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Magnetoconvection

How is the convection affected by the presence of an imposed
magnetic field?

Linear theory: flow close to onset is slow, so the imposed field is
not much changed. There is a first order perturbation to basic
field.

The Lorentz force, j× B, opposes the stretching of field lines:
similar to vortex stretching.

Plane layer problem: magnetic field delays the onset of convection
and can lead to oscillatory modes.
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MHD equations

The MHD equations are

∇× E = −∂B

∂t
, ∇× B = µj, (1, 2)

∇ · B = 0, ∇ · E =
ρc
ε
. (3, 4)

Ohm’s law relates current density to electric field. This depends on
material, so empirical. In a material at rest

j = σE,

in a moving frame
j = σ(E + u× B). (5)

In very intense fields, the Hall effect can change this and in some
plasmas, ambipolar diffusion becomes significant.
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Induction equation

Dividing Ohm’s law (5) by σ and taking the curl and using (1)

∇× (
j

σ
) = ∇× E +∇× (u× B) = −∂B

∂t
+∇× (u× B),

and using (2) to eliminate j,

∂B

∂t
= ∇× (u× B)−∇× η(∇× B), (6)

where η = 1/µσ is the magnetic diffusivity (units m2s−1). (6) is
the induction equation.
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Convection with Magnetic Field and Rotation

∂u

∂t
+ u · ∇u + 2Ω× u = −1

ρ
∇p +

1

ρ
j× b + gαT ′ez + ν∇2u.

Surprisingly, magnetic field can reduce the critical Rayleigh number
in rotating convection. In rapidly rotating convection, viscosity
breaks the Proudman-Taylor constraint: very thin columns.

Magnetic field can also break the Proudman-Taylor constraint, and
because magnetic field can act over long distances, thick columns
are possible.

This means the Rayleigh number can be lower. There is an optimal
magnetic field strength to minimise Ra.

Λ =
B2

µρΩη

is the Elsasser number, and minimum Ra occurs for Λ ∼ 1.
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Flux expulsion

An initially uniform field stirred by convection quickly expels the
magnetic field out of the roll, so effective magnetic field inside the
roll much weaker.

A Dynamic Elsasser number

Λ =
B2

µρΩU∗`

where U∗ is the typical velocity and ` the roll-width, may be more
appropriate.
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Spherical geometry

Fields considered are azimuthal fields (Fearn, 1979, Jones et al.
2003) and axial fields (Sakuraba, 2002). Also studies in annulus
and plane geometry.

Magnetic fields can reduce the critical Ra by the Lorentz force
counteracting the PT constraint, just as in plane layers.

Magnetic fields reduce the critical value of m at onset. Important,
as very thin columns won’t give a dynamo.

Convenient azimuthal field is B = B0s φ̂ in cylindrical coordinates
(s, φ, z).

This is called the Malkus field.

It has uniform current j = 2B0ẑ.
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Magnetic fields reduce m

Λ = 0.01, E = 10−6 Λ = 0.31, E = 10−6

Pr = Pm = 1 Pr = Pm = 1
Onset of convection with magnetic field B = B0s φ̂.
Elsasser number Λ = B2

0/ρΩµη.
Note that even a modest azimuthal field greatly expands the
columns. Axial field behaves similarly, but requires stronger field.
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Magnetic fields reduce reduce Racrit

Solid line and *,
Pr = 1, Pm = 0.5

Dashed lines, triangles and
squares, Pr = 0.5,
Pm = 1.

R = RaE−4/3, E = 10−6

for points, E → 0 for
curves

Onset of convection with magnetic field B = B0s φ̂.
Elsasser number Λ = λ/100 = B2

0/ρΩµη.
Strong fields reduce the critical Rayleigh number, so enhance
convection.
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J B Taylor’s constraint

Coriolis term is zero, because no net flow
across the cylinder. Reynolds stress small.

The last term comes from the viscous friction
at the boundaries, which is produced by
Ekman suction. It is small, because E is small.

