Computational aspects of finite *p*-groups

Heiko Dietrich

School of Mathematical Sciences Monash University Clayton VIC 3800, Australia

5th – 14th November 2016 International Centre for Theoretical Sciences – Bangalore

Go to Overview

Heiko Dietrich (heiko.dietrich@monash.edu)

Motivation

Hello!

Why p-groups?

Outline

Resources

Welcome! And a bit about myself...

Heiko Dietrich (heiko.dietrich@monash.edu)

University of Braunschweig (2000-2009)

one of the four GAP centres
PhD (on *p*-groups with maximal class)

University of Auckland (2009-2011)

work with Magma
further research on *p*-groups

University of Trento (2011-2013)

o more work with GAP

Computational aspects of finite p-groups

ICTS, Bangalore 2016

Computational Aspects of Finite *p*-Groups.

A finite p-group is a group whose order is a positive power of the prime p.

Convention

Throughout, p is a prime; unless stated otherwise, all groups and sets are finite.

Lecture Material

Slides etc will be uploaded at http://users.monash.edu/~heikod/icts2016

Assumed knowledge

Some group theory... 😐

Heiko Dietrich (heiko.dietrich@monash.edu)

Motivation	Hello!	Why <i>p</i> -groups?	Outline	Resources
VNV 10-2	roups			

Motivation	Hello!	Why p-groups?	Outline	Resource

There's an abundant supply of *p*-groups

ord.	#	ord.	#	orc	I. #	ord.	#	ord.	#
1	1	14	2	27	′ <u>5</u>	40	14	53	1
2	1	15	1	28	3 4	41	1	54	15
3	1	16	14	29) 1	42	6	55	2
4	2	17	1	30) 4	43	1	56	13
5	1	18	5	31	. 1	44	4	57	2
6	2	19	1	32	2 51	45	2	58	2
7	1	20	5	33	3 1	46	2	59	1
8	5	21	2	34	2	47	1	60	13
9	2	22	2	35	5 1	48	52	61	1
10	2	23	1	36	5 14	49	2	62	2
11	1	24	15	37	1	50	5	63	4
12	5	25	2	38	3 2	51	1	64	267
13	1	26	2	39) 2	52	5	65	1

• there are $p^{2n^3/27+O(n^{5/3})}$ groups of order p^n

proved and improved by Higman (1960), Sims (1965), Newman & Seeley (2007)

 conjecture: "almost all" groups are p-groups (2-groups) for example, 99% of all groups of order < 2000 are 2-groups

Motivation	Hello!	Why <i>p</i> -groups?	Outline	Resources
Important asp	ects of <i>p</i> -	grouns		

Some comments on *p*-groups

- Folklore conjecture: "almost all groups are p-groups"
- Sylow Theorem: every nontrivial group has p-groups as subgroups
- Nilpotent groups: direct products of *p*-groups
- Solvable groups: iterated extensions of p-groups
- · Counterpart to theory of finite simple groups
- Challenge: classify *p*-groups...
- Many "reductions" to *p*-groups exist: Restricted Burnside Problem, cohomology, Schur multiplier, *p*-local subgroups, ...

p-groups are fascinating – and accessible to computations! So let's do it...

Motivation	Hello!	Why p-groups?	Outline	Resources

Outline of this lecture series

- motivation
- 2 pc presentations Go there
- 9 p-quotient algorithm Go there
- p-group generation Go there
- S classification by order ► Go there
- isomorphisms Go there
- automorphisms Go there
- Coclass theory Go there

Hello!	Why p-groups?	Outline

Main resources*

Motivation

thanks to E. A. O'Brien for providing some slides

Resources

- Handbook of computational group theory D. Holt, B. Eick, E. A. O'Brien Chapman & Hall/CRC, 2005
- The *p*-group generation algorithm F A O'Brien J. Symb. Comp. 9, 677-698 (1990)

Heiko Dietrich (heiko, dietrich@monash, edu)

Polycyclic	Presenta	tions
------------	----------	-------

WPCP's

pc presentations

▶ Go to Overview

▶ Go to p-Quotient Algorithm

N WPCP

Groups and computers

How to describe groups in a computer?

