Effects of flow inhomogeneity in turbulent dynamo

Nobumitsu YOKOI'
'Institute of Industrial Science (IIS), University ofTokyo

Contents

I. Flow inhomogeneities in dynamos
II. Cross-helicity and related dynamo
III. Solar-cycle dynamo
IV. Magnetic reconnection
V. Concluding remarks

Previous

Institute of Industrial Science (IIS), University of Tokyo

Present IIS

II. Flow inhomogeneities in dynamos

Mean field

$$
\mathbf{b}=\mathbf{B}+\mathbf{b}^{\prime}, \quad \mathbf{B}=\langle\mathbf{b}\rangle
$$

$$
\frac{\partial \mathbf{B}}{\partial t}=\nabla \times(\mathbf{U} \times \mathbf{B})+\nabla \times\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle+\eta \nabla^{2} \mathbf{B}
$$

$(\mathrm{B} \cdot \nabla) \mathrm{U} \longrightarrow$ differential rotation," Ω effect"

Homogeneous

Turbulence

$$
\mathbf{U}=\mathbf{U}_{0}(\text { constant }) \text { or } \mathbf{0}
$$

$$
\begin{aligned}
& \frac{\partial \mathbf{u}^{\prime}}{\partial t}+(\mathbf{U} \cdot \nabla) \mathbf{u}^{\prime}=(\mathbf{B} \cdot \nabla) \mathbf{b}^{\prime}+\left(\mathbf{b}^{\prime} \cdot \nabla\right) \mathbf{B}-\left(\mathbf{u}^{\prime} \nabla\right) \mathbf{U}+\cdots \\
& \frac{\partial \mathbf{b}^{\prime}}{\partial t}+(\mathbf{U} \cdot \nabla) \mathbf{b}^{\prime}=(\mathbf{B} \cdot \nabla) \mathbf{u}^{\prime}-\left(\mathbf{u}^{\prime} \cdot \nabla\right) \mathbf{B}+\left(\mathbf{b}^{\prime} \nabla\right) \mathbf{U}+\cdots \\
& \longrightarrow \quad\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle^{\alpha}=\alpha^{\alpha a} B^{a}+\beta^{\alpha a b} \frac{\partial B^{a}}{\partial x^{b}}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \mathbf{u}^{\prime}}{\partial t}+(\mathbf{U} \cdot \nabla) \mathbf{u}^{\prime}=(\mathbf{B} \cdot \nabla) \mathbf{b}^{\prime}+\left(\mathbf{b}^{\prime} \cdot \nabla\right) \mathbf{B}-\left(\mathbf{u}^{\prime} \cdot \nabla\right) \mathbf{U}+\cdots \\
& \frac{\partial \mathbf{b}^{\prime}}{\partial t}+(\mathbf{U} \cdot \nabla) \mathbf{b}^{\prime}=(\mathbf{B} \cdot \nabla) \mathbf{u}^{\prime}-\left(\mathbf{u}^{\prime} \cdot \nabla\right) \mathbf{B}+\left(\mathbf{b}^{\prime} \cdot \nabla\right) \mathbf{U}+\cdots \\
& \left\langle\frac{\partial \mathbf{u}^{\prime}}{\partial t} \times \mathbf{b}^{\prime}\right\rangle+\left\langle\mathbf{u}^{\prime} \times \frac{\partial \mathbf{b}^{\prime}}{\partial t}\right\rangle=\cdots \\
& =\frac{\tau\left(\left\langle u^{\prime a} b^{\prime c}\right\rangle+\left\langle u^{\prime c} b^{\prime a}\right\rangle\right) \epsilon^{\alpha a b} \frac{\partial U^{b}}{\partial x^{c}}}{\tau\left\langle\mathbf{u}^{\prime} \times\left[\left(\mathbf{b}^{\prime} \cdot \nabla\right) \mathbf{U}\right]+\left[\left(\mathbf{u}^{\prime} \cdot \nabla\right) \mathbf{U}\right] \times \mathbf{b}^{\prime}\right\rangle{ }^{\alpha}} \begin{array}{l}
\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle=\cdots+\tau\left\langle\mathbf{u}^{\prime} \cdot \mathbf{b}^{\prime}\right\rangle \nabla \times \mathbf{U}+\cdots \\
\longrightarrow
\end{array} \quad \begin{array}{l}
\text { cross helicity }
\end{array}
\end{aligned}
$$

Inhomogeneous turbulence

- Homogeneous turbulence

Turbulence energy externally injected

- Large-scale inhomogeneities

Turbulent energy

$$
\left(\frac{\partial}{\partial t}+\mathbf{U} \cdot \nabla\right)\left\langle\mathbf{u}^{\prime 2}+\mathbf{b}^{\prime 2}\right\rangle / 2=-\left\langle\mathbf{u}^{\prime} \mathbf{u}^{\prime}-\mathbf{b}^{\prime} \mathbf{b}^{\prime}\right\rangle \cdot \nabla \mathbf{U}-\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle \cdot \nabla \times \mathbf{B}-\varepsilon_{K}+\cdots
$$

Turbulent cross helicity

$$
\left(\frac{\partial}{\partial t}+\mathbf{U} \cdot \nabla\right)\left\langle\mathbf{u}^{\prime} \cdot \mathbf{b}^{\prime}\right\rangle=-\left\langle\mathbf{u}^{\prime} \mathbf{u}^{\prime}-\mathbf{b}^{\prime} \mathbf{b}^{\prime}\right\rangle \cdot \nabla \mathbf{B}-\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle \cdot \nabla \times \mathbf{U}-\varepsilon_{W}+\cdots
$$