Lorentz force term must be small, so
positive/negative parts of integrand must
cancel.

∂

∂t

∫
ρuφ ds +

∫
2ρusΩ ds =

∫
(j× B)φ ds − 2πs

uφ(2E )1/2

(1− s2)1/4
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Waves in the core

With uniform magnetic field B0 and constant temperature gradient
T ′0 we look for local wave-like solutions

u = u0 exp i(k · x− ωt).

Linearised equations are

∂u

∂t
+ 2Ω× u = −∇p′ + gαT ′̂r +

1

ρ
j× B0 + ν∇2u

∂b

∂t
= (B0 · ∇)u + η∇2b, µj = ∇× b,

∂T′

∂t
= −urT ′0 + κ∇2T′
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Dispersion relation for rotating MHD waves

Ignoring diffusion and buoyancy, we get

4ω2(Ω · k)2 =

(
(B0 · k)2

µρ
− ω2

)2

k2

ω =
(Ω · k)±

√
(Ω · k)2 + k2(B0 · k)2/µρ

|k|
Define

ωC =
2(Ω · k)

|k |
, ωM =

(B0 · k)

(µρ)1/2

and note that in planets ωC >> ωM .

Taking plus sign, we get ω ≈ ωC , the fast inertial waves. taking
minus sign, we get the slow wave

ωMC =
ω2
M

ωC
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Periods of rotating MHD waves

In the core, ωM gives a period about 6 years, ωC is typically hours
or days, so the ωMC waves usually have periods of thousands of
years. These waves evolve through magnetostrophic equilibria,
inertia being negligible.

However, if Ω · k = 0, i.e. the waves
have no z variation, they have a
frequency of ωM , these are the torsional
Alfvén waves, or torsional oscillations,
with period about 6 years.

These TO’s can be seen in the secular
variation and the length of day signal.
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Magnetic Rossby waves

From the dispersion relation

ωMC =
ω2
M

ωC

we see that to get faster MC-waves, we
need to reduce ωC .

This can be done by considering Rossby
waves, that is waves coming from vortex
stretching in the interior of a sphere.

The slow Rossby waves are called magnetic Rossby waves.
Nonmagnetic Rossby waves travel eastwards in planetary cores, but
magnetic Rossby waves go westwards, with periods of hundreds of
years.

They may be connected with the westward drift of the secular
variation.
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Dynamo models

Solve induction equation and the Navier-Stokes equations
simultaneously. Most work has been done on convection-driven
dynamos.

Anti-dynamo theorems tell us dynamo process is three-dimensional,
so expect 3D magnetic fields.

(i) No dynamo can be maintained by a planar flow

(ux(x , y , z , t), uy (x , y , z , t), 0).

No restriction is placed on whether the field is 2D or not in this
theorem.

(ii) Cowling’s theorem. An axisymmetric magnetic field vanishing
at infinity cannot be maintained by dynamo action.

(iii) A purely toroidal flow, that is one with u = ∇×T r cannot
maintain a dynamo. Note that this means that there is no radial
motion, ur = 0.
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In the Earth’s core, the flow is clearly 3D, and rotating convection
leads to 3D flows.

Simulations are therefore computationally demanding, and require
clusters of processors for serious study. Only models close to
critical can be studied with desktop machines.

Parallel programming (MPI) is required, and code construction is
challenging.
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Results from dynamo codes

Pr = Pm = 1,Ra = 750,E = 10−4.
Radial magnetic field snapshot at the CMB
No internal heating. No-slip, fixed temperature, insulating
boundaries.
Very dipolar, doesn’t reverse. Field slightly weaker at the poles.
Intense flux patches at high latitudes.
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Velocity field

Pr = Pm = 1,Ra = 750,E = 10−4.
Radial velocity snapshot at
r = 0.8rCMB .
Note the columnar nature of the convection rolls, local Rossby
number small.
Intense flux patches at the top of these columnar rolls.
Pattern propagates westward.
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Higher local Rossby number