For example, the dihedral group D_8 can be defined as a \dots

• ... permutation group

 $G = \langle (1, 2, 3, 4), (1, 3) \rangle;$

• ... matrix group

 $G = \langle \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \rangle \leq \operatorname{GL}_2(3);$

• ... finitely presented group

$$G = \langle r, m \mid r^4, m^2, r^m = r^3 \rangle.$$

Best for *p*-groups: (polycyclic) presentations!

Group presentations

Let F be the free group on a set $X \neq \emptyset$; let \mathcal{R} be a set of words in $X \sqcup X^{-1}$. If $R = \mathcal{R}^F$ is the normal closure of \mathcal{R} in F, then

$$G = F/R$$

is the group defined by the **presentation** $\{X \mid \mathcal{R}\}$ with **generators** X and **relators** \mathcal{R} ; we also write $G = \langle X \mid \mathcal{R} \rangle$ and call $\langle X \mid \mathcal{R} \rangle$ a presentation for G. Informally, it is the "largest" group generated by X and satisfying the relations R.

relator

Example 1

Let
$$X = \{r, m\}$$
 and $\mathcal{R} = \{r^4, m^2, \overbrace{m^{-1}rmr^{-3}}^{-3}\}$, and
 $G = \langle X \mid \mathcal{R} \rangle = \langle r, m \mid r^4, m^2, \underbrace{r^m = r^3}_{\text{relation}} \rangle$

What can we say about G? Well... $r^m = r^3$ means $rm = mr^3$, so: • $G = \{m^i r^j \mid i = 0, 1 \text{ and } j = 0, 1, 2, 3\}$, so $|G| \le 8$; • $D_8 = \langle r, m \rangle$ with r = (1, 2, 3, 4) and m = (1, 3) satisfies \mathcal{R} ; thus $G \cong D_8$.

Polycyclic Presentations	Presentations	Central Series	Polycyclic Groups	Collection	WPCP's
-					
Group presentation	ons				
Group presentation					

Problem: many questions are algorithmically undecidable in general; eg

group presentations are very compact definitions of groups;
 many groups from algebraic topology arise in this form;

Let's discuss how to define *p*-groups by a useful presention!

 some efficient algorithms exist, eg so-called "quotient algorithms"; (see also C. C. Sims: "Computation with finitely presented groups", 1994)
 many classes of groups can be studied via group presentations.

is ⟨X | R⟩ finite, trivial, or abelian?
is a word in X trivial in ⟨X | R⟩?

Heiko Dietrich (heiko.dietrich@monash.edu)

However:

WPCP's

Background: central series

Center

If G is a p-group, then its center $Z(G) = \{g \in G \mid \forall h \in G : g^h = g\}$ is non-trivial.

This leads to the **upper central series** of a p-group G defined as

 $1 = \zeta_0(G) < \zeta_1(G) < \ldots < \zeta_c(G) = G$

where $\zeta_0(G) = 1$ and each $\zeta_{i+1}(G)$ is defined by $\zeta_{i+1}(G)/\zeta_i(G) = Z(G/\zeta_i(G))$; it is the fastest ascending series with central sections.

Related is the lower central series

$$G = \gamma_1(G) > \gamma_2(G) > \ldots > \gamma_{c+1}(G) = 1$$

where $\gamma_1(G) = G$ and each $\gamma_{i+1}(G)$ is defined as $\gamma_{i+1}(G) = [G, \gamma_i(G)]$; it is the fastest descending series with central sections.

The number c is the same for both series; the **(nilpotency)** class of G.