Turbulent residual helicity

$$
\begin{gathered}
\left(\frac{\partial}{\partial t}+\mathbf{U} \cdot \nabla\right)\left\langle\mathbf{b}^{\prime} \cdot \mathbf{j}^{\prime}-\mathbf{u}^{\prime} \cdot \boldsymbol{\omega}\right\rangle=-\left\langle\mathbf{u}^{\prime} \mathbf{u}^{\prime}-\mathbf{b}^{\prime} \mathbf{b}^{\prime}\right\rangle \cdot \nabla \boldsymbol{\Omega}-\frac{1}{\tau \beta}\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle \cdot \mathbf{B}-\varepsilon_{H}+\cdots \\
\mathbf{j}^{\prime}=\nabla \times \mathbf{b}^{\prime}, \quad \boldsymbol{\omega}^{\prime}=\nabla \times \mathbf{u}^{\prime}, \quad \boldsymbol{\Omega}=\nabla \times \mathbf{U}
\end{gathered}
$$

II. Cross helicity and related dynamo

Turbulence effects

Reynolds (+ turbulent Maxwell) stress

$$
\begin{aligned}
\mathcal{R}_{\mathrm{D}}^{\alpha \beta} & \equiv\left\langle u^{\prime \alpha} u^{\prime \beta}-b^{\prime \alpha} b^{\prime \beta}\right\rangle_{\mathrm{D}} \\
& =-\nu_{\mathrm{K}} \mathcal{S}_{\mathrm{D}}^{\alpha \beta}+\nu_{\mathrm{M}} \mathcal{M}_{\mathrm{D}}^{\alpha \beta}+[\boldsymbol{\Gamma} \boldsymbol{\Omega}]_{\mathrm{D}}^{\alpha \beta}
\end{aligned}
$$

Enhancement Suppression
Turbulent electromotive force

$$
\begin{aligned}
\mathcal{S}^{\alpha \beta} & =\frac{\partial U^{\beta}}{\partial x^{\alpha}}+\frac{\partial U^{\alpha}}{\partial x^{\beta}} \\
\mathcal{M}^{\alpha \beta} & =\frac{\partial B^{\beta}}{\partial x^{\alpha}}+\frac{\partial B^{\alpha}}{\partial x^{\beta}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{E}_{\mathrm{M}} & \equiv\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle \\
& =-\beta \mathbf{J}+\alpha \mathbf{B}+\gamma \boldsymbol{\Omega}
\end{aligned}
$$

Enhancement Suppression

$$
\begin{array}{lrr}
\alpha=\frac{1}{3} \int d \mathbf{k} \int_{-\infty}^{\tau} d \tau_{1} G\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right)\left[-H_{u u}\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right)+H_{b b}\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right)\right] & \alpha \propto \tau H \\
\beta=\frac{1}{3} \int d \mathbf{k} \int_{-\infty}^{\tau} d \tau_{1} G\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right)\left[Q_{u u}\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right)+Q_{b b}\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right)\right]=\frac{5}{7} \nu_{\mathrm{K}} & & \beta \propto \tau K \\
\gamma=\frac{1}{3} \int d \mathbf{k} \int_{-\infty}^{\tau} d \tau_{1} G\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right)\left[Q_{u b}\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right)+Q_{b u}\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right)\right]=\frac{5}{7} \nu_{\mathrm{M}} & \gamma \propto \tau W \\
\boldsymbol{\Gamma}=\frac{1}{15} \int d \mathbf{k} k^{-2} \int_{-\infty}^{\tau} d \tau_{1} G\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right) \nabla H_{u u}\left(k, \mathbf{x} ; \tau, \tau_{1}, t\right) & \boldsymbol{\Gamma} \propto \tau \ell^{2} \nabla H
\end{array}
$$

α and cross-helicity effect

(Yokoi, GAFD I07, II4, 2013)

$$
\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle=\overbrace{\alpha \mathbf{B}-\beta \underbrace{\beta \text { dynamo }}_{\text {cross-helicity dynamo }}, \mathbf{B}+\gamma \nabla \times \mathbf{U}}^{\text {der }}
$$

Mean induction equation

$$
\begin{aligned}
& \frac{\partial \mathbf{B}}{\partial t}=\nabla \times\left(\mathbf{U} \times \mathbf{B}+\underline{\mathbf{E}_{\mathrm{M}}}\right)+\eta \nabla^{2} \mathbf{B} \quad \quad \mathbf{E}_{\mathrm{M}}=-\beta \mathbf{J}+\alpha \mathbf{B}+\gamma \boldsymbol{\Omega} \\
& \mathbf{B}=\mathbf{B}_{0}+\delta \mathbf{B}, \quad \mathbf{J}=\mathbf{J}_{0}+\delta \mathbf{J} \\
& \text { Reference } \quad \frac{\partial \mathbf{B}_{0}}{\partial t}=\nabla \times\left(\mathbf{U} \times \mathbf{B}_{0}\right)+\nabla \times\left(\alpha \mathbf{B}_{0}-\beta \nabla \times \mathbf{B}_{0}\right) \\
& \text { Modulation } \quad \frac{\partial \delta \mathbf{B}}{\partial t}=\nabla \times(\mathbf{U} \times \delta \mathbf{B})-\nabla \times\left[\beta \nabla \times\left(\delta \mathbf{B}-\frac{\gamma}{\beta} \mathbf{U}\right)\right] \\
& \longrightarrow \quad \delta \mathbf{B}=\frac{\gamma}{\beta} \mathbf{U}=C_{\mathrm{W}} \frac{W}{K} \mathbf{U} \quad \frac{|W|}{K}=\frac{\left|\left\langle\mathbf{u}^{\prime} \cdot \mathbf{b}^{\prime}\right\rangle\right|}{\left\langle\mathbf{u}^{\prime 2}+\mathbf{b}^{\prime 2}\right\rangle / 2} \leq 1 \\
& \text { c.f. } \quad \nabla \times\left(\frac{\gamma}{\beta} \mathbf{U}\right)=\frac{\gamma}{\beta} \nabla \times \mathbf{U}+\nabla\left(\frac{\gamma}{\beta}\right) \times \mathbf{U}
\end{aligned}
$$

