Shell model for dynamo for extreme Prandtl numbers

Mahendra K. Verma Indian Institute of Technology Kanpur

Collaborators: Rohit Kumar (iitk) Thanks to Abhishek Kumar (iitk)

<u>mkv@litk.ac.in</u> <u>http://turbulence.phy.iitk.ac.in</u> Mag energy grows with time at large length scales

Conditions for dynamo: Rm > 1 Schekochihin, Isakov, Proctor, Cowley, 2004-2007 Ponty et al., 2005, 2007

How does large-scale B field grow?

Inverse cascade of B?

Stapanov & Plunian, 2006, 2007, 2012

Energy Transfers in dynamo?

MHD turbulence (Pm=1)

Dar et al. 2001; Verma 2004; Debliquy et al. 2005

Small Pm dynamo

Geodynamo

Galactic dynamo Solar: both LSD & SSD

ET in MHD

Helper Giver Receiver

 $S^{uu}(\mathbf{k}|\mathbf{p}|\mathbf{q}) = Im\{[(\mathbf{k} \cdot \mathbf{u}(\mathbf{q})][(\mathbf{u}(\mathbf{p}) \cdot \mathbf{u}^{*}(\mathbf{k})]\}$ $S^{bb}(\mathbf{k}|\mathbf{p}|\mathbf{q}) = Im\{[(\mathbf{k} \cdot \mathbf{u}(\mathbf{q})][(\mathbf{b}(\mathbf{p}) \cdot \mathbf{b}^{*}(\mathbf{k})]\}$ $S^{bu}(\mathbf{k}|\mathbf{p}|\mathbf{q}) = -Im\{[(\mathbf{k} \cdot \mathbf{b}(\mathbf{q})][(\mathbf{u}(\mathbf{p}) \cdot \mathbf{b}^{*}(\mathbf{k})]\}$

GOY Shell model for MHD

Earlier models: Biskamp, Stepanov & Plunian, Pandit et al., Lessiness et al., Plunian et al. (2013)

$\mathbf{u} \cdot \nabla \mathbf{u} \quad \mathbf{b} \cdot \nabla \mathbf{b}$ $\frac{dU_n}{dt} = N_n[U,U] + N_n[B,B] - \nu k_n^2 U_n + F_n$ $\frac{dB_n}{dt} = N_n[U,B] + N_n[B,U] - \eta k_n^2 B_n,$ $\mathbf{u} \cdot \nabla \mathbf{b} \quad \mathbf{b} \cdot \nabla \mathbf{u}$

U2U channel: $\Re \left[U_n^* N_n(U,U) \right] = 0$ B2B channel: $\Re \left[B_n^* N_n(U,B) \right] = 0$ U2B+B2U channel: $\Re \left[U_n^* N_n(B,B) + B_n^* N_n(B,U) \right] = 0$

$$N_{n}[U,U] = -i(a_{1}k_{n}U_{n+1}^{*}U_{n+2}^{*} + a_{2}k_{n-1}U_{n+1}^{*}U_{n-1}^{*} + a_{3}k_{n-2}U_{n-1}^{*}U_{n-2}^{*})$$

$$N_{n}[U,B] = -i[k_{n}(d_{1}U_{n+1}^{*}B_{n+2}^{*} + d_{3}B_{n+1}^{*}U_{n+2}^{*})$$

$$+ k_{n-1}(-d_{3}U_{n+1}^{*}B_{n-1}^{*} + d_{2}B_{n+1}^{*}U_{n-1}^{*})$$

$$+ k_{n-2}(-d_{1}U_{n-1}^{*}B_{n-2}^{*} - d_{2}B_{n-1}^{*}U_{n-2}^{*})]$$

 $[\mathbf{N}_{n}[\mathbf{B},\mathbf{B}] = -2i(b_{1}k_{n}B_{n+1}^{*}B_{n+2}^{*} + b_{2}k_{n-1}B_{n+1}^{*}B_{n-1}^{*} + b_{3}k_{n-2}B_{n-1}^{*}B_{n-2}^{*})$

$$N_{n}[B,U] = i[k_{n}(b_{2}U_{n+1}^{*}B_{n+2}^{*} + b_{3}B_{n+1}^{*}U_{n+2}^{*}) + k_{n-1}(b_{3}U_{n+1}^{*}B_{n-1}^{*} + b_{1}B_{n+1}^{*}U_{n-1}^{*}) + k_{n-2}(b_{2}U_{n-1}^{*}B_{n-2}^{*} + b_{1}B_{n-1}^{*}U_{n-2}^{*})]$$

