi/Gi+1 is cyclic.

Polycyclic groups: solvable groups whose subgroups are finitely generated.

Example 3

The group G = 〈(2, 4, 3), (1, 3)(2, 4)〉 ∼= Alt(4) is polycyclic with series

G = G1 > G2 > G3 > G4 = 1

where G2 = 〈(1, 3)(2, 4), (1, 2)(3, 4)〉 = V4 E G1

G3 = 〈(1, 2)(3, 4)〉 E G2

Each Gi/Gi+1 is cyclic, so there is gi ∈ Gi \Gi+1 with Gi/Gi+1 = 〈giGi+1〉;
for example, g1 = (2, 4, 3), g2 = (1, 3)(2, 4), g3 = (1, 2)(3, 4).
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Polycyclic Sequence
Polycyclic sequence

Let G = G1 ≥ . . . ≥ Gn+1 = 1 be a polycyclic series.
A related polycyclic sequence X with relative orders R(X) is

X = [g1, . . . , gn] with R(X) = [r1, . . . , rn]

where each gi ∈ Gi \Gi+1 and ri = |giGi+1| = |Gi/Gi+1|.
A polycyclic series is also called pcgs (polycyclic generating set).

Important observation: each Gi = 〈gi, gi+1, . . . , gn〉 and |Gi| = ri · · · rn.

Example 4

Let G = D16 = 〈r,m〉 with r = (1, 2, 3, 4, 5, 6, 7, 8) and m = (1, 3)(4, 8)(5, 7).
Examples of pcgs:

X = [m, r] with R(X) = [2, 8]: G = 〈m, r〉 > 〈r〉 > 1;

X = [m, r, r4] with R(X) = [2, 4, 2]: G = 〈m, r, r4〉 > 〈r, r4〉 > 〈r4〉 > 1;

X = [m, r, r3, r2] with R(X) = [2, 1, 2, 4]; note that 〈r, r3, r2〉 = 〈r3, r2〉.
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Normal Forms

Lemma: Normal Form

Let X = [g1, . . . , gn] be a pcgs for G with R(X) = [r1, . . . , rn].
If g ∈ G, then g = ge11 · · · genn for unique ei ∈ {0, . . . , ri − 1}.

We call g = ge11 · · · genn the normal form with respect to X.

Proof.
Let g ∈ G be given; we use induction on n.

If n = 1, then G = 〈g1〉 ∼= Cr1 and the lemma holds; now let n ≥ 2.

Since G/G2 = 〈g1G2〉 ∼= Cr1 , we can write gG2 = ge11 G2 for a unique
e1 ∈ {0, . . . , r1 − 1}, that is, g′ = g−e11 g ∈ G2.

X ′ = [g2, . . . , gn] is pcgs of G2 with R(X ′) = [r2, . . . , rn], so by induction
g′ = g−e11 g = ge22 · · · genn for unique ei ∈ {0, . . . , ri − 1}.
In conclusion, g = ge11 · · · genn as claimed.
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Example: Normal Forms

Example 5

A pcgs of G = Alt(4) with R(X) = [3, 2, 2] is X = [g1, g2, g3] where

g1 = (1, 2, 3), g2 = (1, 2)(3, 4), g3 = (1, 3)(2, 4).

This yields G = G1 > G2 > G3 > G4 = 1 with each Gi = 〈gi, . . . , g3〉.
Now consider g = (1, 2, 4) ∈ G.

First, we have gG2 = g21G2, so g′ = g−21 g = (1, 4)(2, 3) ∈ G2.

Second, g′G3 = g2G3, so g′′ = g−12 g′ = (1, 3)(2, 4) = g3 ∈ G3.

In conclusion, g = g21g
′ = g21g2g

′′ = g21g2g3.
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Polycyclic group to presentation
Let G be group with pcgs X = [g1, . . . , gn] and R(X) = [r1, . . . , rn];
define Gi = 〈gi, . . . , gn〉. There exist a∗,j , b∗,∗,j ∈ {0, 1, . . . , rj − 1} with:

grii = g
ai,i+1

i+1 · · · gai,nn (for all i, since Gi/Gi+1 = 〈giGi+1〉 ∼= Cri)

g
gj
i = g

bi,j,j+1

j+1 · · · gbi,j,nn (for all j < i, since gi ∈ Gj+1 EGj).

A polycyclic presentation (PCP) for G

Let H = 〈x1, . . . , xn | R〉 such R contains exactly the above relations:

xrii = x
ai,i+1

i+1 · · ·xai,nn and x
xj

i = x
bi,j,j+1

j+1 · · ·xbi,j,nn .

Then H ∼= G with pcgs X = [x1, . . . , xn] and R(X) = [r1, . . . , rn].