Mean momentum equation

Mean Lorentz force $\mathbf{J} \times \mathbf{B}=\frac{1}{\beta}(\mathbf{U} \times \mathbf{B}) \times \mathbf{B}+\frac{\gamma}{\beta} \boldsymbol{\Omega} \times \mathbf{B}-\frac{1}{\beta}\left(\frac{\partial \mathbf{A}}{\partial t}+\nabla \varphi\right) \times \mathbf{B}$

$$
\mathbf{U}=\mathbf{U}_{0}+\delta \mathbf{U}, \quad \boldsymbol{\Omega}=\boldsymbol{\Omega}_{0}+\delta \boldsymbol{\Omega}
$$

$$
\text { Reference } \quad \frac{\partial \boldsymbol{\Omega}_{0}}{\partial t}=\nabla \times\left[\mathbf{U}_{0} \times \boldsymbol{\Omega}_{0}+\nu_{\mathrm{K}} \nabla^{2} \mathbf{U}_{\mathbf{0}}+\mathbf{F}-\frac{1}{\beta}\left(\frac{\partial \mathbf{A}}{\partial t}+\nabla \varphi\right) \times \mathbf{B}\right]
$$

$$
\text { Modulation } \quad \frac{\partial \delta \boldsymbol{\Omega}}{\partial t}=\nabla \times\left[\left(\delta \mathbf{U}-\frac{\gamma}{\beta} \mathbf{B}\right) \times \boldsymbol{\Omega}_{0}+\nu_{\mathrm{K}} \nabla^{2}\left(\delta \mathbf{U}-\frac{\gamma}{\beta} \mathbf{B}\right)\right]
$$

$$
\longrightarrow \quad \delta \mathbf{U}=\frac{\gamma}{\beta} \mathbf{B}=C_{\gamma} \frac{W}{K} \mathbf{B}
$$

$$
\frac{|W|}{K}=\frac{\left|\left\langle\mathbf{u}^{\prime} \cdot \mathbf{b}^{\prime}\right\rangle\right|}{\left\langle\mathbf{u}^{\prime 2}+\mathbf{b}^{\prime 2}\right\rangle / 2} \leq 1
$$

$$
\begin{aligned}
& \frac{\partial \mathbf{U}}{\partial t}=\mathbf{U} \times \boldsymbol{\Omega}+\mathbf{J} \times \mathbf{B} \underset{\text { Turbulence }}{-\nabla \cdot \boldsymbol{\mathcal { R }}}+\mathbf{F}-\nabla\left(P+\frac{1}{2} \mathbf{U}^{2}+\left\langle\frac{1}{2} \mathbf{b}^{\prime 2}\right\rangle\right) \\
& \mathbf{J}=\sigma\left(\mathbf{E}+\mathbf{U} \times \mathbf{B}+{\left.\underset{\text { Turbulence }}{\mathbf{E}_{\mathrm{M}}}\right)}^{\mathbf{E}^{2}} \quad\left\{\begin{array}{l}
\mathcal{R}^{\alpha \beta}=\frac{2}{3} K_{\mathrm{R}} \delta^{\alpha \beta}-\nu_{\mathrm{K}} \mathcal{S}^{\alpha \beta}+\nu_{\mathrm{M}} \mathcal{M}^{\alpha \beta} \\
\mathbf{E}_{\mathrm{M}}=-\beta \mathbf{J}+\alpha \mathbf{B}+\gamma \boldsymbol{\Omega}
\end{array}\right.\right.
\end{aligned}
$$

Cross-helicity generation mechanism

Evolution equation of the turbulent cross helicity $W \equiv\left\langle\mathbf{u}^{\prime} \cdot \mathbf{b}^{\prime}\right\rangle$

$$
\begin{aligned}
& \frac{D W}{D t} \equiv\left(\frac{\partial}{\partial t}+\mathbf{U} \cdot \nabla\right) W=P_{W}-\varepsilon_{W}+\nabla \cdot \mathbf{T}_{W} \\
& \text { where } \quad P_{W}=-\mathcal{R}^{a b} \frac{\partial B^{a}}{\partial x^{b}}-\mathbf{E}_{\mathrm{M}} \cdot \boldsymbol{\Omega} \\
& \varepsilon_{W}=(\nu+\eta)\left\langle\frac{\partial u^{\prime a}}{\partial x^{b}} \frac{\partial b^{\prime a}}{\partial x^{b}}\right\rangle \\
& \mathbf{T}_{W}=K \mathbf{B}-\left\langle\left(\mathbf{u}^{\prime} \cdot \mathbf{b}^{\prime}\right) \mathbf{u}^{\prime}-\left(\frac{\mathbf{u}^{2}+\mathbf{b}^{\prime 2}}{2}-p_{\mathrm{M}}^{\prime}\right) \mathbf{b}^{\prime}\right\rangle \\
& \nabla \cdot \mathbf{T}_{W}=\mathbf{B} \cdot \nabla K+\cdots \quad K \equiv\left\langle\mathbf{u}^{\prime 2}+\mathbf{b}^{\prime 2}\right\rangle / 2 \\
& \text { production rate } \\
& \text { dissipation rate } \\
& \text { transport rate } \\
& \text { with } \\
& \mathcal{R}^{\alpha \beta}=\left\langle u^{\prime \alpha} u^{\prime \beta}-b^{\prime \alpha} b^{\prime \beta}\right\rangle \quad \text { Reynolds stress } \\
& \mathbf{E}_{\mathrm{M}} \equiv\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle \quad \text { Turbulent electromotive force } \\
& =\alpha \mathbf{B}-\beta \mathbf{J}+\gamma \boldsymbol{\Omega}
\end{aligned}
$$

Cross helicity in dynamos

DNS of electromotive force in Kolmogorov flow (Yokoi \& Balarac, 201I)

Rahbarnia, et al.ApJ., (20|2)

