Planetary dynamos below stably stratified layers

Ulrich Christensen, MPS, Göttingen, Germany

GDR Conference Bangalore 12 June 2015

Causes for stable layer Sub-adiabatic T-gradient in outer parts of core Compositional stratification (e.g. associated with phase separation)

GDR Conference Bangalore 12 June 2015

Thermal convection in cores of terrestrial planets

- Large heat flux qadiab can be conducted along adiabatic Tgradient
- Main heat source latent heat of freezing of solid inner core: $q \propto 1/r^2$

 $\mathbf{q}_{\mathrm{adiab}} \propto \mathbf{r}$

 Possible scenario: thermally unstable at depth, stable near core-mantle boundary

GDR Conference Bangalore 12 June 2015

Mercury's magnetic field

- Mercury is slow rotator (59 days)
- Field dipole-dominated but weak (g₁₀=190 nT)
- Dipole tilt wrt rotation axis small (< 0.8°)
- Relatively large axial quadrupole $(g_{20}/g_{10} = 0.39)$

(Anderson et al., 2011, 2012)

Mercury dynamo below stable layer

Quadrupole / dipole ratio

Snapshot fitting the present-day field of Mercury in terms of field strength and g_{20}/g_{10} ratio

One case re-analysed from Christensen & Wicht, 2008

500 400 300 200 100 g⁰[nT] -100 -200 -300 -400 -500 -200 200 0 $g_2^0[nT]$

Mercury: double diffusive model

IC growth ⇒ light element flux Simple model: same diffusivity for heat and concentration: codensity but

Compos diffusivity << Thermal diff ⇒ Double diffusive convection

With DDC, convective fingers penetrate into stable layer and cause magnetic induction.

Outside magnetic field too strong compared to observation.

Compatible with observation when < 0.3 % sulphur in core

Manglik, Wicht & Christensen, 2010

Saturn and Jupiter: Unlike siblings

Jupiter's field 15xEarth's Similar proportion of non-zonal to zonal field as Earth. Dipole tilt 10°

Saturn's field 0.7xEarth's

No non-zonal field detected so far. Dipole tilt < 0.06°

Cao et al., 2011

GDR Conference Bangalore 12 June 2015

Saturn: Dynamo below He-rain layer

Inhomogeneous He-rain layer

Active dynamo region

رم

ഹ

Stevenson, 1980

GDR Conference Bangalore 12 June 2015

U. Christensen

Dynamo stably stratified layer

Hydrogen

metallizes

A Gedankenexperiment

Skin effect eliminates timevariable component (equatorial dipole) and lets static component (axial dipole) pass

Field strength for deep dynamo

With top of Saturn's dynamo at 0.4 R_s rather than at 0.62 R_s observed field complies with scaling relation Christensen, 2010

GDR Conference Bangalore 12 June 2015

Dipolar dynamo with stable layer

Strong non-zonal field component largely filtered out by stable layer.

Residual dipole tilt too large compared to observation (1.5° vs. <0.06°)

Model unable to match ratio of dynamo advection time to diffusion time @ stable layer

Christensen & Wicht, 2008

GDR Conference Bangalore 12 June 2015

Skin effect

Stagnant stable layer (thickness D) with magn. diffusivity λ

Damping factor $f_{\omega} = \exp(-[\omega D^2/2\lambda]^{1/2})$

With plausible values for λ and ω , a thin layer (D=1000 km, 1.5% of R_S) enough to damp by factor 10⁴.

Picture of equatorial dipole oscillating with single frequency too simple.

Consider power spectrum of dipole fluctuations.

GDR Conference Bangalore 12 June 2015

Skin effect

For equatorial dipole, temporal power spectrum flat up to $\omega_0 = U/R$ (inverse advection time in dynamo)

Folding white spectrum up to ω_o with f_{ω} and ignoring power at $\omega > \omega_o$ results in net attenuation factor

 $f = (\lambda R / [2D^2U])^{1/2}$

Saturn: U=1 cm/s R=30,000 km D=10,000 km λ =2 m²/s \Rightarrow f=1/170

10° dipole tilt at top of dynamo reduced to 0.06° above stable layer

Christensen et al., 2015 (submitted)

GDR Conference Bangalore 12 June 2015

Ganymede's magnetic field

- Galileo mission detected
 intrinsic magnetic field
- g₁₀=711 nT Dipole tilt 4°
- Two field models equally consistent with data:
 (1) Dipole + quadrupole
 (2) Dipole + field induced in ocean, no quadrupole

Kivelson et al., 2002

New evidence for induced field

Aurora on Ganymede at open-closed fieldline boundary Rocking of aurora location with Jupiter's rotation in HST images less than expected for non-conducting planet Saur et al., 2015