¹As usual, $[A,B] = \langle [a,b] \mid a \in A, b \in B \rangle$ where $[a,b] = a^{-1}b^{-1}ab = a^{-1}b^a$

Heiko Dietrich (heiko.dietrich@monash.edu)

Computational aspects of finite *p*-groups

Example: central series

Example 2

Let $G = D_{16} = \langle r, m \rangle$ with r = (1, 2, 3, 4, 5, 6, 7, 8), m = (1, 3)(4, 8)(5, 7). Then G has class c = 3; its lower central series is

$$G > \langle r^2 \rangle > \langle r^4 \rangle > 1$$

and has sections² $G/\gamma_2(G) \cong C_2 \times C_2$, $\gamma_2(G)/\gamma_3(G) = C_2$, and $\gamma_3(G) = C_2$. We can refine this series so that all section are isomorphic to C_2 :

$$G > \langle r \rangle > \langle r^2 \rangle > \langle r^4 \rangle > 1.$$

In general: every central series of a p-group G can be refined to a composition series

$$G = G_1 > G_2 > \ldots > G_{n+1} = 1$$

where each $G_i \trianglelefteq G$ and $G_i/G_{i+1} \cong C_p$; thus G is a **polycyclic group**.

²If n is a positive integer, then C_n denotes a cyclic group of size n.

Polycyclic group

The group G is **polycyclic** if it admits a **polycyclic series**, that is, a subgroup chain $G = G_1 \ge \ldots \ge G_{n+1} = 1$ in which each $G_{i+1} \le G_i$ and G_i/G_{i+1} is cyclic.

Polycyclic groups: solvable groups whose subgroups are finitely generated.

Example 3

The group $G = \langle (2,4,3), (1,3)(2,4) \rangle \cong \mathsf{Alt}(4)$ is polycyclic with series

 $G = G_1 > G_2 > G_3 > G_4 = 1$

where

$$\begin{array}{rcl} G_2 & = & \langle (1,3)(2,4), (1,2)(3,4) \rangle \\ & = & V_4 \ \trianglelefteq \ G_1 \\ G_3 & = & \langle (1,2)(3,4) \rangle \ \trianglelefteq \ G_2 \end{array}$$

Each G_i/G_{i+1} is cyclic, so there is $g_i \in G_i \setminus G_{i+1}$ with $G_i/G_{i+1} = \langle g_i G_{i+1} \rangle$; for example, $g_1 = (2, 4, 3)$, $g_2 = (1, 3)(2, 4)$, $g_3 = (1, 2)(3, 4)$.

Polycyclic Presentations	Presentations	Central Series	Polycyclic Groups	Collection	WPCP's
Polycyclic Sequer	ice				
Polycyclic sequence					
Let $G = G_1 \ge \ldots \ge G_{n+1}$	= 1 be a p	olycyclic seri	es.		

A related polycyclic sequence X with relative orders ${\cal R}(X)$ is

$$X = [g_1, \dots, g_n] \quad \text{with} \quad R(X) = [r_1, \dots, r_n]$$

where each $g_i \in G_i \setminus G_{i+1}$ and $r_i = |g_i G_{i+1}| = |G_i / G_{i+1}|$. A polycyclic series is also called **pcgs** (polycyclic generating set).

Important observation: each $G_i = \langle g_i, g_{i+1}, \ldots, g_n \rangle$ and $|G_i| = r_i \cdots r_n$.

Example 4

Let $G = D_{16} = \langle r, m \rangle$ with r = (1, 2, 3, 4, 5, 6, 7, 8) and m = (1, 3)(4, 8)(5, 7). Examples of pcgs:

• X = [m, r] with R(X) = [2, 8]: $G = \langle m, r \rangle > \langle r \rangle > 1$;

• $X = [m, r, r^4]$ with R(X) = [2, 4, 2]: $G = \langle m, r, r^4 \rangle > \langle r, r^4 \rangle > \langle r^4 \rangle > 1$;

• $X = [m, r, r^3, r^2]$ with R(X) = [2, 1, 2, 4]; note that $\langle r, r^3, r^2 \rangle = \langle r^3, r^2 \rangle$.