III. Solar-Cycle Dynamo

Pseudoscalar

Spatial distribution

Dipole-like case

Quadrupole-like case
(with R. Simitev \& F. Busse)

Signs of cross helicity and helicity during the polarity reversal

Cross helicity changes its sign
Kinetic helicity does not

Turbulent cross-helicity equation

$$
\begin{aligned}
&\left(\frac{\partial}{\partial t}+\mathbf{U} \cdot \nabla\right)\left\langle\mathbf{u}^{\prime} \cdot \mathbf{b}^{\prime}\right\rangle=-\left\langle\mathbf{u}^{\prime} \mathbf{u}^{\prime}-\mathbf{b}^{\prime} \mathbf{b}^{\prime}\right\rangle \cdot \nabla \mathbf{B}-\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle \cdot \nabla \times \mathbf{U}-\varepsilon_{W}+\cdots \\
& \begin{array}{l}
\text { Negative production } \\
\text { of the turb. cross helicity }
\end{array} \longleftarrow-\alpha \mathbf{B} \cdot \boldsymbol{\Omega}
\end{aligned}
$$

$$
P_{W 1}=-\alpha \mathbf{B}_{1} \cdot \boldsymbol{\Omega}>0 \quad \text { for } \quad \alpha \gtrless 0, \gamma<0
$$

(a)

(c)

(b)

(d)

Scenario for periodic reversal

Positive cross helicity

$$
\downarrow \quad \mathbf{B}_{0}=\frac{\gamma}{\beta} \mathbf{U}
$$

Generation of the toroidal field due to the cross-helicity (γ) effect
Toroidal magnetic field B_{0}

$$
\downarrow \quad \mathbf{B}_{1}=\frac{\alpha}{\beta} \mathbf{B}_{0}=\frac{\alpha}{\beta} \frac{\gamma}{\beta} \mathbf{U}
$$

Generation of the poloidal field due to the helicity (α) effect

Poloidal magnetic field B_{l}

$$
\downarrow \quad P_{W 1}=-\alpha \mathbf{B}_{1} \cdot \boldsymbol{\Omega}
$$

Negative cross helicity
Negative cross-helicity
 generation due to the induced poloidal magnetic field $\mathrm{B}_{\text {I }}$

Periodic reversal

Turbulent cross-helicity equation

$$
\left(\frac{\partial}{\partial t}+\mathbf{U} \cdot \nabla\right)\left\langle\mathbf{u}^{\prime} \cdot \mathbf{b}^{\prime}\right\rangle=-\left\langle\mathbf{u}^{\prime} \mathbf{u}^{\prime}-\mathbf{b}^{\prime} \mathbf{b}^{\prime}\right\rangle \cdot \nabla \mathbf{B}-\left\langle\mathbf{u}^{\prime} \times \mathbf{b}^{\prime}\right\rangle \cdot \nabla \times \mathbf{U}-\varepsilon_{W}+\cdots
$$

Dynamo equations with cross-helicity equation

$$
\begin{aligned}
\frac{\partial \mathbf{B}}{\partial t} & =\nabla \times(\mathbf{U} \times \mathbf{B})+\nabla \times(-\beta \nabla \times \mathbf{B}+\alpha \mathbf{B}+\gamma \boldsymbol{\Omega}) \\
\frac{\partial \gamma}{\partial t} & =\beta \nabla^{2} \gamma-\alpha \tau \mathbf{B} \cdot \boldsymbol{\Omega}+\beta \tau(\nabla \times \mathbf{B}) \cdot \boldsymbol{\Omega}-\gamma \tau \boldsymbol{\Omega}^{2}
\end{aligned}
$$

with vorticity $\boldsymbol{\Omega}=\nabla \times \mathbf{U}$ cross helicity $\quad \gamma=\tau\left\langle\mathbf{u}^{\prime} \cdot \mathbf{b}^{\prime}\right\rangle$

Cartesian coordinate $\quad(x, y, z) \simeq(\theta, \phi, r)$
Axisymmetry $\quad \frac{\partial}{\partial y}=0$
Rotation

$$
\mathbf{U}=\left(U^{x}, U^{y}, U^{z}\right)=\left(0, U^{y}, 0\right)
$$

$$
\text { with shears } \quad \frac{\partial U^{y}}{\partial x}, \frac{\partial U^{y}}{\partial z}
$$

omit meridional circulation
Magnetic field

$$
\begin{aligned}
\mathbf{B} & =\left(B^{x}, B^{y}, B^{z}\right)=\mathbf{B}_{\mathrm{tor}}+\mathbf{B}_{\mathrm{pol}}=\left(0, B^{y}, 0\right)+\nabla \times\left(0, A^{y}, 0\right) \\
& =\left(0, B^{y}, 0\right)+\left(-\frac{\partial A^{y}}{\partial z}, 0, \frac{\partial A^{y}}{\partial x}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{llrl}
\frac{\partial A}{\partial t} & =\beta \frac{\partial^{2} A}{\partial x^{2}}+\alpha B & \longleftarrow & \frac{\partial \mathbf{B}_{1}}{\partial t}
\end{array}=\nabla \times\left(\mathbf{U} \times \mathbf{B}_{1}+\alpha \mathbf{B}_{0}-\beta \mathbf{J}_{1}\right), ~\left(\frac{\partial \mathbf{B}_{0}}{\partial t}=\nabla \times\left(\mathbf{U} \times \mathbf{B}_{0}-\beta \mathbf{J}_{0}+\gamma \boldsymbol{\Omega}\right)\right)\right.
$$

$$
P_{\text {crit }}=17.53 \quad \text { with } \quad \omega_{\mathrm{I}}=2.97
$$

Poloidal

Toroidal

Cross helicity

gamma-Field / Max $=0.366910$

Poloidal

$$
\frac{\partial A}{\partial t}=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \frac{1}{\sin \theta} \frac{\partial A \sin \theta}{\partial \theta}+B \cos \theta
$$