Proof.
Define ϕ : H → G by xi 7→ gi. The elements g1, . . . , gn satisfy the relations in R,
so ϕ is an epimorphism by von Dyck’s Theorem. By construction, H is
polycyclic with pcgs X and order at most |G|. Thus, ϕ is an isomorphism.
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Polycyclic group to presentation

Example 6

Let G = Alt(4) with pcgs X = [g1, g2, g3] and R(X) = [3, 2, 2] where

g1 = (1, 2, 3), g2 = (1, 2)(3, 4), g3 = (1, 3)(2, 4).

Then g31 = g22 = g23 = 1, gg12 = g2g3, gg13 = g2, gg23 = g3, and so

G ∼= 〈x1, x2, x3 | x31 = x22 = x23 = 1, xx1
2 = x2x3, x

x1
3 = x2, x

x2
3 = x3〉.

Theorem

Every pcgs determines a unique polycyclic presentation;
every polycyclic group can be defined by a polycyclic presentation.
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Pc presentation to group

Polycyclic presentation (pcp)

A presentation 〈x1, . . . , xn | R〉 is a polycyclic presentation with power
exponents s1, . . . , sn ∈ N if the only relations in R are

xsii = x
ai,i+1

i+1 · · ·xai,nn (all i, each ai,k ∈ {0, . . . , sk − 1)

x
xj

i = x
bi,j,j+1

j+1 · · ·xbi,j,nn (all j < i, each bi,j,k ∈ {0, . . . , sk − 1).

We write Pc〈x1, . . . , xn | R〉 and omit trivial commutator relations x
xj

i = xi.
The group defined by a pc-presentation is a pc-group.

Theorem

If G = Pc〈x1 . . . , xn | R〉 with power exps [s1, . . . , sn], then X = [x1, . . . , xn] is a
pcgs of G. If g ∈ G, then g = xe11 · · ·xenn for some ei ∈ {0, . . . , si − 1}.

Careful: (xiGi)
si = 1 only implies that ri = |Gi/Gi+1| divides si, not ri = si;

so in general
R(X) = [r1, . . . , rn] 6= [s1, . . . , sn].
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Consistent pc presentations
Note: Only power exponents (not relative orders) are visible in pc presentations.

Example 7

Let G = Pc〈x1, x2, x3 | x31 = x3, x
2
2 = x3, x

5
3 = 1, xx1

2 = x2x3〉; this is a
pc-group with pcgs X = [x1, x2, x3] and power exponents S = [3, 2, 5].

We show R(X) = [3, 2, 1], so |G| = 6:

First, note that x102 = x53 = 1, so |x2| | 10.

Second, xx1
2 = x2x3 = x32 so x272 = x

(x3
1)

2 = xx3
2 = x

(x2
2)

2 = x2, and thus |x2| | 26.

This implies that 5 - |x2|, and forces x3 = 1 in G.

Note that x01x
0
2x

0
3 = 1 = x01x

0
2x

1
3 are two normal forms (wrt power exponents).

Consistent pc presentation

A pc-presentation with power exponents S is consistent if and only if every group
element has a unique normal form with respect to S; otherwise it is inconsistent.

How to check consistency?  use collection and consistency checks!
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Collection
Let G = Pc〈x1, . . . , xn | R〉 with power exponents S = [s1, . . . , sn].

Consider a reduced word w = xe1i1 · · ·x
er
ir

, that is, each ij 6= ij+1;
we can assume ej ∈ N, otherwise eliminate using power relations.

Collection

Let w = xe1i1 · · ·x
er
ir

as above and use the previous notation:

the word w is collected if w is the normal form wrt S,
that is, i1 < . . . < ir and each ej ∈ {0, . . . , sij − 1};
if w is not collected, then it has a minimal non-normal subword of w, that
is, a subword u of the form

u = x
ej
ij
xij+1

with ij > ij+1, eg u = x23x1

or
u = x

sij
ij

eg u = x52 with s2 = 5.

Collection is a method to obtain collected words.
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Collection algorithm

Let G = Pc〈x1, . . . , xn | R〉 with power exponents S = [s1, . . . , sn].

Consider a reduced word w = xe1i1 · · ·x
er
ir

, that is, each ij 6= ij+1;
we can assume ej ∈ N, otherwise eliminate using power relations.

Collection algorithm
Input: polycyclic presentation Pc〈x1, . . . , xn | R〉 and word w in X
Output: a collected word representing w

Repeat the following until w has no minimal non-normal subword:

choose minimal non-normal subword u = x
sij
ij

or u = x
ej
ij
xij+1

;

if u = x
sij
ij

, then replace u by a suitable word in xij+1, . . . , xn;

if u = x
ej
ij
xij+1

, then replace u by xij+1
u′ with u′ word in xij+1, . . . , xn.

