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Introduction Governing equations Convection Dynamo action

The length scale problem for the geodynamo

In rapidly rotating objects (Ek � 1), the width of the convective columns is set by

viscosity: lc ∼ O(Ek1/3).

For the Earth this gives lc ≈ 20m.

In the Earth’s core, U ∼ 1mm/s and η = 1m2/s ⇒ Rm = 10−3L, where L is the
length scale in metres.

On the scale lc this gives Rm = O(10−2).
The only possibility of a dynamo on these scales is a true, low Rm mean field dynamo.
Here α ∼ Rm and magnetic diffusion ∼ ηπ2 (cf. Soward & Childress). So this might
work if α is big enough.

If this is not feasible, then an inviscid mechanism must be present to transfer energy
from the small convective scales to larger scales where magnetic field can be
generated.
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Two possible solutions

• Hydrodynamic: Large scales may be generated hydrodynamically. These could
then have an Rm sufficiently large to allow dynamo action.

Hydrodynamic convection leading to large-scale vortices.
Guervilly, Hughes & Jones (J. Fluid Mech. 2014)
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Dynamo action from large-scale vortices
Magnetic field (Bx shown here) can be large- or small-scale, depending on Pm (hence
Rm).

At large enough Rm, small-scale dynamo action destroys the LSV. For smaller Rm,
there is a range of Rm at which magnetic field is maintained on the scale of the LSV.

Pm = 0.2

 

 

x10−3−2 0 2

Pm = 2.5

 

 

x10−3−5 0 5

Guervilly, Hughes & Jones (Phys. Rev. E 2015)
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Second Possibility

• Magnetohydrodynamic: The nonlinear state of the dynamo is such that the
dominant balance in the momentum equation is between Magnetic, buoyancy
(Archimedean) and Coriolis forces (so-called MAC balance).

Here we consider the second of these possibilities and how we might find such a
solution.
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Neglecting Inertia

In the geodynamo, inertial terms are believed to be negligible (Ro ≈ 10−6).

One approach to geodynamo modelling, which has been very successful, is to solve the
full equations at ever decreasing values of the Ekman number, with the idea that the
inertial terms will decrease in importance as E decreases.

Alternatively, one can take more drastic action and simply discard the inertial terms
from the outset. Formally, this may be considered as the limit of infinite Prandtl
number.
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Rotating Rayleigh-Bénard convection

• 3D Cartesian layer of Boussinesq fluid, depth d

• periodic in the horizontal directions

• rotating about the vertical (z) axis, rotation rate: Ω

• temperature difference between top (cold) and bottom
(hot): ∆T

• aspect ratio: λ

• top and bottom boundary conditions: stress-free and
impermeable, fixed temperature, perfectly electrically
conducting

Scale lengths with d , times with d2/κ and magnetic field with (2Ωκµ0ρ)1/2:

Pr−1 (∂tu + u · ∇u) + E−1ez × u = −∇p̃ + E−1J × B + Ra θez +∇2u,

(∂t − q−1∇2)B + u · ∇B = B · ∇u ,

(∂t −∇2)θ + u · ∇θ = u · ez ,
∇ · B = ∇ · u = 0.

Input parameters:

Ra =
gα∆Td3

κν
, E =

ν

2Ωd2
, Pr =

ν

κ
, q =

κ

η
.
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Infinite Prandtl number limit

On letting Pr →∞, the momentum equation becomes

ez × u = −∇p + J × B + R θez + E∇2u,

where the rotational Rayleigh number R is given by

R =
gα∆Td

2Ωκ
= Ra E .

Momentum equation is now linear and diagnostic.

Note that under the conventional scaling of B with (µ0ρ)1/2 κ/d , the momentum
equation is

(∂tu + u · ∇u) + Pr E−1ez × u = −∇p + J × B + Pr Ra θez + Pr∇2u.

On formally letting Pr →∞, the magnetic field is retained only through a scaling with
Pr1/2.

Note also that comparing magnetic and kinetic energies as Pr →∞ is not meaningful:

Magnetic energy

Kinetic energy
=

2Ωκ

κ2/d2

B2

U2
=

Pr

E

B2

U2
.
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Waves supported

In the simplest system of linear waves on a static uniform field (no buoyancy)
dispersion relation is

ω2 =
k2 (k · B0)4

4 (k ·Ω)2
=
ω4
A

ω2
I

,

where ωA =
(
k · B̂0

)
VA and ωI = 2

(
k · Ω̂

)
/k.