Lemma: Normal Form

Let $X = [g_1, \ldots, g_n]$ be a pcgs for G with $R(X) = [r_1, \ldots, r_n]$. If $g \in G$, then $g = g_1^{e_1} \cdots g_n^{e_n}$ for unique $e_i \in \{0, \ldots, r_i - 1\}$.

We call $g = g_1^{e_1} \cdots g_n^{e_n}$ the normal form with respect to X.

Proof.

Let $g \in G$ be given; we use induction on n.

- If n = 1, then $G = \langle g_1 \rangle \cong C_{r_1}$ and the lemma holds; now let $n \ge 2$.
- Since $G/G_2 = \langle g_1 G_2 \rangle \cong C_{r_1}$, we can write $gG_2 = g_1^{e_1}G_2$ for a unique $e_1 \in \{0, \ldots, r_1 1\}$, that is, $g' = g_1^{-e_1}g \in G_2$.
- $X' = [g_2, \ldots, g_n]$ is pcgs of G_2 with $R(X') = [r_2, \ldots, r_n]$, so by induction $g' = g_1^{-e_1}g = g_2^{e_2} \cdots g_n^{e_n}$ for unique $e_i \in \{0, \ldots, r_i 1\}$.

• In conclusion, $g = g_1^{e_1} \cdots g_n^{e_n}$ as claimed.

Example: Normal Forms

Example 5

A pcgs of G = Alt(4) with R(X) = [3, 2, 2] is $X = [g_1, g_2, g_3]$ where

 $\overline{g_1 = (1, 2, 3)}, \quad g_2 = (1, 2)(3, 4), \quad g_3 = (1, 3)(2, 4).$

This yields $G = G_1 > G_2 > G_3 > G_4 = 1$ with each $G_i = \langle g_i, \dots, g_3 \rangle$. Now consider $g = (1, 2, 4) \in G$.

First, we have $gG_2 = g_1^2G_2$, so $g' = g_1^{-2}g = (1,4)(2,3) \in G_2$. Second, $g'G_3 = g_2G_3$, so $g'' = g_2^{-1}g' = (1,3)(2,4) = g_3 \in G_3$. In conclusion, $g = g_1^2g' = g_1^2g_2g'' = g_1^2g_2g_3$.

Polycyclic group to presentation

Let G be group with pcgs $X = [g_1, \ldots, g_n]$ and $R(X) = [r_1, \ldots, r_n]$; define $G_i = \langle g_i, \ldots, g_n \rangle$. There exist $a_{*,j}, b_{*,*,j} \in \{0, 1, \ldots, r_j - 1\}$ with:

• $g_i^{r_i} = g_{i+1}^{a_{i,i+1}} \cdots g_n^{a_{i,n}}$ (for all i, since $G_i/G_{i+1} = \langle g_i G_{i+1} \rangle \cong C_{r_i}$) • $g_i^{g_j} = g_{j+1}^{b_{i,j,j+1}} \cdots g_n^{b_{i,j,n}}$ (for all j < i, since $g_i \in G_{j+1} \trianglelefteq G_j$).

A polycyclic presentation (PCP) for G Let $H = \langle x_1, \dots, x_n | \mathcal{R} \rangle$ such \mathcal{R} contains exactly the above relations:

 $x_i^{r_i} = x_{i+1}^{a_{i,i+1}} \cdots x_n^{a_{i,n}}$ and $x_i^{x_j} = x_{j+1}^{b_{i,j,j+1}} \cdots x_n^{b_{i,j,n}}$.

Then $H \cong G$ with pcgs $X = [x_1, \ldots, x_n]$ and $R(X) = [r_1, \ldots, r_n]$.

Proof.

Define $\varphi \colon H \to G$ by $x_i \mapsto g_i$. The elements g_1, \ldots, g_n satisfy the relations in \mathcal{R} , so φ is an epimorphism by **von Dyck's Theorem**. By construction, H is polycyclic with pcgs X and order at most |G|. Thus, φ is an isomorphism.