Theorem

The collection algorithm terminates.
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Collection algorithm

If w contains more than one minimal non-normal subword, a rule is used to
determine which of the subwords is replaced (making the process well-defined).

Collection to the left: move all occurrences of x1 to the beginning of the
word; next, move all occurrences of x2 left until adjacent to the x1’s, etc.

Collection from the right: the minimal non-normal subword nearest to the
end of a word is selected.

Collection from the left: the minimal non-normal subword nearest to the
beginning of a word is selected.
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Example: collection

Consider the group

D16
∼= Pc〈x1, x2, x3, x4 | x21 = 1, x22 = x3x4, x23 = x4, x24 = 1,

xx1
2 = x2x3, xx1

3 = x3x4〉.

Aim: collect the word x3x2x1.
Since power exponents are all “2”, we only use generator indices:

”to the left” “from the right” ”from the left”

321 = 3123

= 13423

= 13243

= 12343

= 12334

= 1244

= 12

321 = 3123

= 13423

= 13243

= 13234

= 12334

= 1244

= 12

321 = 231

= 2134

= 12334

= 1244

= 12
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Consistency checks
Theorem 8: consistency checks

Pc〈x1, . . . , xn | R〉 with power exps [s1, . . . , sn] is consistent if and only if the
normal forms of the following pairs of words coincide

xk(xjxi) and (xkxj)xi for 1 ≤ i < j < k ≤ n,
(x
sj
j )xi and x

sj−1
j (xjxi) for 1 ≤ i < j ≤ n,

xj(x
si
i ) and (xjxi)x

si−1
i for 1 ≤ i < j ≤ n,

xj(x
sj
j ) and (x

sj
j )xj for 1 ≤ j ≤ n,

where the subwords in brackets are to be collected first.

Example 9

If G = Pc〈x1, x2, x3 | x31 = x3, x
2
2 = x3, x

5
3 = 1, xx1

2 = x2x3〉, then

(x22)x1 = x3x1 = x1x3 and x2(x2x1) = x2x1x2x3 = x1x
2
2x

2
3 = x1x

3
3.

Since x1x3 = x1x
3
3 are both normal forms, the presentation is not consistent.

Indeed, we deduce that x3 = 1 in G.
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Weighted power-commutator presentation

So far we have seen that every p-group can be defined via a consistent polycyclic
presentation.

However, the algorithms we discuss later require a special type of polycyclic
presentations, namely, so-called weighted power-commutator presentations.
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Weighted power-commutator presentation

A weighted power-commutator presentation (wpcp) of a d-generator group G
of order pn is G = Pc〈x1, . . . , xn | R〉 such that {x1, . . . , xd} is a minimal
generating set G and the relations are

xpj =
∏n

k=j+1
x
α(j,k)
k (1 ≤ j ≤ n, 0 ≤ α(j, k) < p)

[xj , xi] =
∏n

k=j+1
x
β(i,j,k)
k (1 ≤ i < j ≤ n, 0 ≤ β(i, j, k) < p)

note that every Gi = 〈xi, . . . , xn〉 is normal in G.

Moreover, each xk ∈ {xd+1, . . . , xn} is the right side of some relation;
choose one of these as the definition of xk.
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Weighted power-commutator presentation

Example 10

Consider

G = Pc〈 x1, . . . , x5 | x21 = x4, x
2
2 = x3, x

2
3 = x5, x

2
4 = x5, x

2
5 = 1

[x2, x1] = x3, [x3, x1] = x5 〉.

Here {x1, x2} is a minimal generating set of G, and we choose:

x3 has definition [x2, x1] and weight 2;

x4 has definition x21 and weight 2;

x5 has definition [x3, x1] and weight 3.
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Weighted power-commutator presentation

Why are (w)pcp’s useful?

consistent pcp’s allow us to solve the word problem for the group:
given two words, compute their normal forms, and compare them

the additional structure of wpcp’s allows more efficient algorithms:
for example: consistency checks, p-group generation (later)

a wpcp exhibits a normal series G > G1 > . . . > Gn = 1:
many algorithms work down this series and use induction: first solve problem
for G/Gk, and then extend to solve the problem for G/Gk+1, and so
eventually for G = G/Gn.

... how to compute wpcp’s?  p-quotient algorithm (next lecture)
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Conclusion Lecture 1

Things we have discussed in the first lecture:

polycyclic groups, sequences, and series

polycyclic generating sets (pcgs) and relative orders

polycyclic presentations (pcp), power exponents, and consistency

normal forms and collection

consistency checks

weighted polycyclic presentations (wpcp)
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