Thus there are only hydromagnetic-inertial waves.

With inertial terms included, the dispersion relation is

ω2 ± ωIω − ω2
A = 0.

In the case when ωA/ωI � 1,

ω2 ≈ ω2
I and ω2 ≈

ω4
A

ω2
I

.

In our system, the inertial waves travel infinitely quickly and do not appear.
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Hydrodynamic convection: linear theory

Convection sets in as a steady bifurcation. Neglect of inertia terms has no impact on
the stability boundary.
As E → 0, horizontal wavenumber a and critical Rayleigh number Rc given by

a ∼
(
π2

2

)1/6

E−1/3, Rc ∼ 3

(
π2

2

)2/3

E−1/3.

Rc vs E dependence non-monotonic.

Nonlinear problem fairly unexplored (Jones & Roberts 2000).
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Nonlinear Convection: E = 10−3

For E = 10−3, Rc ≈ 87.

Top and side planforms of temperature: E = 10−3, R = 500, λ = 5.
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More vigorous convection: E = 10−3

Top and side planforms of temperature: E = 10−3, R = 105, λ = 5.
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Faster rotation: E = 10−4

For E = 10−4, Rc ≈ 187.

Top and side planforms of temperature: E = 10−4, R = 500, λ = 5.

Convective Rossby number roughly 20 times smaller than for E = 10−3, R = 500.
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Kinetic helicity

Relative helicity, as a function of depth:

〈u · ∇ × u〉
〈|u · ∇ × u|〉

R = 500: E = 10−3 E = 10−4
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Dynamo action

Consider the evolution, from the kinematic regime, of dynamos for the two cases:

(i) E = 10−3,R = 500, q = 5.

(ii) E = 10−4,R = 500, q = 20.

Magnetic energy multiplied by 5× 103 to appear on same plot.

Kinetic energy increases as magnetic field grows — a suggestion of a ‘strong field’
dynamo.
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Dynamic regime: weak field dynamo

Two very different types of dynamo emerge:

• A ‘weak field’ dynamo, in which the convective patterns are modified only slightly
as the dynamo saturates.

Kinematic regime Dynamic regime
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Dynamic regime: strong field dynamo

• A ‘strong field’ regime, in which a scale much larger than the convective scale
emerges.

Kinematic regime Dynamic regime
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Kinetic energy spectra

Relatively little change in the KE spectrum of the weak field dynamo, between
kinematic and dynamic regimes.

Marked change in the KE spectrum for the strong field dynamo. Flattening of the
spectrum, leading to much more power at large scales, but also at smaller scales.
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Decomposing the velocity

We may exploit the linearity of the momentum equation to decompose the velocity
field into its thermal and magnetic components:

u = uT + uM ,

where uT satisfies

ez × uT = −∇pT + R θez + E∇2uT , ∇ · uT = 0.

This allows us to visualise the thermal and magnetic contributions to the saturated
velocity.
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u, uT and uM

Vertical components of total, thermal and magnetic velocities near upper boundary.

• Weak field dynamo: total and thermal velocities almost identical, with very small
change in magnetic velocity to saturate the dynamo.

• Strong field dynamo: thermal and magnetic velocities comparable in magnitude;
features of each can be seen in total velocity.
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Summary/Discussion

• The model provides a means of performing high resolution, turbulent, inertialess
dynamo simulations.

• Two distinct regimes can be identified: weak and strong field, characterised by the
spatial scale of the flow. Strong field requires two conditions: rapid rotation and
a sufficiently high Rm should motions develop. These conditions are likely to be
satisfied, for instance, in some neighbourhood of marginal hydrodynamic stability.

• We arrived at both solutions from a kinematic perspective. Important to consider
the effects of hysteresis for the strong field solution.

• Can Taylor’s constraint be used to characterise the solution? In plane layer
geometry we have the exact result∫ 1

0
(∇× (J × B)) · ez dz = −

∫ 1

0
E∇2 (ω · ez ) dz,

leading to Taylor’s constraint (ignoring the diffusion term) in the form∫ 1

0
(∇× (J × B)) · ez dz = 0.

for all x , y . Numerically this is not very nice, with the introduction of an extra
derivative.
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