Heiko Dietrich (heiko.dietrich@monash.edu)

Polycyclic group to presentation

Example 6

Let G = Alt(4) with pcgs $X = [g_1, g_2, g_3]$ and R(X) = [3, 2, 2] where

$$g_1 = (1, 2, 3), \quad g_2 = (1, 2)(3, 4), \quad g_3 = (1, 3)(2, 4).$$

Then $g_1^3 = g_2^2 = g_3^2 = 1$, $g_2^{g_1} = \overline{g_2}g_3$, $g_3^{g_1} = g_2$, $g_3^{g_2} = g_3$, and so

$$G \cong \langle x_1, x_2, x_3 \mid x_1^3 = x_2^2 = x_3^2 = 1, \ x_2^{x_1} = x_2 x_3, \ x_3^{x_1} = x_2, \ x_3^{x_2} = x_3 \rangle.$$

Theorem

Every pcgs determines a unique polycyclic presentation; every polycyclic group can be defined by a polycyclic presentation.

WPCP's

Pc presentation to group

Polycyclic presentation (pcp)

A presentation $\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ is a **polycyclic presentation** with **power** exponents $s_1, \ldots, s_n \in \mathbb{N}$ if the only relations in \mathcal{R} are

 $\begin{array}{rcl} x_i^{s_i} &=& x_{i+1}^{a_{i,i+1}} \cdots x_n^{a_{i,n}} & (\text{all } i, \text{ each } a_{i,k} \in \{0, \ldots, s_k - 1\} \\ x_i^{x_j} &=& x_{j+1}^{b_{i,j,j+1}} \cdots x_n^{b_{i,j,n}} & (\text{all } j < i, \text{ each } b_{i,j,k} \in \{0, \ldots, s_k - 1\}. \\ \text{We write } \operatorname{Pc}\langle x_1, \ldots, x_n \mid \mathcal{R} \rangle \text{ and omit trivial commutator relations } x_i^{x_j} = x_i. \\ \text{The group defined by a pc-presentation is a pc-group.} \end{array}$

Theorem

If $G = \operatorname{Pc}\langle x_1 \dots, x_n | \mathcal{R} \rangle$ with power exps $[s_1, \dots, s_n]$, then $X = [x_1, \dots, x_n]$ is a pcgs of G. If $g \in G$, then $g = x_1^{e_1} \cdots x_n^{e_n}$ for some $e_i \in \{0, \dots, s_i - 1\}$.

Careful: $(x_iG_i)^{s_i} = 1$ only implies that $r_i = |G_i/G_{i+1}|$ divides s_i , not $r_i = s_i$; so in general

$$R(X) = [r_1, \ldots, r_n] \neq [s_1, \ldots, s_n].$$

Heiko Dietrich (heiko.dietrich@monash.edu)

WPCP'

Consistent pc presentations

Note: Only power exponents (not relative orders) are visible in pc presentations.

Example 7

Let $G = \operatorname{Pc}\langle x_1, x_2, x_3 \mid x_1^3 = x_3, x_2^2 = x_3, x_3^5 = 1, x_2^{x_1} = x_2 x_3 \rangle$; this is a pc-group with pcgs $X = [x_1, x_2, x_3]$ and power exponents S = [3, 2, 5]. We show R(X) = [3, 2, 1], so |G| = 6: First, note that $x_2^{10} = x_3^5 = 1$, so $|x_2| \mid 10$. Second, $x_2^{x_1} = x_2 x_3 = x_2^3$ so $x_2^{27} = x_2^{(x_1^3)} = x_2^{x_3} = x_2^{(x_2^2)} = x_2$, and thus $|x_2| \mid 26$. This implies that $5 \nmid |x_2|$, and forces $x_3 = 1$ in G. Note that $x_1^0 x_2^0 x_3^0 = 1 = x_1^0 x_2^0 x_3^1$ are two normal forms (wrt power exponents).

Consistent pc presentation

A pc-presentation with power exponents S is **consistent** if and only if every group element has a unique normal form with respect to S; otherwise it is **inconsistent**.

How to check consistency? ~~ use collection and consistency checks!