Pr = Pm = 0.2,Ra = 750,E = 10−4.
Radial magnetic field snapshot at the CMB
Much less dipolar. Field strength is weaker.
This type of dynamo can reverse.
Rossby number is larger, and inertia is playing a significant role.
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Flow at higher local Rossby number

Pr = Pm = 0.2,Ra = 750,E = 10−4.
Radial velocity snapshot at
r = 0.8rCMB .
More activity near the poles,
less columnar convection rolls.
Between these patterns lies an Earth-like regime.
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Variation with Ekman number
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Christensen and Aubert 2006 summarise the dependence on
Ekman number E and Pm.
At low E , low Pm dynamos are possible, provided Ra is large
enough. Important, as liquid metals have low Pm.

C(v). Results from Dynamo Models 21/43



Small E , low Pm dynamo, Flow pattern

Pr = 1,Pm = 0.1,Ra = 50Racrit ,E = 3× 10−6.
Left: radial velocity at r = 0.5r0. Right: radial velocity at
r = 0.8r0.
At lower E the convective columns are much thinner, particularly
further out from the ICB.

C(v). Results from Dynamo Models 22/43



Small E , low Pm dynamo, Scale separation

Left: radial magnetic field at z = 0.2. Right: vorticity at z = 0.2.
Notice that the magnetic field is on a much larger scale in these
low Pm calculations. Temperature fluctuations on same scale as
magnetic field.
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Scaling laws: magnetic field strength

In the Earth’s core, magnetic energy is much greater than kinetic
energy, so a simple balance as used in astrophysics won’t work here.

We start with

Ohmic dissipation + Viscous dissipation = rate of working of
buoyancy forces,

The rate of working work done by the buoyancy forces is∫
ρgαT ′ur dv

which can be written in terms of the heat flux.

Ignore the viscous dissipation and we obtain∫
gαFconv

cp
dv ∼

∫
ηµj2 dv

Now need to relate magnetic energy to magnetic dissipation.
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Christensen-Tilgner law

The dissipation time is the time taken for the magnetic energy to
be dissipated through ohmic loss,

τdiss

∫
ηµj2 dv =

∫
B2/2µ dv

Equivalently, the magnetic dissipation length

δB =

(
τdiss
η

)1/2

.

Christensen and Tilgner (Nature, 2004) proposed that

δB ∼ dRm−1/2

mainly on the basis of simulations and laboratory experiments. It
also has some theoretical support, because at high Rm flux ropes
of this thickness are formed.
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Predicted field strength

We now have

ηµj2 ∼ η (∇× B)2

µ
∼ ηB2

µδ2B
∼ gαF

cp
,

giving

B∗ ∼
(
gαFconvµd

U∗cp

)1/2

.

With the inertial theory scaling for U∗ this gives

B∗ ∼ µ1/2d2/5ρ1/5Ω1/10

(
gαF

cp

)3/10

.

Remarkable feature is weak dependence of B on Ω. We are
assuming though that the planet is in the rapidly rotating low Ro
regime.
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Anelastic equations for a perfect gas 1.

Du

Dt
+ 2Ω× u = −1

ρ
∇p′ + g

ρ′

ρ
+

1

ρ
j× B + Fv (1)

p = p0(r) + p′, ρ = ρ0(r) + ρ′, dp0/dr = −gρ0.

Entropy S = cp
(

1
γ ln p − ln ρ

)
, p = RρT ,

So provided p′/p0 � 1, ρ′/ρ0 � 1, S ′ = cp
(

p′

γp0
− ρ′

ρ0

)
.

− 1

ρ0
∇p′ + g

ρ′

ρ0
= −∇

(
p′

ρ0

)
+

p′

ρ0cp
∇S0 −

S ′

cp
g (2)

Anelastic approximation: entropy drop across layer is small,
∆S/cp = ε� 1.
All components of u of same order U0. ∂/∂t ∼ U0/d .
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Anelastic equations 2.