Toroidal

$$
\frac{\partial B}{\partial t}=\frac{\partial}{\partial \theta} \frac{1}{\sin \theta} \frac{\partial(B \sin \theta)}{\partial \theta}-2 \gamma C_{\gamma} \mathcal{D}(x \sin \theta+1) f(\theta)
$$

Cross helicity

$$
\frac{\partial \gamma}{\partial t}=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial \gamma}{\partial \theta}-\frac{\xi}{\sin \theta} \frac{\partial A \sin \theta}{\partial \theta}
$$

(with Valery Pipin)
\mathcal{D} dynamo number
$f(\theta)=\frac{\partial \Omega}{\partial x} \quad$ radial derivative of the shear
ξ stratification parameter
$C_{\gamma} \begin{aligned} & \text { model constant related to } \\ & \text { the cross-helicity generation }\end{aligned}$

Toroidal (in contour) vs poloidal

Cross helicity

"Butterfly diagram" is generated without resorting to the Ω effect

$$
\left\{\begin{array}{llrl}
\frac{\partial A}{\partial t} & =\beta \frac{\partial^{2} A}{\partial x^{2}}+\alpha B & \longleftarrow & \frac{\partial \mathbf{B}_{1}}{\partial t}
\end{array}=\nabla \times\left(\mathbf{U} \mathbf{B}_{1}+\alpha \mathbf{B}_{0}-\beta \mathbf{J}_{1}\right) ~ 子 \begin{array}{lll}
\frac{\partial B}{\partial t} & =\beta \frac{\partial^{2} B}{\partial x^{2}}-\frac{\partial}{\partial x}\left(\gamma \frac{\partial U}{\partial x}\right) & \longleftarrow
\end{array}\right) \frac{\partial \mathbf{B}_{0}}{\partial t}=\nabla \times\left(\mathbf{U} \times \mathbf{B}_{0}-\beta \mathbf{J}_{0}+\gamma \boldsymbol{\Omega}\right)
$$

- Cross-helicity and α effects:
- Toroidal field is generated by the cross-helicity effect
- Poloidal field is generated by the α effect;
- Induced poloidal field reduces the cross-helicity generation (produces turbulence cross helicity with the opposite sign);
- Oscillatory behavior of magnetic field through the cross helicity oscillation;
- Dynamic dynamo equation with cross-helicity evolution equation

Future work

- Red Dwarfs (cool stars)
- highly turbulent but no differential rotation
- Inclusion of modes with other symmetry
- dipole, quadruple magnetic fields
- Maunder-minimum-like behavior
- Meridional circulation
- evolution equation for α
- fluctuation of α

Magnetic reconnection

Simplest reconnection model

 Sweet (1958), Parker (1957)Mass conservation

$$
u_{\text {in }} L=u_{\text {out }} \Delta
$$

Energy conservation

$$
\frac{1}{2 \mu_{0}} b_{\text {in }}^{2} u_{\text {in }} L=\frac{1}{2} \rho u_{\text {out }}^{2} u_{\text {out }} \Delta
$$

Out-flow speed can be estimated by the Alfvén speed

$$
u_{\text {out }}=b_{\text {in }} /\left(\mu_{0} \rho\right)^{1 / 2} \equiv V_{\mathrm{A}}
$$

In-flow Alfvén Mach number $\quad M_{\text {in }}=\frac{u_{\text {in }}}{V_{\mathrm{A}}}=\frac{u_{\text {in }}}{u_{\text {out }}}=\frac{\Delta}{L}$

$$
\Delta=\eta / u_{\mathrm{i}} \quad \begin{aligned}
& \text { Magnetic field diffused by } \eta \text { in the domain of } \Delta \text { is } \\
& \text { supplied by magnetic field convected by inflow }
\end{aligned} \quad \eta \frac{b_{\text {in }}}{\Delta}=b_{\mathrm{in}} u_{\mathrm{in}}
$$

Reconnection rate $\quad M_{\text {in }}=S^{-1 / 2}$ where the Lundquist number S is defined by

$$
S=\frac{V_{\mathrm{A}} L}{\eta}
$$

Turbulent reconnection

Matthaeus \& Lamkin (1985)
Lazarian \&Vishniac (1999)

$$
M_{\mathrm{in}}=\frac{U_{\mathrm{in}}}{V_{\mathrm{Ain}}} \leq M_{\mathrm{turb}}
$$

$M_{\text {turb }}$: large-scale magnetic Mach number of turbulence

Eyink, et al. (20II) Lagrangian trajectory

Inhomogeneous turbulence in reconnection

β : Energy

$$
\left(\frac{\partial}{\partial t}+\mathbf{U} \cdot \nabla\right)\left\langle\mathbf{u}^{\prime 2}+\mathbf{b}^{\prime 2}\right\rangle / 2=\cdots+\beta \mathbf{J}^{2}-\varepsilon_{K}+\cdots
$$

γ : Cross helicity

$$
\left(\frac{\partial}{\partial t}+\mathbf{U} \cdot \nabla\right)\left\langle\mathbf{u}^{\prime} \cdot \mathbf{b}^{\prime}\right\rangle=\cdots+\beta \mathbf{J} \cdot \boldsymbol{\Omega}-\varepsilon_{W}+\cdots
$$

α : Residual helicity

$$
\left(\frac{\partial}{\partial t}+\mathbf{U} \cdot \nabla\right)\left\langle\mathbf{b}^{\prime} \cdot \mathbf{j}^{\prime}-\mathbf{u}^{\prime} \cdot \boldsymbol{\omega}^{\prime}\right\rangle=\cdots+\frac{1}{\tau} \mathbf{B} \cdot \mathbf{J}-\varepsilon_{H}+\cdots
$$

