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Interior of the Earth

CMB = Core-Mantle Boundary

ICB = Inner Core Boundary

Tangent Cylinder = cylinder just
enclosing the Inner core.
Fluid outer core is source of
dynamo. Driven by convection
arising from heat and light
material released at inner core
boundary.

Geomagnetic field is generated in liquid metal core, measured at
Earth’s surface and can be extended down to the CMB, assuming
mantle is insulating. Limited to spherical harmonic degree <∼ 14.
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Secular Variation

The field has been mapped out in time over the last 300 years.
The time-derivative of the field is the secular variation.
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Why waves in the Core?

The magnetic field in the Earth’s core varies on many timescales,
but changes in the range 1-300 years can be observed in some
detail, the secular variation.

By identifying waves in this signal, we can potentially discover the
strength and form of the magnetic field inside the liquid metal core.

Waves on these timescales are affected by rotation, magnetic field
and spherical geometry. Many types of wave are possible, but two
are of particular interest as they have periods in the observable
range.

Axisymmetric Torsional Oscillations, which have periods of about
6 years, the travel time of Alfvén waves. There is strong evidence
these waves have been detected. A key question is how are they
excited.
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Magnetic Rossby Waves

These are non-axisymmetric, and have slower periods, typically a
few hundred years. The secular variation has nonaxisymmetric and
axisymmetric components and varies on this timescale.

The difficulty in identifying these waves is that the core fluid speed
is similar to the magnetic Rossby wave phase speed, so it is hard to
separate wave motion from advection.

It has been controversial whether secular variation is due to wave
or core flow. It is likely a combination of both.

The task is how can we use the improved data coming from
satellites to separate the signal due to waves from the signal due to
the flow? This requires an understanding of the dynamics of
magnetic Rossby waves.

5/32



Stably stratified core?

It is possible that the top few hundred kilometres of the Earth’s
core is stably stratified.

One reason is that conduction could possibly transport all the heat
flux near the top of the core. We don’t know the total heat going
from the core into the mantle, but it is likely to be fairly close to
the heat flux that can be conducted down the adiabat.

Another possibility is that light material (e.g. sulphur, oxygen)
could separate out at the top of the core and form an ‘inverted
ocean’.

If the stable layer exists it will modify the existing waves and give
rise to new internal gravity waves in which the buoyancy frequency
is important. There has not been much exploration of these waves
as yet.
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Torsional oscillations

Sketches from Roberts and Aurnou 2012

In spherical geometry, there must be no vortex stretching to obtain
the pure Alfvén wave, so motion is independent of z (geostrophic)
in cylindrical coordinates (s, φ, z).
The magnetic field component Bs provides the restoring force.

7/32



Torsional oscillation observations

(a) Gillet et al 2010: (b) Holme & de Viron 2013

(a) The axisymmetric part of uφ constructed from observations of
the geomagnetic field.
(b) Length-of-day variations. Since total angular momentum is
conserved, torsional waves change the mantle rotation rate.
An approximately six year period is seen in both data sets. Waves
propagate out from the tangent cylinder, the cylinder surrounding
the Earth’s solid inner core.
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Dynamo model equations

∂u

∂t
+ (u · ∇)u = −Pm

E
[∇p + 2ẑ× u− (∇× B)× B]

+
Pm2Ra

Pr
T r + Pm∇2u

∂T

∂t
+ (u · ∇)T =

Pm

Pr
∇2T + ε,

∂B

∂t
−∇× (u× B) = ∇2B

∇ · u = 0, ∇ · B = 0

E =
ν

ΩD2
, Ra =

gα|ε|D5

νκη
, Pr =

ν

κ
, Pm =

ν

η

Boundary conditions used: no-slip, fixed flux; insulating magnetic.
Zero compositional flux at CMB, uniform sink in interior.
Parameters used: E ∈ [10−6, 10−4], Ra/Rac = 8.3, Pr = 1,
Pm ∈ [1, 5], radius ratio = 0.35 These give ‘Earth-like’ dynamo
models: basically dipolar but with an appropriate amount of
reversed flux patches.
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Torsional Oscillations movie

Time-lapse movie of the axisymmetric part of uφ on a meridional
section. E = 10−5.