(ρ0T0)

[
DS ′

Dt
+ ur

dS0
dr

]
= ∇ · κρ0T0∇S ′ + Qν + Qj (3)

ur
dS0
dr is the source term for the entropy, so S ′ ∼ εcp.

Put this into the equation of motion, radial component gives
U2
0/d ∼ εg , horizontal components give

p′/p0 ∼ ρ′/ρ0 ∼ T ′/T0 = O(ε).

U2
0 ∼ εgd , U2

0/c
2 ∼ ε.

In equation (2),

(p′/ρ0cp)∇S0 ∼ εp′/ρ0d ∼ ε2g � (S ′/cp)g .

This term should therefore be omitted (Lantz/Braginsky &
Roberts).
∂ρ′

∂t � ∇ · ρ0u so the continuity equation is

∇ · ρ0u = 0 (5)
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Anelastic equations 3.

In dimensionless units,

E

Pm

Du

Dt
+ 2ẑ×u = −∇

(
p′

ρ0

)
+

1

ρ0
(∇× B)×B + Fν +

RaEPmS r̂

Pr r2

Toroidal/poloidal representation, ρ0u = ∇×ρ0T r +∇×∇×ρ0Pr.
The r -component of the curl and double curl of the equation of
motion give the equations for T and P. p′ does not appear.
Entropy equation takes form

DS

Dt
=

Pm

Pr
ζ−n−1∇ · ζn+1∇S +

Di

ζ

[
E−1ζ−n (∇× B)2 + Q∗ν

]
with Di =

c1Pr

PmRa
. Note that turbulent entropy diffusion assumed

to dominate laminar temperature diffusion, because small-scale
turbulence mixes entropy not temperature.
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Difference between Jupiter and Geodynamo models

(i) Stress-free outer boundary → much stronger zonal flows,
particularly near equator

(ii) Non-conducting outer region → magnetic field dissipates there

(iii) Uniform heating (entropy) source, rather than driving near
inner core: enhances dynamo in outer regions, weaker near the core

(iv) Relatively smaller inner core

(v) Large density variations: similar effect to (iii)
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Dipoles rare for Jupiter dynamo models: Why?

Zonal flow near equator → strong equatorial fields which migrate
and disrupt the dipole

If Pr is large, zonal flow is weak, but thermal wind develops →
hemispherical dynamos with field almost all in one hemisphere

How to overcome these effects?

(i) Put driving near core, and keep Rm near critical. Not very
Jupiter-like

(ii) Go for strong field dynamo, magnetic braking strong enough to
keep zonal flow small. Seems to work, but

(a) Needs large Ra, therefore very small E to maintain columnar
convection. Computationally very demanding.

(b) Need Pr small to get strong convection everywhere (linear
theory hint).
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Jupiter dynamo: inner core driving, low Ra

   -0.180     0.147

Left: Radial Br at surface
Right: Axisymmetric part
of Bφ in meridional plane

Left: Equatorial section ur Right: Axisymmetric part
of uφ in meridional plane

E = 2× 10−5, Ra = 2.4× 107, Pr = 0.25, Pm = 3. Fixed inner
core temperature, fixed flux outer boundary. Significant heat flux
from inner core.
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Hemispherical Dynamo: 1

   -0.256     0.188     0.464     0.692

Left: Snapshot of Br at surface Right: Entropy at r = 0.75RJ

Ra = 5e07, Pr = 1, Pm = 3, E = 2.5e − 05. Fixed entropy bc,
with uniform internal heating. Small heat flux going in from core,
larger heat flux out through surface. Note N. Hemisphere hotter.

Hemispherical dynamo much more common in anelastic models
than Boussinesq models, especially at Pr = 1.

Magnetic field and entropy asymmetry are linked.
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Hemispherical Dynamo: 2

-1364.485   987.768
   -300.0
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    700.0

    900.0

   1100.0

   1300.0

   1500.0

Left: ur at r = 0.75RJ Right: Axisymmetric meridional uφ

Asymmetric entropy between the hemispheres drives a thermal
wind: 2Ω∂uφ/∂z = −(1/r)dT0/dr ∂S/∂θ so the zonal flow is
asymmetric. Dynamo waves propagating along the shear are
therefore skewed: southern hemisphere waves propagate into
insulating region and die?