Basic equations to be solved

Mean fields

$$
\begin{aligned}
& \frac{\partial \bar{\rho}}{\partial t}=-\nabla \cdot(\bar{\rho} \mathbf{U}) \quad \text { 4th-order centered difference in space } \\
& \frac{\partial}{\partial t}(\bar{\rho} \mathbf{U})=-\nabla \cdot\left[\bar{\rho} \mathbf{U} \mathbf{U}-\mathbf{B B}+\left(p+\frac{1}{2} \mathbf{B}^{2}\right) \boldsymbol{I}\right] \\
& \frac{\partial}{\partial t}\left(\frac{p}{\gamma-1}+\frac{1}{2} \bar{\rho} \mathbf{U}^{2}+\frac{1}{2} \mathbf{B}^{2}\right)=-\nabla \cdot\left[\left(\frac{\gamma}{\gamma-1} p+\frac{1}{2} \bar{\rho} \mathbf{U}^{2}\right) \mathbf{U}+\mathbf{E} \times \mathbf{B}\right] \\
& \frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{E} \quad \begin{array}{ll}
\text { Effective transport due to the turbulent motions } \\
\mathbf{E}=-\mathbf{U} \times \mathbf{B}+\eta \mathbf{J}+\beta \mathbf{J}-\gamma \boldsymbol{\Omega}=-\mathbf{U} \times \mathbf{B}+\eta \mathbf{J}+\tau(K \mathbf{J}-W \boldsymbol{\Omega}) & \beta=\tau K \\
& \gamma=\tau W
\end{array}
\end{aligned}
$$

Turbulent quantities

Turbulence production due to large-scale inhomogeneities

Turbulent energy	$\frac{\partial K}{\partial t}=-\mathbf{U} \cdot \nabla K+\tau K \mathbf{J}^{2}-\tau W \boldsymbol{\Omega} \cdot \mathbf{J}+\mathbf{B} \cdot \nabla W-\frac{K}{\tau}$
Turbulent cross helicity	$\frac{\partial W}{\partial t}=-\mathbf{U} \cdot \nabla W+\tau K \boldsymbol{\Omega} \cdot \mathbf{J}-\tau W \boldsymbol{\Omega}^{2}+\mathbf{B} \cdot \nabla K-C_{W} \frac{W}{\tau}$

Electric-current and flow structures

V. Summary

- Inhomogeneities of large-scale fields
- Cross helicity in the turbulent electromotive force
- Applications
- Solar-cycle dynamo
- Turbulent magnetic reconnection
- Momentum transport

$$
\begin{gathered}
\mathcal{R}^{\alpha \beta}:=-\nu_{\mathrm{K}} \mathcal{S}^{\alpha \beta}+[\mathbf{\Gamma} \boldsymbol{\Omega}]^{\alpha \beta}, \\
\mathbf{E}_{\mathrm{M}}:=-\beta \mathbf{J}+\alpha \mathbf{B} \\
\mathcal{R}^{\alpha \beta}:=-\nu_{\mathrm{K}} \mathcal{S}^{\alpha \beta}+\nu_{\mathrm{M}} \mathcal{M}^{\alpha \beta} \\
\mathcal{R}^{\alpha \beta}:=-\nu_{\mathrm{K}} \mathcal{S}^{\alpha \beta}+\nu_{\mathrm{M}} \mathcal{M}^{\alpha \beta}+[\mathbf{\Gamma} \boldsymbol{\Omega}]^{\alpha \beta} \\
\mathbf{E}_{\mathrm{M}}:=-\beta \mathbf{J}+\gamma \boldsymbol{\Omega}+\alpha \mathbf{B}
\end{gathered}
$$

References

Cross helicity evolution and turbulence modeling
Yokoi, N. (2006) Phys. Plasmas I 3, 062306
Yokoi, N. \& Hamba, F. (2007) Phys. Plasmas I4, I I 2904
Yokoi, N., Rubinstein, R.,Yoshizawa, A. \& Hamba, F. (2008) J.Turbulence 9, N37
Yokoi, N. (20II) J.Turbulence I 2, N27
Turbulent reconnection
Yokoi, N. \& Hoshino, M. (20II) Phys. Plasmas I8, I I I 208
Higashimori, K, Yokoi, N. \& Hoshino, M. (2013) Phys. Rev. Lett. I I 0, 25500 I
Yokoi, Higashimori \& Hoshino (20I3) Phys. Plasmas 20, I223IO
Dynamo and turbulence closure theory
Yokoi, N. \& Balarac, G. (20II) J. Phys. Conf. Ser. 3 I 8, 072039
is Yokoi, N. (2013) Geophys.Astrophys. Fluid Dyn. I07, I I4
Yokoi, N., Schmitt, D. \& Pipin,V. (2015) to be submitted

Details of eigenvalue analysis

omit index y on B^{y}, A^{y}, and U^{y} in the following
omit α term in the equation for B

$$
\begin{aligned}
\frac{\partial A}{\partial t}= & \beta\left(\frac{\partial^{2} A}{\partial x^{2}}+\frac{\partial^{2} A}{\partial z^{2}}\right)+\alpha B \\
\frac{\partial B}{\partial t}= & \beta\left(\frac{\partial^{2} B}{\partial x^{2}}+\frac{\partial^{2} B}{\partial z^{2}}\right)-\frac{\partial^{2} U}{\partial z^{2}} \gamma-\frac{\partial U}{\partial z} \frac{\partial \gamma}{\partial z}-\frac{\partial^{2} U}{\partial x^{2}} \gamma-\frac{\partial U}{\partial x} \frac{\partial \gamma}{\partial x}-\frac{\partial U}{\partial z} \frac{\partial A}{\partial x}-\frac{\partial U}{\partial x} \frac{\partial A}{\partial z} \\
\frac{\partial \gamma}{\partial t}= & \beta\left(\frac{\partial^{2} \gamma}{\partial x^{2}} \frac{\partial^{2} \gamma}{\partial z^{2}}\right)-\alpha \tau\left(\frac{\partial U}{\partial x} \frac{\partial A}{\partial x}+\frac{\partial U}{\partial z} \frac{\partial A}{\partial z}\right)+\beta \tau\left(\frac{\partial U}{\partial x} \frac{\partial B}{\partial x}-\frac{\partial U}{\partial z} \frac{\partial B}{\partial z}\right) \\
& -\gamma \tau\left(\left(\frac{\partial U}{\partial x}\right)^{2}+\left(\frac{\partial U}{\partial z}\right)^{2}\right)
\end{aligned}
$$