The solid inner core of the Earth doesn’t take part in the
oscillations.
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Detecting Torsional Oscillations

Alfvén wave equation in spherical geometry is (Braginsky 1970)

∂2

∂t2

(uφ
s

)
=

1

s3h

∂

∂s

(
s3hUA

2 ∂

∂s

(uφ
s

))
where UA

2 = 〈Bs
2/µρ〉, the bar denoting φ average and angle

brackets z-average. h(s) is height of cylinder.

We run the dynamo simulation, and when initial transients have
gone, we run for a further time τ , and evaluate UA from Bs , the
field averaged over time τ .

We make plots in the t-s plane of the fluctuating part of uφ, i.e.
u′φ = uφ − ũφ where ũφ is the time-average over the whole τ run.

We then look for features in u′φ propagating with the Alfvén speed.
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Torsional Oscillations detected

Left: u′φ inside Tangent Cylinder North. Right: u′φ inside Tangent

Cylinder South. 〈uφ〉′, E = 10−4, Pm = 5. White curves have
gradient UA. Similar pictures for E = 10−5.

Plus points: torsional oscillations found in dynamo simulations.
Mostly (but not exclusively) travel outwards. When field is scaled
to observed Br at the CMB, travel time from tangent cylinder to
equator is about 3 years, similar to Gillet et al. data.

Minus points: Origin inside the tangent cylinder rather than at the
TC. Waves not as periodic as suggested by the Gillet et al. data.
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Recent Gillet et al 2015 results

Torsional waves reconstructed from secular variation data
propagating from tangent cylinder (top) to equatorial region
(bottom).

Note the slower speed near the equator, as seen in the simulations.
Fast speed near tangent cylinder corresponds to approx Bs =2mT,
slower equatorial speed to Bs =0.6mT.
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Excitation of Torsional Oscillations 1.

Take the φ̄ and 〈z〉 average of the φ-component of equation of
motion so 〈ūφ〉 is the geostrophic part of the azimuthal flow〈
∂uφ
∂t

〉
= −〈φ̂ · (u · ∇)u〉+PmE−1〈φ̂ · ((∇× B)× B)〉+Pm〈φ̂ · ∇2u〉

Reynolds force, the Lorentz force and the viscous force

FR + FL + FV .

Look at fluctuating part only(
∂〈uφ〉
∂t

)′
= F ′LR + F ′LD + F ′R + F ′V

In the core, we expect F ′LR and F ′LD � F ′R and F ′v .
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Excitation of Torsional Oscillations 2.

But in dynamo simulations F ′R is much overestimated: kinetic and
magnetic energy is typically similar, whereas magnetic energy is
much larger than kinetic energy in the core.

Also, the need to generate a magnetic field places severe
restrictions on the accessible parameter space, e.g. very expensive
to lower Pm.

So we used Magnetoconvection simulations. Same code, but
change magnetic boundary condition: impose a dipole magnetic
field at the core-mantle boundary.

Saves CPU time: don’t have to wait for field to build up. Allows
lower E , much lower Pm and can get into dominant magnetic
energy regime.
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Geostrophy ratio

In magnetoconvection
simulations, solutions exist where
the torsional waves are a much
larger part of the fluctuating
signal.

We plot the geostrophy ratio,

U ′C =

√
‖〈u′φ〉2‖
‖(u′)2‖ .

In Earth’s core, value is about
0.45 (Gillet et al. 2015).
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Magnetoconvection results

In some magnetoconvection runs, the TO’s are particularly clear.

E = 5× 10−6,Pm = 0.1,Ra = 5Rac ,Λ ≈ 100.

Left: u′φ contours. Right: F ′L contours. F ′R negligible.