GDR Conference Bangalore 12 June 2015

Ganymede's dynamo field

- Internal field generated by dynamo in metallic core
- Take R₂/R₁ of oceanless field model as upper limit
- Core radius r_c is 1/4 1/3 of planetary radius r_G
- Even when calculated at r_c = 0.25 r_G, quadrupole is untypically small

 $R_2 / R_1 < 0.04$ (Earth CMB 2010: $R_2 / R_1 = 0.14$)

GDR Conference Bangalore 12 June 2015

Fe – FeS melting curve

- Sulphur likely abundant in outer solar system
- S reduces melting temperature T_M and gradient dT_M/dP
- In 5-10 GPa pressure range dT_M/dP < 0 for >10% S
- For more than few % S, dT_M/dP less steep than adiabatic T-gradient
- Crystallization of iron proceeds top-down

Hauck et al., 2006; Chen et al., 2008; Williams, 2009; Buono & Walker, 2010

GDR Conference Bangalore 12 June 2015

U. Christensen

Top-down crystallization

- Adiabat steeper than melting point gradient
- Iron snow forms in top layer. Sinks and dissolves at bottom of this layer
- Sulphur-enrichment with stable compositional gradient in snow-forming layer. Here temperature everywhere at liquidus
 - Hauck et al., 2006

GDR Conference Bangalore 12 June 2015

Dynamo below a snow layer

- Fe-enrichment by melting of snow at top of interior region • drives compositional convection
- Stable $\Delta \rho$ in snow layer > 10⁵ times larger than typical $\Delta \rho$ of convection \Rightarrow horizontal flow but no radial overturn

Ganymede dynamo models

- MHD dynamo model in rotating sphere, codensity, fixed buoyancy flux Q_B at top of dynamo region
- Reference model: No extra outer layer
- Snow layer model: Strongly stable fluid layer above dynamo region. Only u_h , subject to viscous, inertial, Lorentz and Coriolis forces. Magnetic induction with $u_r = 0$, $u_h \neq 0$.

Christensen, 2015a Christensen, 2015b (corrigendum)

Azimuthal and time average

$E = 3 \times 10^{-5}$ Pm = 3 Ra=28xRa_{crit}

Reference model

Stable fluid layer

 $d_o = d/(R_c-d) = 0.4$

GDR Conference Bangalore 12 June 2015

U. Christensen

Field morphology

 $E = 3 \times 10^{-5}$ Pm = 3 Ra=28xRa_{crit}

Reference model

at $r = r_c + 0.4$

Stable fluid layer

at $r = r_c$

GDR Conference Bangalore 12 June 2015

Magnetic power spectra

- At top of the core, time-averaged, normalized with dipole
- E=3×10⁻⁵ Pm=3 28Ra_c
- Reference model w/o stable layer similar to geodynamo spectrum
- With snow layer drop in multipoles
- R₂ / R₁ ~ 0.001

GDR Conference Bangalore 12 June 2015

Dynamo regime

- Empirical ordering parameter Ra E² Pm^{1/2}
- Dipolar dynamos with low R_2/R_1 for stable layer thickness $d_0 \ge 0.2$ (≈ 100 km) and $RaE^2Pm^{1/2} < 2$
- Ganymede value:

Ra E² Pm^{1/2} ~ O(1)

Field strength: How to rescale? $B = B^* \sqrt{\rho \mu \lambda \Omega}$ $t = t^* D^2 / \nu$ $Ra = \frac{g Q_B D^4}{\rho \nu \kappa^2}$ $E = \frac{\nu}{\Omega D^2}$ $Pm = \frac{\nu}{\lambda}$ $Pr = \frac{\nu}{\kappa}$

- Take true values of D, ρ, g
- To match non-dimensional model parameters, set diffusivites v, κ , λ to whatever is required
- We must also compromise either on the buoyancy flux Q_B (overdrive) or on Ω (underrotate)
- Scaling studies suggest that B depends on Q_B , but not strongly on diffusivities or Ω (Christensen & Aubert, 2006)
- > Conclusion: take correct Q_B , compromise on Ω

Field strength

E = 3 × 10⁻⁵ Pm = 3 Pr=1 Ra=2.5x10⁸ Fix D, ρ, g to Ganymede, $Q_B = 5000$ kg/s Rückriemen et al., 2015 $\triangleright v = \kappa = 3.8$ m²/s $\lambda = 1.3$ m²/s $2\pi/\Omega = 160$ d

(Observed $g_{10} = 711 \text{ nT}$)

GDR Conference Bangalore 12 June 2015

Conclusions

- Stably stratified layer above dynamo region in planets: Mercury, Saturn, Ganymede (Earth?)
- Stable layer tends to make field more axisymmetric (small dipole tilt), lowers dipole moment
- Reduced quadrupole if dynamo field dipoledominated. Multipolar dynamo field permits large axial quadrupole
- Test of concept by future observations: Skin effect prolongs time-scale of secular variation