non-dimensional variables

$$
\begin{aligned}
& B=B_{0} \tilde{B}, A=B_{0} L \tilde{A}, \gamma=\gamma_{0} \tilde{\gamma}=B_{0} L \tilde{\gamma}, x=L \tilde{x}, t=\frac{L^{2}}{\beta_{0}} \tilde{t} \\
& U=U_{0} \tilde{U}, \alpha=\alpha_{0} \tilde{\alpha}, \beta=\beta_{0} \tilde{\beta}
\end{aligned}
$$

symmetry assumption with respect to the equator

$$
\tilde{U}=\sin x, \tilde{\alpha}=\cos x, \tilde{\beta}=1, \tilde{t}=1
$$

omit all \sim in the following
assume $\mathrm{e}^{\mathrm{ikz}}$ dependence of $\mathrm{A}, \mathrm{B}, \gamma$, assume $\frac{\partial U}{\partial z}=k_{u} U$

$$
\begin{aligned}
\frac{\partial A}{\partial t}= & \frac{\partial^{2} A}{\partial x^{2}}-k^{2} A+R_{\alpha} \cos x B \\
\frac{\partial B}{\partial t}= & \frac{\partial^{2} B}{\partial x^{2}}-k^{2} B-R_{u}\left(k_{u}^{2} \sin x \gamma+i k k_{u} \sin x \gamma-\sin x \gamma+\cos x \frac{\partial \gamma}{\partial x}\right) \\
& +R_{u}\left(k_{u} \sin x \frac{\partial A}{\partial x}-i k \cos x A\right) \\
\frac{\partial \gamma}{\partial t}= & \frac{\partial^{2} \gamma}{\partial x^{2}}-k^{2} \gamma-R_{\alpha} R_{u}\left(\cos ^{2} x \frac{\partial A}{\partial x}-i k k_{u} \sin x \cos x A\right) \\
& +R_{u}\left(\cos x \frac{\partial B}{\partial x}-i k k_{u} \sin x B\right)-R_{u}^{2}\left(\cos ^{2} x+k_{u}^{2} \sin ^{2} x\right) \gamma
\end{aligned}
$$

for simplicity, assume now $k=0$, i.e., omit z derivatives of A, B, and $\gamma, I D$, implying $B_{x} \simeq B_{\theta}=0$
introduce $f_{i}=\{0,1\}$ to switch individual terms on and off

$$
\begin{aligned}
& \frac{\partial A}{\partial t}=\frac{\partial^{2} A}{\partial x^{2}}-k^{2} A+R_{\alpha} \cos x B \\
& \frac{\partial B}{\partial t}=\frac{\partial^{2} B}{\partial x^{2}}+R_{u}\left(-f_{1} k_{u}^{2} \sin x \gamma+f_{2} \sin x \gamma-f_{3} \cos x \frac{\partial \gamma}{\partial x}\right)+R_{u}\left(f_{4} k_{u} \sin x \frac{\partial A}{\partial x}\right) \\
& \frac{\partial \gamma}{\partial t}=\frac{\partial^{2} \gamma}{\partial x^{2}}-R_{\alpha} R_{u} f_{5}\left(\cos ^{2} x \frac{\partial A}{\partial x}\right)+R_{u} f_{6} \cos x \frac{\partial B}{\partial x}-R_{u}^{2} f_{7}\left(\cos ^{2} x+k_{u}^{2} \sin ^{2} x\right) \gamma
\end{aligned}
$$

examples $\quad f_{1}=f_{2}=f_{3}=f_{5}=f_{6}=f_{7}=0, f_{4}=1 \quad: \alpha-\Omega$ dynamo

$$
f_{1}=f_{4}=f_{6}=f_{7}=0, f_{2}=f_{3}=f_{5}=1 \quad: \text { original version }
$$

the following is the original (reduced) version

$$
\begin{aligned}
& \frac{\partial A}{\partial t}=\frac{\partial^{2} A}{\partial x^{2}}-k^{2} A+R_{\alpha} \cos x B \\
& \frac{\partial B}{\partial t}=\frac{\partial^{2} B}{\partial x^{2}}+R_{u}\left(\sin x \gamma-\cos x \frac{\partial \gamma}{\partial x}\right) \\
& \frac{\partial \gamma}{\partial t}=\frac{\partial^{2} \gamma}{\partial x^{2}}-R_{\alpha} R_{u} \cos ^{2} x \frac{\partial A}{\partial x}
\end{aligned}
$$

Reynolds numbers: $\quad R_{u}=\frac{U_{0} L}{\beta_{0}} \quad$ and $\quad R_{\alpha}=\frac{\alpha_{0} L}{\beta_{0}}$
new variables: $\tilde{A}=R_{\alpha} R_{u} A, \tilde{B}=R_{\alpha}^{2} R_{u} B, \quad$ omit \sim again

$$
\begin{aligned}
\frac{\partial A}{\partial t} & =\frac{\partial^{2} A}{\partial x^{2}}-k^{2} A+\cos x B \\
\frac{\partial B}{\partial t} & =\frac{\partial^{2} B}{\partial x^{2}}+P^{2}\left(\sin x \gamma-\cos x \frac{\partial \gamma}{\partial x}\right) \\
\frac{\partial \gamma}{\partial t} & =\frac{\partial^{2} \gamma}{\partial x^{2}}-\cos ^{2} x \frac{\partial A}{\partial x}
\end{aligned} \quad P=R_{\alpha} R_{u}
$$