In this strong field, low E case, TO’s are much more periodic, and
originate from the tangent cylinder and propagate outwards. No
significant reflection.
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Excitation in Lorentz force regime

We differentiate the equation of motion, and use the induction
equation to replace the time derivatives of B in the Lorentz force
term

∂2

∂t2
〈uφ〉 = ḞL =

Pm

E

1

hs2
∂

∂s
s2h〈sBs(B · ∇)

uφ
s
〉

+ other less important terms.

〈sBs(B · ∇)
uφ
s
〉 = s〈Bs〉2

∂

∂s

〈uφ〉
s

+ s〈Bs〉〈Bsa
∂

∂s

uφ,a
s
〉

First term on the right is the restoring force of the TO. The forcing
is all magnetic, and located at the tangent cylinder. The second
term is one of the forcing terms. The ageostrophic component of
uφ can combine with ageostrophic parts of the magnetic field to
give a geostrophic forcing.

This is how ageostrophic convection, uφ,a can drive a torsional
oscillation, even though a TO itself cannot convect heat.
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z-sections of convective flow

z=ro/4 z=ro/2 z=3ro/4

    -20.0
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      4.0
     12.0
     20.0

Many terms contribute to the forcing, but the dominant terms are
those from the ageostrophic part of u′φ, u′aφ, combined with the

ageostrophic part of B2
s .

Left, middle and right plots are slices parallel to the equatorial
plane showing this ageostrophic part, u′aφ.
This ageostrophic part is that part of the convective flow that has
the torsional wave frequency. Corresponds to large azimuthal
wavenumbers, m ≈ 20.
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Zonal flow at the Tangent Cylinder

    -10.0

     -6.0

     -2.0

      2.0

      6.0

     10.0

Left: temperature in a meridional plane. Right: steady part of uφ.
Buoyancy generated at ICB, and cannot easily cross the TC
because of the Proudman-Taylor constraint.
Hotter inside TC, so a thermal wind is generated, giving a zonal
flow with a shear layer at the TC. Time-dependent convection
perturbs the shear layer, generating the strong u′φ,a perturbations
there.
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Excitation inside the Tangent Cylinder

Time-lapse movie of the axisymmetric part of uφ on a constant
z = r0/4-section. E = 5× 10−6.

Convection drives small-scale azimuthal flows with a non-zero
m = 0 component. This forces the TO waves.
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How are the quasi-periodic waves produced?

Take the unit of time to match the Alfvén speed at the CMB. Then
ageostrophic velocity near the TC is u′φ,a ∼ 8.5× 10−4 m/sec.

Comparable to westward drift speeds.

Wavelength of the m = 20 convection ∼ 380 km, so characteristic
turnover time to travel half a wavelength ∼ 7 years. There is
significant power in the m = 0 mode at this frequency.

Surprisingly periodic temporal behaviour could be due to a periodic
convective mode in the vicinity of the tangent cylinder.
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What is producing periodic behaviour?

The Holme and de Viron data suggest a
periodic oscillator with fluctuating
forcing.

Mound and Buffett (2006) suggested
there might be gravitational coupling
between the nonaxisymmetric mantle
and the nonaxisymmetric inner core,
giving a gravitational torsional
oscillation with period 5.9 years. Davies
et al. (2014) thought this period would
be longer.

Could be that the convection gives an approximate 5.9 year forcing,
which locks to the gravitational mode, or it could be that as in our
model there is a particular magnetic mode with the right frequency.
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Summary on Torsional Oscillations

TOs observed in the core from secular variation and LOD signal.

Can be modelled using dynamo and magnetoconvection codes.

They originate from quite small scale (∼ 400 km) convection,
which has turnover time and period ∼ 6 years.

The convection is broad-band in azimuthal wavenumber and has
an m = 0 component.

The convection disturbs the TC shear layer, and this forces the
TOs which propagate outwards.

Still not clear where the period comes from: convection exciting
particular wavemode close to the TC, or whether the gravitational
Mound-Buffett mode plays a role.
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Waves in the core

With uniform magnetic field B0 and constant temperature gradient
T ′0 we look for local wave-like solutions

u = u0 exp i(k · x− ωt).