Collection

Let $G = Pc\langle x_1, \ldots, x_n \mid \mathcal{R} \rangle$ with power exponents $S = [s_1, \ldots, s_n]$.

Consider a reduced word $w = x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$, that is, each $i_j \neq i_{j+1}$; we can assume $e_j \in \mathbb{N}$, otherwise eliminate using power relations.

Collection

Let $w = x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$ as above and use the previous notation:

- the word w is **collected** if w is the normal form wrt S, that is, $i_1 < \ldots < i_r$ and each $e_j \in \{0, \ldots, s_{i_j} 1\}$;
- if w is not collected, then it has a **minimal non-normal subword** of w, that is, a subword u of the form

$$u=x_{i_j}^{e_j}x_{i_{j+1}}$$
 with $i_j>i_{j+1}$, eg $u=x_3^2x_1$

or

$$u = x_{i_j}^{s_{i_j}}$$
 eg $u = x_2^5$ with $s_2 = 5$.

Collection is a method to obtain collected words.

Heiko Dietrich (heiko.dietrich@monash.edu)

Collection algorithm

Let $G = \operatorname{Pc}\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ with power exponents $S = [s_1, \ldots, s_n]$. Consider a reduced word $w = x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$, that is, each $i_j \neq i_{j+1}$; we can assume $e_j \in \mathbb{N}$, otherwise eliminate using power relations.

Collection algorithm

Input: polycyclic presentation $Pc\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ and word w in X**Output:** a collected word representing w

Repeat the following until w has no minimal non-normal subword:

- choose minimal non-normal subword $u = x_{i_j}^{s_{i_j}}$ or $u = x_{i_j}^{e_j} x_{i_{j+1}}$;
- if $u = x_{i_i}^{s_{i_j}}$, then replace u by a suitable word in x_{i_j+1}, \ldots, x_n ;

if $u = x_{i_j}^{e_j} x_{i_{j+1}}$, then replace u by $x_{i_{j+1}}u'$ with u' word in x_{i_j+1}, \ldots, x_n .

Theorem

The collection algorithm terminates.

Heiko Dietrich (heiko.dietrich@monash.edu)

Collection algorithm

If w contains more than one minimal non-normal subword, a rule is used to determine which of the subwords is replaced (making the process well-defined).

- Collection to the left: move all occurrences of x_1 to the beginning of the word; next, move all occurrences of x_2 left until adjacent to the x_1 's, etc.
- **Collection from the right**: the minimal non-normal subword nearest to the end of a word is selected.
- **Collection from the left**: the minimal non-normal subword nearest to the beginning of a word is selected.

Example: collection

Consider the group

$$\begin{split} D_{16} &\cong \mathrm{Pc} \langle x_1, x_2, x_3, x_4 \quad | \quad x_1^2 = 1, \;\; x_2^2 = x_3 x_4, \;\; x_3^2 = x_4, \;\; x_4^2 = 1, \\ & x_2^{x_1} = x_2 x_3, \;\; x_3^{x_1} = x_3 x_4 \rangle. \end{split}$$

Aim: collect the word $x_3x_2x_1$. Since power exponents are all "2", we only use generator indices:

"to tl	he lef	ť"	"from	the r	right"	" from	the l	eft"
3 <u>21</u>		<u>31</u> 23	3 <u>21</u>		<u>31</u> 23	<u>32</u> 1		2 <u>31</u>
	=	13 <u>42</u> 3			13 <u>42</u> 3			<u>21</u> 34
	=	1 <u>32</u> 43			132 <u>43</u>			12 <u>33</u> 4
		123 <u>43</u>			1 <u>32</u> 34			12 <u>44</u>
	=	12 <u>33</u> 4			12 <u>33</u> 4			12
		$12\underline{44}$		=	12 <u>44</u>			
		12			12			

Polycyclic Groups

WPCP's

Consistency checks

Theorem 8: consistency checks

 $Pc\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ with power exps $[s_1, \ldots, s_n]$ is consistent if and only if the normal forms of the following pairs of words coincide