solution depends only on square of dynamo number: $P=R_{\alpha} R_{u}$
boundary conditions for solutions antisymmetric with respect to the equator

$$
\begin{aligned}
& \text { (North pole" "Equator" "South pole" } \\
& L=\frac{\pi}{2} \quad \text { "N } \\
& x=0: \quad A=B=\frac{\partial \gamma}{\partial x}=0 \\
& x=\frac{\pi}{2}: \quad \frac{\partial A}{\partial x}=B=\gamma=0
\end{aligned}
$$

free-decay mode

$$
\begin{aligned}
& \frac{\partial A}{\partial t}= \frac{\partial^{2} A}{\partial x^{2}}, \quad \frac{\partial B}{\partial t}=\frac{\partial^{2} B}{\partial x^{2}}, \quad \frac{\partial \gamma}{\partial t}=\frac{\partial^{2} \gamma}{\partial x^{2}} \\
& A_{n}=e^{\omega_{n} t} \sin n x \quad \text { with } \quad \omega_{n}=-n^{2}, \quad n=1,3,5, \cdots \\
& B_{n}=e^{\omega_{n} t} \sin n x \quad \text { with } \quad \omega_{n}=-n^{2}, \quad n=2,4,6, \cdots \\
& \gamma_{n}=e^{\omega_{n} t} \cos n x \quad \text { with } \quad \omega_{n}=-n^{2}, \quad n=1,3,5, \cdots
\end{aligned}
$$

solution of dynamo equation as eigenvalue problem
discretization or better: expansion in decay modes (or any other complete, orthogonal system of functions which already satisfies the boundary conditions)

$$
\begin{aligned}
& A(x, t)=e^{\omega t} \sum_{n=1,3,5, \cdots}^{N-1} a_{n} \sin n x \\
& B(x, t)=e^{\omega t} \sum_{n=2,4,6, \cdots}^{N} b_{n} \sin n x \\
& \gamma(x, t)=e^{\omega t} \sum_{n=1,3,5, \cdots}^{N-1} c_{n} \cos n x
\end{aligned}
$$

$$
\omega \sum_{n=1,3, \cdots} a_{n} \sin n x=-\sum_{n=1,3, \cdots} a_{n} n^{2} \sin n x+\cos x \sum_{n=2,4,} b_{n} \sin n x
$$

$$
\omega \sum_{n=2,4, \cdots} b_{n} \sin n x=-\sum_{n=2,4, \cdots} b_{n} n^{2} \sin n x
$$

$$
+P^{2}\left(\sin x \sum_{n=1,3,} c_{n} \cos n x+\cos x \sum_{n=1,3, \cdots} c_{n} n \sin n x\right)
$$

$$
\omega \sum_{n=1,3, \cdots} c_{n} \cos n x=-\sum_{n=1,3, \cdots} c_{n} n^{2} \cos n x-\cos ^{2} x \sum_{n=1,3,} a_{n} n \cos n x
$$

trigonometric relations

$$
\begin{aligned}
& \cos x \sin n x=\frac{1}{2}[\sin (n+1) x+\sin (n-1) x] \\
& \sin x \cos n x=\frac{1}{2}[\sin (n+1) x-\sin (n-1) x] \\
& \cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 x \\
& \cos 2 x \cos n x=\frac{1}{2}[\cos (n+2) x+\cos (n-2) x]
\end{aligned}
$$

2nd term on rhs of b_{m} equation

$$
\frac{P^{2}}{2}\left[c_{m-1}-c_{m+1}+(m-1) c_{m-1}+(m+1) c_{m+1}\right]=\frac{P^{2}}{2}\left(m c_{m-1}+m c_{m+1}\right)
$$

2nd term on rhs of c_{m} equation

$$
-\frac{1}{4}\left[(m-2) a_{m-2}+2 m a_{m}+(m+2) c_{m+2}\right]
$$

orthogonality relations

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \sin n x \sin m x d x=\int_{0}^{p i / 2} \cos n x \cos m x=\frac{\pi}{4} \delta_{n m} \\
& \int_{0}^{\pi / 2} \sin n x \cos m x d x=0
\end{aligned}
$$

multiply equations by $\sin m x\left(a_{n}\right.$ and $\left.b_{n}\right)$ and by $\cos m x\left(c_{n}\right)$, respectively, and integrate $\frac{\pi}{4} \int_{0}^{\pi / 2} d x$

$$
\begin{array}{cl}
\omega a_{m}=-m^{2} a_{m}+\frac{1}{2}\left(b_{m-1}+b_{m+1}\right) & m=1,3,5, \cdots, N \\
\omega b_{m}=-m^{2} b_{m}+\frac{P^{2}}{2}\left(m c_{m-1}+m c_{m+1}\right) & m=2,4,6, \cdots, N+1 \\
\omega c_{m}=-m^{2} c_{m}-\frac{1}{4}\left[(m-2) a_{m-2}+2 m a_{m}+(m+2) a_{m+2}\right] & m=1,3,5, \cdots, N \\
\omega \mathbf{u}=\mathcal{M} \mathbf{u} &
\end{array}
$$

with $\quad \mathbf{u}=\left(a_{1}, b_{2}, c_{1}, a_{3}, b_{4}, c_{3}, a_{5}, b_{6}, c_{5}, \cdots, a_{N}, b_{N+1}, c_{N}\right)^{T}$

Matrix eigenvalue problem
display $\omega(P)$ diagrams for $P>0$ and $P<0 \quad P=R_{\alpha} R_{u}$
determine critical dynamo numbers where $\omega_{\mathrm{R}}\left(P_{\text {crit }}\right)=0$

check convergence with respect to number of expansion coefficients
display butterfly diagrams of $A(x ; t) \quad B_{z}(x ; t) \simeq B_{r}(x ; t) \quad B(x ; t) \quad \gamma(x ; t)$