Linearised equations are

∂u

∂t
+ 2Ω× u = −∇p′ + gαT ′̂r +

1

ρ
j× B0 + ν∇2u

∂b

∂t
= (B0 · ∇)u + η∇2b, µj = ∇× b,

∂T′

∂t
= −urT ′0 + κ∇2T′
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Dispersion relation for rotating MHD waves

Ignoring diffusion and buoyancy, we get

4ω2(Ω · k)2 =

(
(B0 · k)2

µρ
− ω2

)2

k2

ω =
(Ω · k)±

√
(Ω · k)2 + k2(B0 · k)2/µρ

|k|
Define

ωC =
2(Ω · k)

|k |
, ωM =

(B0 · k)

(µρ)1/2

and note that in planets ωC >> ωM .

Taking plus sign, we get ω ≈ ωC , the fast inertial waves. taking
minus sign, we get the slow wave

ωMC =
ω2
M

ωC
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Magnetic Rossby Waves

These non-axisymmetric waves have frequency

ωMC =
(B · k)2|k |
(Ω · k)µρ

These slow MC are in magnetostrophic equilibrium;
time-dependence comes from induction equation, not equation of
motion.

Large scale MC-waves typically have frequencies of thousands of
years, too slow, so we focus on columnar waves that have small
(Ω · k), the magnetic Rossby waves.

An exact solution is possible in spherical geometry for the special
Malkus field,

B =
B0seφ

a

which has uniform current density in z direction.
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Malkus model
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0.8 ur is shown for an eigenmode.

The solutions have 3
wavenumbers. An azimuthal
wavenumber m, (picture has
m = 8), a radial wavenumber in
the s direction (picture shows 8th
radial mode), and a
z-wavenumber.

The magnetic Rossby mode has the lowest possible z-wavenumber.
It travels westward.

The next z-wavenumber has opposite equatorial parity and travels
eastward, considerably slower.
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Magnetic Rossby wave frequencies

(a) (b)

The left plot is the wave speed and the right figure is the
azimuthal flow speed from a dynamo simulation. If the field is
azimuthal, the wave speed is (ks assumed small)

ω

m
= −

m2(r20 − s2)B2
φ

2Ωµρs4
.

Magnetic Rossby waves go westward.
Both flow and wave speed are similar, but flow dominates near
equator, waves dominate at higher latitudes. Higher latitudes more
informative?
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Rossby waves in simulations

(a) (b)

E = 10−5, Pm = 5, Ra = 8.32Rac .
Left: φ− t plot of us at s = 0.5ro , latitude 60◦.
Right: same at s = 0.766ro , latitude 40◦.

White dashed: advection speed.

Black dashed: wave speed + advection speed for m = 5 and
m = 8 in left, m = 6 in right.
At higher latitudes, waves + flow correlate well. At low latitudes,
hard to distinguish.

30/32



Comparing with data
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slow MC-Rossby: m=2
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gufm1 at 40S
gufm1 - zonal flow

At 40◦ S, black dotted is drift
speed from observational model
gufm1, black solid is drift speed
with core flow removed (Hulot et
al. 2002). Difference could be
the wave speed relative to the
flow.

The coloured dashed lines are the expected wave speeds from our
model as a function of the z-averaged toroidal field.

Indicates that the azimuthal field is a lot stronger than the poloidal
field of 3 mT if there is a wave component to the secular variation
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Conclusions on Magnetic Rossby waves

• Magnetic Rossby waves can be seen in dynamo simulations

• Waves are generally slow, so the wave drift will be dominated by
advection at lower latitudes.

• Best chance of separating the waves from the advection velocity
is at high latitudes, where the wave speed is significant compared
to the flow speed.

• Need to analyze the data to see the wavespeeds of the different
wavenumbers: dispersion relation depends on ratio of
wave/advection speed.
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