Magnetic field in northern hemisphere enhances convection there,
which leads to a higher entropy there?
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Small scale dynamo (Multipolar)

   -0.640     0.470

Left: Br at surface Right: Axisymmetric meridional Bφ

E = 5× 10−5, Ra = 1.5× 107, Pr = 0.25, Pm = 3.

There is an active dynamo, but magnetic field is very messy. As
with the hemispherical dynamo, Bφ is largest in the shear zone.

Larger E , so not rotationally dominated. Local Rossby number
U/Ω`, where ` is the dominant convective length scale, not
sufficiently small. Inertial terms dominate over Coriolis terms.

Message is that small E is unfortunately essential for dipolar fields!
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Low Prandtl number dipolar dynamos
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A-ke

A-zonal C-zonal

Ra = 1.1× 107,Pr = 0.10,Pm = 3.0,E = 2.5× 10−5.

Run A has run for over two diffusion times, and is robust in that
moderate changes of Ra and E still give a stable dipole. Small
quadrupole component. Core flux small compared to top flux.
Strong field controls zonal flow.

Bistable: run C starts from a small field, and is a dynamo, but not
dipolar. Zonal flow stronger. At E = 1.5× 10−5, Ra = 2× 107

dipole solution grows from small seed field.
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Why is the dipole maintained?

To maintain the dipole, need large Ra to promote vigorous
convection. This generates strong magnetic field everywhere.

Why doesn’t this give α− ω behaviour? The field pushes the zonal
flow into the non-conducting region (magnetic braking). Balance
between zonal flow production and braking is crucial.

But E must be small enough for the local Rossby number U/Ω` to
be small, where ` is the convective length scale. Also helps to have
low Pr , as this gives more symmetic entropy and reduces thermal
wind.
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Pr = 0.1, E = 2.5× 10−5 solution snapshot

-1.2mT 1.2mT
   -0.900     0.900

Jupiter surface radial Br Model radial Br snapshot
truncated at harmonic ` ≤ 5

   -1.000     1.000

Model radial Br (full resolution) Axisymmetric meridional Bφ
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Flow for Pr = 0.1 solutions: units of Rm

Axisymmetric part of uφ run A Axisymmetric part of uφ run C

-4000.0

-2400.0

 -800.0

  800.0

 2400.0

 4000.0

Equatorial section of ur Random meridional slice of ur
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Surface Zonal Flow for Pr = 0.1 solution

  -9000.0    9000.0

Zonal flow at the cut-off surface: shows the relative size of the
convective flow and the zonal flow.

As usual in simulations, the ratio is small, but not the 10−4 smaller
expected in Jupiter.
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Pr = 0.1 Dynamo Movie

   -0.900     0.900

Time-lapse movie of Br at the surface, for the Pr = 0.1 internal
heated dynamo. Fixed entropy boundaries. Ra = 1.2× 107,
Pm = 3.0, E = 2.5× 10−5. Dynamo remains dipolar dominant.
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Flow Movie for the Pr = 0.1 Dynamo

-3500.0

-2100.0

 -700.0

  700.0

 2100.0

 3500.0

Time-lapse movie of ur in the equatorial plane, for the Pr = 0.1
internal heated dynamo. Fixed entropy boundaries.
Ra = 1.2× 107, Pm = 3.0, E = 2.5× 10−5. Note the difference
between the magnetically locked interior and zonal flow dominated
molecular region.
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Meridional Flow Movie

 -1593.8
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  -318.8

   318.8

   956.3

  1593.8

Time-lapse movie of ur in a meridional plane, for the Pr = 0.1
internal heated dynamo. Fixed entropy boundaries.
Ra = 1.2× 107, Pm = 3.0, E = 2.5× 10−5. Note the columnar
convection, though columns don’t reach to boundaries.
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