Coefficients determined by conservation laws, except one free parameter

Choice of coefficients a bit different from earlier models

Plunian et al. (2013)

Shell2shell energy transfer

 $P_{U}^{UU} = -k_{n-1} \operatorname{Im}\{U_{n-1}^{*}U_{n}^{*}U_{n+1}^{*}\}$

MHD ET

m: giver n: receiver p: helper

 $P_{Z}^{YX}(n \mid m \mid p) = -k_{\min}(n, m, p) \operatorname{Im}\{Y_{n}^{*}X_{m}^{*}Z_{p}^{*}\}$

Flux in MHD

 k_0

0

C

Simulations

- ★ No of shells = 36
- ★ Time stepping: RK4 method
- ★ Both forcing & decaying simulations
- Random forcing at n=[3,4,5] [Stepanov & Plunian, 2006]

	Decaying	Forced 1	Forced 2	Forced 3
V	1 0 ⁻⁶	1 0 ⁻⁶	1 0 ⁻⁹	1 0 ⁻⁶
η	10-6	10-6	10-6	10 ⁻⁹
Pm	1	1	1 0 ⁻³	10 ³
Re	3.2x10 ⁵	9.3x10 ⁶	9.2x10 ⁹	9.7x10 ⁶
Rm	3.2x10 ⁵	9.3x10 ⁶	9.2x10 ⁶	9.7x10 ⁹
$r_A = E_U/E_B$	0.5	1.5	1.47	1.58
ευ/εΒ				

Decaying MHD (Pm=1)

$r_A=0.5$

Flux	$r_A = 0.6$	$r_A = 0.4$	$r_A = 0.5$	$r_{A} = 1.50$
	(Deb, DNS)	(Deb, DNS)	(shell model)	(shell model)
	(Decaying)	(Decaying)	(Decaying)	(Forced)
$\Pi_{u>}^{u<}$	0.073	0.066	0.01	0.04
$\Pi_{b>}^{u<}$	0.49	0.49	0.29	0.24
$\Pi_{u>}^{b<}$	0.13	0.13	0.35	0.29
$\Pi_{b>}^{b<}$	0.36	0.34	0.30	0.28
$\Pi_{b<}^{\check{u}<}$	-0.024	-0.12	-0.15	0.65
$\Pi_{b>}^{u>}$	0.22	0.22	0.01	-0.01
$\epsilon_{ u}$	—	_	0.36	0.35
ϵ_η	—	—	0.60	0.51

Forced MHD (Pm=1)

Forced MHD ($Pm = 10^{-3}, 10^{3}$)

 $Pm = 10^{3}$

 $Pm = 10^{-3}$

Past work

- Lessiness, Carati, and Verma (2009): ET formalism developed.. but $\Pi_{R>}^{B<} < 0$
- Coefficients different since Hk conservation relaxed in our model.
- Extensive review by Plunian et al. (Phys Rep. 2013)...Shell2shell transfers.
- Sahoo et al. (2010): different coefficients

Conclusions

Our shell model reproduces approximately the fluxes of DNS (Pr=1).

Limitation: local energy transfers ONLY

U2U, B2B, and U2B energy transfers are forward

The asymptotic steady-state Eu/Eb is 1.5 for the forced MHD (Plunian et al. 2014)

For large Pm or large *v*, $\varepsilon_U >> \varepsilon_B$

For small Pm or large η , $\varepsilon_U << \varepsilon_B$