 $\begin{array}{ll} x_k(x_j x_i) \text{ and } (x_k x_j) x_i & \text{ for } 1 \le i < j < k \le n, \\ (x_j^{s_j}) x_i \text{ and } x_j^{s_j - 1}(x_j x_i) & \text{ for } 1 \le i < j \le n, \\ x_j(x_i^{s_i}) \text{ and } (x_j x_i) x_i^{s_i - 1} & \text{ for } 1 \le i < j \le n, \\ x_j(x_i^{s_j}) \text{ and } (x_j^{s_j}) x_j & \text{ for } 1 \le j \le n, \end{array}$

where the subwords in brackets are to be collected first.

Example 9

If
$$G = \operatorname{Pc}\langle x_1, x_2, x_3 \mid x_1^3 = x_3, \ x_2^2 = x_3, \ x_3^5 = 1, \ x_2^{x_1} = x_2 x_3 \rangle$$
, then

 $(x_2^2)x_1 = x_3x_1 = x_1x_3 \quad \text{and} \quad x_2(x_2x_1) = x_2x_1x_2x_3 = x_1x_2^2x_3^2 = x_1x_3^3.$

Since $x_1x_3 = x_1x_3^3$ are both normal forms, the presentation is *not* consistent. Indeed, we deduce that $x_3 = 1$ in G.

So far we have seen that every p-group can be defined via a consistent polycyclic presentation.

However, the algorithms we discuss later require a special type of polycyclic presentations, namely, so-called **weighted power-commutator presentations**.

A weighted power-commutator presentation (wpcp) of a *d*-generator group G of order p^n is $G = Pc\langle x_1, \ldots, x_n | \mathcal{R} \rangle$ such that $\{x_1, \ldots, x_d\}$ is a minimal generating set G and the relations are

 $x_{j}^{p} = \prod_{k=j+1}^{n} x_{k}^{\alpha(j,k)} \qquad (1 \le j \le n, \ 0 \le \alpha(j,k) < p)$ $[x_{j}, x_{i}] = \prod_{k=j+1}^{n} x_{k}^{\beta(i,j,k)} \qquad (1 \le i < j \le n, \ 0 \le \beta(i,j,k) < p)$

note that every $G_i = \langle x_i, \ldots, x_n \rangle$ is normal in G.

Moreover, each $x_k \in \{x_{d+1}, \ldots, x_n\}$ is the right side of some relation; choose one of these as the **definition** of x_k .

Example 10 Consider

$$\begin{split} G = \mathrm{Pc} \langle \ x_1, \dots, x_5 \ | \ x_1^2 = x_4, \ x_2^2 = x_3, \ x_3^2 = x_5, \ x_4^2 = x_5, \ x_5^2 = 1 \\ [x_2, x_1] = x_3, \ [x_3, x_1] = x_5 \ \rangle. \end{split}$$

Here $\{x_1, x_2\}$ is a minimal generating set of G, and we choose:

- x_3 has definition $[x_2, x_1]$ and weight 2;
- x_4 has definition x_1^2 and weight 2;
- x_5 has definition $[x_3, x_1]$ and weight 3.

Why are (w)pcp's useful?

- consistent pcp's allow us to solve the *word problem* for the group: given two words, compute their normal forms, and compare them
- the additional structure of wpcp's allows more efficient algorithms: for example: consistency checks, *p*-group generation (later)
- a wpcp exhibits a normal series $G > G_1 > \ldots > G_n = 1$: many algorithms work down this series and use induction: first solve problem for G/G_k , and then extend to solve the problem for G/G_{k+1} , and so eventually for $G = G/G_n$.

... how to compute wpcp's? ~~ p-quotient algorithm (next lecture)

Conclusion Lecture 1

Things we have discussed in the first lecture:

- polycyclic groups, sequences, and series
- polycyclic generating sets (pcgs) and relative orders
- polycyclic presentations (pcp), power exponents, and consistency
- normal forms and collection
- consistency checks
- weighted polycyclic presentations (wpcp)